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The lattice Boltzmann method as a basis
for ocean circulation modeling

by Rick Salmon1

ABSTRACT
We construct a lattice Boltzmann model of a single-layer, ‘‘reduced gravity’’ ocean in a square

basin, with shallow water or planetary geostrophic dynamics, and boundary conditions of no slip or
no stress. When the volume of the moving upper layer is sufficientlysmall, the motionless lower layer
outcrops over a broad area of the northern wind gyre, and the pattern of separated and isolated
western boundary currents agrees with the theory of Veronis (1973). Because planetary geostrophic
dynamics omit inertia, lattice Boltzmann solutions of the planetary geostrophic equations do not
require a lattice with the high degree of symmetry needed to correctly represent the Reynolds stress.
This property gives planetary geostrophic dynamics a signi� cant computational advantage over the
primitive equations, especially in three dimensions.

1. Introduction

Numerical ocean circulation modelers usually follow one of two strategies. Numerical
models based upon the primitive equations represent the � rst strategy. In primitive
equation models, inertia-gravity waves are present even though these waves are unimpor-
tant contributors to the large-scale ocean circulation.The presence of inertia-gravity waves
severely limits the size of the time step in primitive equation models. However, because of
the inertia-gravity waves, the primitive equations comprise relatively few diagnostic
equations and are, therefore, relatively easy to code and solve.

The second strategy employs balanced dynamical equations like the quasi-geostrophic
or semi-geostrophic equations. In numerical models based upon balanced dynamics,
inertia-gravity waves are absent; therefore, the time step can be much larger. However, the
approximations used to � lter out the inertia-gravity waves require the solution of addi-
tional, typically elliptic, and frequently nonlinear diagnostic equations. The in� nite
propagation speed associated with the diagnostic equations is a direct result of the balance
condition that � lters out inertia-gravity waves. In complex geometry, that is, with realistic
ocean bathymetry, the only practical methods for solving the diagnostic equations are
iterative. Unfortunately, iterative solution of the diagnostic equations can be more difficult
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and less efficient than time-stepping the primitive equations, even when the solutions
themselves are nearly geostrophic.

Lattice Boltzmann methods (hereafter LB) offer a third modeling strategy that, unlike
both the primitive and balanced dynamical equations, is completely prognostic. Thus LB
ocean models contain not only inertia-gravity waves but sound waves as well. In fact,
because LB models contain an arbitrary number of dependent variables (corresponding to
the arbitrary number of links between neighboring lattice points), LB models typically
contain more types of waves than are actually present in the dynamical equations of
interest. These extra modes, which we shall call fast modes, play a role that is closely
analogous to the role played by inertia-gravity waves in solutions of the primitive
equations. Although unimportant contributors to the whole solution, the fast modes carry
information rapidly throughout the � ow, removing the need for diagnostic equations of any
kind.

Despite the presence of many fast modes, LB methods are efficient because the fast
modes can be made to propagate at speeds which, although much faster than the slow
modes of real physical interest, are very much slower than, for example, the speed of real
sound waves. Thus LB methods resemble still another well-known scheme for modeling
balanced dynamics, in which fast modes are not removed but instead simply slowed down
by making parameter adjustments to the physics. However, compared to other methods for
slowing down fast waves, LB methods, which amount to a technique of slowing and
attenuation, seem more sophisticated.

Usually, but perhaps mainly for historical reasons, we regard the LB equations as
equations governing the average behavior of an underlying lattice gas. Lattice gases are
highly idealized models of the complete molecular dynamics of real � uids. However,
because much of the energy in lattice gases is thermal energy, lattice gases constitute rather
noisy models of macroscopic � uids. A principal advantage of the LB method over the
lattice gas method is that LB � lters out this noise. Thus LB models are, in a sense, balanced
models, which despite their many degrees of freedom and high proportion of fast modes,
� lter out the ultra fast modes corresponding to thermal motions.

The great practical advantage of LB models lies in the extraordinary simplicity of the LB
equations, their numerical stability, and in the fact that the LB equations are massively
parallel: At each timestep, the LB solution algorithm proceeds without consulting the
conditions at the neighboring lattice points. Thus each lattice point could have its own
processor. These practical advantages more than compensate for the extra storage associ-
ated with the greater number of dependent variables.

While it is their potential for parallel processing that virtually guarantees that LB
methods will play an important role in ocean circulation modeling, it is their mathematical
simplicity that seems most appealing.With only slight exaggeration, one could say that the
LB method never requires the computation of a derivative. Nevertheless, one can interpret
the LB equations as � nite-difference approximations to a simple and completely hyper-
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bolic system of quasi-linear equations. This hyperbolic system neatly expresses the two
fundamental components of LB dynamics: the propagation (usually called streaming) of
information between neighboring lattice points, and the rapid relaxation of the variables at
each lattice point toward a state of local equilibrium. The speci� cation of this equilibrium
state corresponds to a prescription of the basic dynamics.

Despite these important practical advantages, the LB method remains somewhat
in� exible, and this appears to be its primary disadvantage.For example, LB models almost
inevitably contain a close approximation to the standard Navier-Stokes viscosity; there is
as yet no LB method for replacing this standard viscosity with a ‘‘higher order eddy
viscosity’’ of the type that has proved convenient in ‘‘large eddy simulations.’’ (However,
considering the problematic nature of higher order viscosities, particularly in the presence
of boundaries, this may not be such a serious disadvantage.) More generally, despite the
promising work of Ancona (1994) and others, there is as yet no cookbook method for
applying LB methods to arbitrary systems of partial differential equations. However, it
seems likely that greater use of LB methods for a greater variety of applications will
gradually lead to further generalizations in the theory and subsequent improvements in the
method.

In this paper, we apply the LB method to a simple model of ocean circulation—the
so-called reduced gravity model for a homogeneous,wind-driven layer of � uid overlying a
denser layer that remains at rest even where it lies exposed to the wind. This model has
frequently been studied by oceanographers.Here, however, we regard it mainly as a tool to
assess the value of LB methods as the basis for more complicated, three-dimensionalocean
circulation models.

Section 2 offers a brief but self-contained introduction to LB theory using language that
should appeal to oceanographers. For a more complete introduction to the theory, the
reader should consult the excellent reviews by Benzi et al. (1992) and Chen and Doolen
(1998), and the wonderful book by Rothman and Zaleski (1997).

In Section 3 we derive an 8-velocity LB model corresponding to the rotating shallow
water equations. If terms corresponding to momentum advection are dropped from the LB
formulae for the equilibrium populations of the particles, then the same model yields
solutions of the planetary geostrophic equations.

Section 4 presents numerical solutions of the LB model for shallow water and planetary
geostrophic dynamics in a square ocean basin with a two-gyre wind stress and boundary
conditions of no slip or no stress. When the total volume of the moving � uid layer is
sufficiently large, the moving layer covers the whole basin, as seen in Figure 3. However,
when the upper layer volume is smaller (Figure 4), the lower layer outcrops over a broad
region of the northern gyre, and both separated and isolated western boundary currents are
present, in agreement with the theory of Veronis (1973).

In Section 5, we examine the solutions of a 4-velocity LB model of the planetary
geostrophic equations, which requires half as much computation and storage as the
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8-velocity model of Sections 3 and 4. In Sections 5 and 6, we speculate that the
three-dimensional analogue of the 4-velocity model holds great promise as the basis for a
three-dimensional global ocean circulation model.

Lattice gas models and LB models have been widely used in � uid mechanics for about
ten years, and several applications treat problems of geophysical � uid dynamics. For
example, Benzi et al. (1998) present results from a 512-processor LB calculation of
Rayleigh-Benard convection on a 2563 lattice. However, I have not seen the LB method
applied to rotating � ow. Since, therefore, few oceanographers are likely to be familiar with
the LB method, this paper is designed to be as self-contained as possible.

2. The lattice Boltzmann method

We illustrate the lattice Boltzmann method by application to the uni-directional wave
equation,

 h

 t
1 cR(h)

 h

 x
5 0, (2.1)

for h(x, t) on the in� nite domain 2 ` , x , 1 ` . Here, cR(h), a prescribed function, is the
speed of the ‘‘real’’waves. Of course, solutionsof (2.1) generally become multivaluedafter
a � nite time unless a diffusion term is added to (2.1). Nevertheless, we begin by
considering (2.1). Although this example is extremely simple, it illustrates nearly all of the
important ideas needed for the more complicated cases of interest.

In the LB method we introduce two new dependent variables, h1(x, t) and h2(x, t), which
are related to h(x, t) by

h 5 h1 1 h2. (2.2)

The new dependent variables obey equations of the form

h1(x 1 c D t, t 1 D t) 5 h1(x, t) 2 l D t(h1(x, t) 2 h1
eq(h))

h2(x 2 c D t, t 1 D t) 5 h2(x, t) 2 l D t(h2(x, t) 2 h2
eq(h))

(2.3)

where the constants c, D t, and l , and the functions h1
eq(h) and h2

eq(h) remain to be speci� ed.
The strategy is to de� ne these functions and parameters such that solutions of (2.3)
approximate the solutions of (2.1).

We can regard (2.3) as � nite-difference equations for h1 and h2, de� ned at lattice points
separated by

D x 5 cD t. (2.4)
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The heq terms couple (2.3) together. However, it is better to regard the discrete dynamics
(2.3) as a cycle with two steps. The � rst step corresponds to the collision

h81 5 h1(x, t) 2 l D t(h1(x, t) 2 h1
eq(h))

h82 5 h2(x, t) 2 l D t(h2(x, t) 2 h2
eq(h))

(2.5)

at each lattice point. The collision step relaxes each hi toward its local equilibrium value
h i

eq(h1 1 h2), which remains to be de� ned. The primes denote the values immediately after
the collision.The second step is a streaming

h1(x 1 cD t, t 1 D t) 5 h81(x, t)

h2(x 2 cD t, t 1 D t) 5 h82(x, t)
(2.6)

to the neighboring lattice points. In the limit l ® 0 of no collisions, h1 propagates
unchanged to the right at speed c, from one lattice point to the next in a time step, whereas
h2 propagates to the left at the same speed. This suggests that we regard h1 as the population
of rightward-moving particles, h2 as the population of leftward-moving particles, and h 5
h1 1 h2 as the total population.

As a � rst step, we investigate (2.3) in the usual manner of assessing � nite-difference
equations: We regard c as a � xed constant and consider the limit D t ® 0, which then
corresponds to the limit of small time step and small lattice spacing. For D t ® 0, (2.3) take
the form

1  t
1 c



 x 2 h1 5 2 l (h1 2 h1
eq(h))

1  t
2 c



 x 2 h2 5 2 l (h2 2 h2
eq(h))

(2.7)

of characteristic equations; the characteristics are the lines of constant x 6 ct. In the limit
l ® 0 of no collisions, h1 and h2 are Riemann invariants. However, we shall see that the
collision terms are actually very important. In the physically relevant regime of relatively
large l , the collision terms hold the populations hi very close to their corresponding
equilibrium values h i

eq.
We manipulate (2.7) into a single equation for h, and then choose h1

eq(h) and h2
eq(h) so

that this equation approximates the equation (2.1) of interest. Let

q ; h1 2 h2, (2.8)

and rewrite (2.7) in terms of h and q. By summing and differencing (2.7) we obtain

 h

 t
1 c

 q

 x
5 2 l (h 2 heq(h)) (2.9)
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and

 q

 t
1 c

 h

 x
5 2 l (q 2 qeq(h)) (2.10)

where

heq ; h1
eq 1 h2

eq (2.11)

and

qeq ; h1
eq 2 h2

eq. (2.12)

We assume that the local equilibrium has the same h as the actual, slightly disequilibrium,
state. That is,

h1
eq 1 h2

eq 5 h1 1 h2 ; h. (2.13)

Eq. (2.13) is the � rst of two equations that will determine the h i
eq. Because of (2.13), the

collisions (2.5) conserve the total population, and (2.9) becomes

 h

 t
1 c

 q

 x
5 0. (2.14)

Thus, collision terms occur in the evolution equation (2.10) for q, but not in the equation
(2.14) for h. This makes h the slow mode and q the fast mode.

To obtain a closed equation for h, we apply  / t 1 l to (2.14) and use (2.10) to eliminate q.
The result

htt 2 c2hxx 1 l 1 ht 1


 x
(cqeq(h)) 2 5 0. (2.15)

We choose

qeq(h) 5
1

c
e cR(h) dh, (2.16)

so that (2.15) becomes

htt 2 c2hxx 1 l (ht 1 cR(h)hx) 5 0. (2.17)

Eq. (2.16) is the second of two equations that determine the h i
eq. By (2.13) and (2.16),

h1
eq 5

h

2
1

1

2c e cR(h) dh

h2
eq 5

h

2
2

1

2c
e cR(h) dh.

(2.18)
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If we take the lattice spacing D x as given, then, by (2.4), the choice of c corresponds to the
choice of time step D t. Thus the LB dynamics (2.3) is completely speci� ed by (2.18) and
the choice of c and l .

Eq. (2.17) represents the sum of the ‘‘textbook’’ wave equation, with propagation speed
c, plus l multiplied by the equation (2.1) of interest. Therefore we should choose l large
enough so that the last two terms in (2.17) dominate the � rst two terms. The second term in
(2.17) is a diffusion term of the kind required to keep (2.1) well behaved. On the other
hand, the � rst term in (2.17) is unphysical, from the standpoint of (2.1). In summary then,
our strategy should be to choose l and c such that

* htt * ½ * c2hxx * ½ * l cRhx * . (2.19)

Then, neglecting only the smallest term, (2.17) becomes

ht 1 cR(h)hx 5
c2

l
hxx, (2.20)

the diffusive form of (2.1). From (2.20), we see that for � xed D x and D t, and hence � xed c,
l controls the diffusion coefficient c2/l .

Suppose that cR(h) is nearly uniform, either because h is nearly uniform, or because
cR(h) is a nearly constant function. Then since ht < cRhx, we have htt < cR

2hxx, and the � rst
inequality in (2.19) corresponds to

cR , c. (2.21)

By (2.4), this is just the usual CLF criterion,

cR ,
D x

D t
, (2.22)

that the physical wave cannot propagate farther than a lattice distance D x in a time step D t.
If we include the effects of the � rst term in (2.17) (still assuming ht < cRhx), then (2.20)
becomes

ht 1 cR(h)hx 5
c2 2 cR

2

l
hxx. (2.23)

Thus, violation of the CLF criterion leads to instability in the form of a negative diffusion
in (2.23).

The present example is an especially simple one. In more complicated cases, particularly
those involving more than one space dimension, such a direct analysis of the full set of
population equations becomes impractical. In these cases, it is better to use an approxima-
tion method—the Chapman-Enskog expansion—that explicitly tracks only the slow
modes. Because it treats the more numerous fast modes only implicitly, the Chapman-
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Enskog expansion can be carried to a higher order in D t. This higher accuracy is important.
For example, (2.20) suggests that the diffusion can be made arbitrarily small by making l
arbitrarily large, whereas general experience with equations like (2.3) leads us to expect
that l cannot be made much larger than about D t 2 1. Using the more accurate result of the
Chapman-Enskog expansion, we � nd that the diffusion can indeed be made arbitrarily
small, but by making l close to the well-de� ned upper bound 2/ D t. This insight proves
critical for applications.

The Chapman-Enskog expansion is a dual expansion in D t and in the nearness of each hi

to h i
eq. The populations remain near their local equilibrium values because the decay

parameter l is large. Thus e ; 1/ l is the second small parameter. We assume that D t and e
have the same small size, and we take the h i

eq to be given by (2.18). Expanding (2.3) in D t,
we obtain

(Di 1 1�2D tDi
2 1 · · ·)hi 5 2 l (hi 2 h i

eq), i 5 1, 2 (2.24)

where

D1 5


 t
1 c



 x
and D2 5



 t
2 c



 x
. (2.25)

Then, expanding the hi about their prescribed equilibrium values,

hi 5 h i
eq 1 e h i

(1) 1 e 2h i
(2) 1 · · · , e ; l 2 1, (2.26)

and substituting (2.26) into (2.24), we obtain

1 Di 1
1

2
D tDi

2 1 · · · 2 (h i
eq 1 e hi

(1) 1 · · ·) 5 2
1

e
( e hi

(1) 1 e 2h i
(2) 1 · · ·). (2.27)

To the � rst two orders in D t or e , (2.27) takes the form

G i
(0) 1 G i

(1) 5 0, (2.28)

where

G i
(0) 5 Dih i

eq 1 h i
(1) (2.29)

contains all the order one terms and

G i
(1) 5 1�2 D tDi

2hi
eq 1 e Dih i

(1) 1 e hi
(2) (2.30)

contains all the terms of order D t or e .
To get a closed equation for the slow mode h(x, t), we sum (2.28) over i and use the

conservation property (2.13) of (2.18), which implies that

o
i

h i
(1) 5 o

i
h i

(2) 5 · · · 5 0. (2.31)
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Thus, by (2.18),

o
i

G i
(0) 5 o

i
Dih i

eq 5
 h

 t
1 cR(h)

 h

 x
. (2.32)

Similarly,

o
i

G i
(1) 5

1

2
D t o

i

D i
2h i

eq 1 e o
i

Dih i
(1). (2.33)

To consistent order, we may simplify (2.33) by substituting for h i
(1) from the leading order

approximation to (2.28), namely

h i
(1) 5 2 Dih i

eq. (2.34)

Thus, to consistent order,

o
i

G i
(1) 5

1

2
D t o

i
D i

2h i
eq 2 e o

i
Di(Dihi

eq) 5 1 D t

2
2

1

l 2 o
i

D i
2h i

eq. (2.35)

Using (2.18) again, and the fact that ht 5 2 cRhx at leading order, we � nd that, to consistent
order,

o
i

D i
2hi

eq 5 htt 1 2(cRhx)t 1 c2hxx < (c2 2 cR
2 )hxx . (2.36)

Thus, to the � rst two orders in D t and e , the Chapman-Enskog expansion yields

ht 1 cR(h)hx 5 1 1l 2
D t

2 2 (c2 2 cR
2 )hxx, (2.37)

a more accurate version of (2.23). Once again, if c is much larger than cR, then (2.37)
becomes

ht 1 cR(h)hx 5 1 1l 2
D t

2 2 c2hxx. (2.38)

Compare (2.38) to the corresponding but less accurate result (2.20). According to (2.38),
the diffusion coefficient decreases with increasing l , vanishing as l approaches the critical
value 2/D t. For still larger l , the solutions of the LB equations become unstable.

3. The shallow-water equations

In this section we derive the LB approximation to the shallow water equations,

 h

 t
1



 xa
(u a h) 5 0 (3.1)
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and



 t
(ua h) 1



 xb
Pa b 5 Fa , (3.2)

where

P a b 5 1�2gh2d a b 1 u a ub h. (3.3)

Here, h is the � uid depth, (u1, u2) ; (u, v) ; u is the � uid velocity,g is the gravity constant,
and F a is the sum of all the forces including Coriolis force. Repeated Greek subscripts are
summed from 1 to 2.

We use a square two-dimensional lattice. Let D x be the distance between lattice points in
either direction. Refer to Figure 1. We adopt the 8-velocity model with

c0 5 0 (3.4)

for the velocity of the rest particle;

c1 5 (c, 0), c3 5 (0, c), c5 5 ( 2 c, 0), c7 5 (0, 2 c) (3.5)

for the velocities of the particles moving in the 4 coordinate directions; and

c2 5 (c, c), c4 5 ( 2 c, c), c6 5 ( 2 c, 2 c), c8 5 (c, 2 c) (3.6)

Figure 1. At each lattice point, particles move in one of 8 directions to an adjacent lattice point in a
time step.
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for the particle velocities in the 4 diagonal directions. We take cD t 5 D x, so that all the
particles (except the rest particle) move from lattice point to adjacent lattice point in a
timestep D t.

As in Section 2, we regard hi(x, t) as the populationof particles with velocity ci at lattice
point x and time t. The equations

h(x, t) 5 o
i5 0

8

hi(x, t) (3.7)

and

hu(x, t) 5 o
i 5 0

8

cihi(x, t) (3.8)

relate the 9 populations 5 hi(x, t), i 5 0, 86 at lattice point x and time t to the � uid depth
h(x, t) and velocity u(x, t) at the same location and time. Since c0 5 0, the rest particles do
not contribute to the momentum. The three physical variables h, u, and v are the slow
modes of the LB model. Thus there are 9 2 3 5 6 fast modes.

Once again, the LB dynamics comprises two steps: a collision step, which adjusts the
populations at each lattice point, followed by a streaming step, in which particles move to
the neighboring lattice points. The collision step is governed by

h8i(x, t) 5 hi(x, t) 2 l D t(hi(x, t) 2 h i
eq(x, t)) (3.9)

where l is the decay coefficient, and the prime denotes the value immediately after the
collision.The equilibrium populations

heq(x) ; 5 h0
eq(x), h1

eq(x), . . . , h8
eq(x) 6 (3.10)

remain to be de� ned. The streaming step is governed by

hi(x 1 ciD t, t 1 D t) 1 h8i(x, t) 1
D t

6c2
cia 1 12 Fa (x, t) 1

1

2
Fa (x 1 ci D t, t 1 D t) 2 (3.11)

where ci a is the component of ci in the a -direction. Once again, repeated Greek indices are
summed. Note that the forcing term in (3.11) represents an average of the values at the
departure point (x, t) and the arrival point (x 1 ciD t, t 1 D t) of the streaming particle; this
proves essential to maintaining second order accuracy in the Chapman-Enskog expansion.
Combining (3.9) and (3.11) into a single formula, we obtain the complete LB dynamics

hi(x 1 ci D t, t 1 D t) 2 hi(x, t) 2
D t

6c2
cia 1 12 F a (x, t) 1

1

2
Fa (x 1 ci D t, t 1 D t) 2

5 2 l D t(hi(x, t) 2 h i
eq(x, t)).

(3.12)

Once again, our strategy is to choose the constants c, D t, and l , and the 9 functions
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h i
eq(h, u, v) (where h, u, v are de� ned by (3.6–8)) such that the slow modes computed from

(3.12) approximately satisfy the shallow water equations.The choices

h0
eq 5 h 2

5gh2

6c2
2

2h

3c2
u · u (3.13)

h i
eq 5

gh2

6c2
1

h

3c2
ci a ua 1

h

2c4
ci a cib u a u b 2

h

6c2
u · u, odd i (3.14)

h i
eq 5

gh2

24c2
1

h

12c2
cia ua 1

h

8c4
ci a cib ua u b 2

h

24c2
u · u, even i (3.15)

have the important properties that

o
i

h i
eq 5 h, (3.16)

o
i

ci a h i
eq 5 hu a , (3.17)

and

o
i

cia ci b h i
eq 5

1

2
gh2d a b 1 ua u b h. (3.18)

As always, the equilibrium populationsh i
eq depend only on the slow modes h, u, and v. The

speci� c choices (3.13–15) are somewhat arbitrary, but we shall see that the properties
(3.16–18) guarantee that the slow mode dynamics approximates the shallow-water equa-
tions (3.1–3). The properties (3.16) and (3.17) correspond to the conservation of mass and
momentum, respectively, by the collisions (3.9). Property (3.18) makes the momentum � ux
of the LB particles equal to the momentum � ux (3.3) of the shallow water equations. For a
motivated derivation of (3.13–15), see the Appendix.

The LB dynamics (3.12) comprises 9 evolution equations for the 9 population variables
hi. Because there are so many dependent variables, a direct analysis of the full set of
equations like that performed in Section 2 is rather difficult. However, most of the
dependent variables represent fast modes. Therefore, the Chapman-Enskog expansion,
which pursues only the slow modes, remains relatively easy. Once again, the Chapman-
Enskog expansion is a dual expansion in D t and e ; l 2 1, which are assumed to be of the
same order. The smallness of D t (for � xed c) corresponds to the assumption that the
population variables vary slowly on the scale of the lattice spacing and the time step. The
smallness of e corresponds to the assumption that the collisions hold the populations near
their equilibrium values (3.13–15). Expanding (3.12) in D t, and substituting

hi 5 h i
eq 1 e h i

(1) 1 e 2h i
(2) 1 · · · (3.19)
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we obtain

1 Di 1
1

2
D t Di

2 1 · · ·2 (h i
eq 1 e h i

(1) 1 · · ·) 2
1

6c2
cia 1 1 1

1

2
D t Di 1 · · ·2 F a (x, t)

5 2
1

e
( e h i

(1) 1 e 2h i
(2) 1 · · ·)

(3.20)

where

Di ;


 t
1 cia



 xa
. (3.21)

To the � rst two orders in e or D t, (3.20) is

G i
(0) 1 G i

(1) 5 0, (3.22)

where

G i
(0) 5 Dih i

eq 2
1

6c2
cia Fa 1 h i

(1) (3.23)

contains the order one terms, and

G i
(1) 5

1

2
D tD i

2h i
eq 1 e Dih i

(1) 2
D t

12c2
ci a DiFa 1 e h i

(2) (3.24)

contains the terms of order D t or e . As in Section 2, we may consistently use the leading
order balance in (3.22) to simplify the next order terms. Thus solving G i

(0) 5 0 for Dihi
eq and

substituting the result into (3.24) yields

G i
(1) < 1 e 2

D t

2 2 Dih i
(1) 1 e hi

(2). (3.25)

To obtain the slow mode dynamics, we apply S
i
and S

i
cia to (3.22). Since the heq de� ned

by (3.13–15) satisfy (3.16) and (3.17), it follows from (3.19) that

o
i

h i
(1) 5 o

i

h i
(2) 5 o

i

ci a h i
(1) 5 o

i

ci a h i
(2) 5 0. (3.26)

Therefore (3.23) implies that

o
i

G i
(0) 5 o

i
Dih i

eq 5
 h

 t
1



 xa
(hu a ), (3.27)

and (3.25) implies that

o
i

G i
(1) 5 0. (3.28)
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Thus the LB dynamics implies the shallow water continuity equation (3.1) with an acuracy
of O( e 2).

To obtain the corresponding momentum equation,we use (3.23), (3.26) and (3.16–18) to
compute

o
i

ci a G i
(0) 5



 t
(u a h) 1



 x b
Pa b 2 F a , (3.29)

where Pa b is given by (3.3). Similarly, from (3.25) we obtain

o
i

ci a G i
(1) 5 1 e 2

D t

2 2 

 x b
o

i

cia ci b h i
(1). (3.30)

Thus, with an accuracy of O( e 2), the LB dynamics implies



 t
(u a h) 1



 xb
Pa b 2 Fa 5 2



 xb
T a b (3.31)

where the viscous tensor

T a b 5 1 e 2
D t

2 2 o
i

cia ci b h i
(1) (3.32)

represents the higher order terms. To consistent order, we may substitute the leading order
balance

h i
(1) 5 2 Dih i

eq 1
1

6c2
cia Fa (3.33)

into the higher order term (3.32). We obtain

T a b 5 1 D t

2
2 e 2 1 

 t o i

ci a cib h i
eq 1



 x g
o

i

cia ci b cig h i
eq 2 . (3.34)

If we choose c2 ¾ gh—the analog of c ¾ cR in Section 2—then the contribution of the
 / t-term in (3.34) is negligible. Using (3.14–15) to evaluate the other term, we obtain

T a b 5 1 D t

2
2 e 2 1

3
c2 5 = · (hu)d a b 1



 x a
(hub ) 1



 xb
(hu a ) 6 . (3.35)

Thus

 T a b

 x b
5 1 D t

2
2 e 2 1

3
c2 5 2 

 xa
= · (hu) 1

 2

 xb  x b
(hua ) 6 . (3.36)
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The � rst term in the curly bracket represents a small correction to the pressure; the second
term resembles the usual viscosity. If we retain only this second term, then (3.31) becomes



 t
(u a h) 1



 x b
P a b 2 F a 5 n

 2(hu a )

 xb  xb
(3.37)

where

n 5
1

3
c2 5 1l 2

D t

2 6 (3.38)

is the viscosity coefficient. Thus, to the second order in e and D t, the LB dynamics implies
the continuity equation (3.1) and the momentum equation (3.37) with viscosity coefficient
(3.38).

We conclude this section by summarizing the shallow water LB model as an algorithm
with a 4-step cycle:

(1) Given the populations hi(x, t) at every lattice point x, compute the � uid depth and
velocity from (3.7–8).

(2) From these h(x) and u(x), compute the equilibrium populations h i
eq(x, t) from

(3.13–15).

(3) Collide the particles using (3.9).

(4) Stream the particles using (3.11). Return to step (1).

Once again, to the � rst two orders of approximation, this algorithm is equivalent to the
viscous shallow-water dynamics (3.1) and (3.37–38).

4. Numerical experiments

We consider an ocean composed of two immiscible layers with different uniform mass
densities, and we assume that the lower layer is at rest. The upper layer is governed by the
shallow water equations with reduced gravity g. For these we use the LB model derived in
Section 3, with forcing

Fa 5 e a b fhub 1
h

h 1 d E
t a . (4.1)

Here, e a b is the permutation symbol, f 5 f0 1 b y is the Coriolis parameter, t (x, y) 5 ( t 1, t 2)
is the prescribed wind stress (divided by 1 gm cm 2 3), and d E is the Ekman thickness, a
prescribed constant. By the results of Section 3, solutions of the LB equations with forcing
(4.1) approximately satisfy

(hu)t 1 (huu)x 1 (hvu)y 1 f k 3 hu 5 2 gh = h 1
h

h 1 d E
t 1 n = 2(hu) (4.2)
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and

 h

 t
1 = · (hu) 5 0, (4.3)

where = 5 (  x,  y) and

n 5 1 1l 2
1

l max
2 c2

3
, (4.4)

with l max 5 2/ D t and c 5 D x/ D t as before.
Models like (4.2–3), often called one-and-one-half layer models or reduced gravity

models, are frequently studied prototypes for the more complex multi-layer or continu-
ously strati� ed ocean circulation models. The atypical features of (4.2) are the quotient
preceding the wind stress, and the presence, inside the viscous Laplacian, of the factor h.
The latter is a typical feature of LB calculations, an example of the ‘‘in� exibility’’
mentioned in Section 1. If u varies on a smaller lengthscale than h, then the viscosity in
(4.2) is practically the same as standard Navier-Stokes viscosity. However, in the present
application, there is no compelling reason to prefer one form of viscosity over the other. It
is even conceivable that the dissipation operator in (4.2), which arises naturally from the
collide-and-stream algorithm, may have advantages over more arbitrarily chosen dissipa-
tion operators. Of course, one could turn off the viscosity in (4.2) by setting l 5 l max, and
then insert a completely arbitrary dissipation into the forcing Fa . However, that would
violate the aesthetic principle that LB dynamics should be based on the simplest feasible
set of operations.

As for the quotient in the wind forcing term, we imagine that all of the momentum put in
by the wind stress is mixed downward through an ‘‘Ekman layer’’ of depth d E by
small-scale processes not contained in the model. If the upper layer depth h is much greater
than d E, then the quotient in (4.1) is near unity, and the upper layer absorbs nearly all of the
momentum put in by the wind. However, if h , d E then the upper layer absorbs only a
fraction, h/d E, of the wind momentum; the rest is lost to the lower layer, which nevertheless
remains at rest because of its great presumed thickness. This forcing strategy, which can be
viewed as an alternative to interfacial friction, avoids the unrealistic behavior that could
develop if a � nite amount of wind mometum were spread over a vanishing upper layer
depth. In all the solutions discussed, d E 5 100 m.

We solve (4.2–3) in the square box, 0 , x, y , L 5 4000 km. All the solutions discussed
have 100 lattice points in each direction. Thus D x 5 40 km. The reduced gravity has the
value g 5 .002 3 9.8 m sec 2 2. For an upper layer depth of h 5 500 m, this corresponds to
an internal gravity wave speed (gh)1/2 of 270 km day2 1. We choose c 5 540 km day2 1 to
ful� ll the CLF criterion that c be larger than the speed of the gravity waves, the fastest
waves present in the shallow water equations. Then D t 5 D x/c 5 .075 day. We take f0 5
2 p day2 1 and b 5 f0/6400 km. For h 5 500 m, this corresponds to an internal deformation
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radius (gh)1/2/f0 of 43 km, and an internal Rossby wave speed gh b / f 0
2 of 1.8 km day2 1, at

the southern boundary.At this speed, Rossy waves cross the basin in about 6 years.
In all the experiments discussed, t y 5 0, and

t x 5 sin2 ( p y/L) dyn cm2 2. (4.5)

Thus the wind blows west to east with a maximum force at mid-latitude, and both the wind
stress and its curl vanish at the northern and southern boundaries. The anticipated
circulation has two gyres.

The relaxation coefficient l controls the viscosity n . Since l is of order D t 2 1, the
viscosity n has scale size c2 D t 5 cD x 5 25 3 108 cm2 sec2 1. This corresponds to a Munk
boundary layer thickness d M ; ( n / b )1/3 of 280 km, which is too large. Realistically small
viscosity relies on the cancellation between terms in (4.4) as l ® l max. In all of the
experiments discussed, l 5 0.95 3 l max corresponding to v 5 0.033 c D x and d M 5 90 km,
about 2 lattice spacings.The ability to reduce the viscosity by choosing l very close to l max

is absolutely vital for the practical application of LB methods. Otherwise the high intrinsic
viscosity of LB dynamics makes the solutions unrealistically diffusive. Recall that the
l max-term in (4.4) arises from a second order term in D t in the Chapman-Enskogexpansion.

The streaming step (3.11) requires the forcing Fa (x 1 ci D t, t 1 D t) at the particle
destination and the new time. Since the forcing (4.1) involves the depth and velocity
(which depend on the hi), (3.11) is an implicit equation for hi at the new time. We solve
(3.11) using a predictor-corrector method. In the predictor, we evaluate both forcing terms
in (3.11) at the departure location and time. In each corrector, we evaluate the forcing term
at the destination by using the previous iterate. Although 1 or 2 correctors seemed
sufficient, all the solutions discussed use 4 correctors. The need for a predictor/corrector
method to accommodate the Coriolis force somewhat compromises the efficiency and
aesthetics of the LB model.

We consider all of the lattice points to lie within the � uid. The collision step is the same
at all lattice points. At the lattice points closest to the boundary, we modify the streaming
step (3.11) to incorporate the boundary conditions.All the experiments discussed used one
of two algorithms. In the algorithm corresponding to no stress, particles streaming toward
the boundary experience elastic collisions, as shown in Figure 2a. In the algorithm
corresponding to no slip, particles streaming toward the boundary bounce back in the
direction from which they came, as shown in Figure 2b. Both of these algorithms are
standard methodology in applications of LB dynamics. Note that, in both cases, the
boundary lies one half lattice distance outside the last row of lattice points.Apart from the
interaction with the boundary (that is, as regards the evaluation of the forcing terms and the
use of predictor-corrector), the streaming step is the same at all lattice points.

Parsons (1969) and especially Veronis (1973, 1980) developed a relatively complete
theory of wind-driven, reduced-gravity � ow based upon planetary geostrophic dynamics,
in which the inertia Du/Dt is omitted from the shallow water momentum equation. For a
brief summary of their theory, see Salmon (1998a, pp. 182–188). To investigate planetary

1999] 519Salmon: Lattice Boltzmann method



geostrophic dynamics, we note that if all the terms quadratic in the velocity are simply
dropped from the equilibrium populations(3.13–15), then the Chapman-Enskog expansion
yields the same continuity equation (4.3) as before. However, the resulting momentum
equation,

(hu)t 1 f k 3 hu 5 2 gh= h 1
h

h 1 d E
t 1 n = 2(hu), (4.6)

contains the local time derivative of the velocity, but omits the advection of momentum.
Our calculations show that the LB solutions of (4.3) and (4.6) with steady wind forcing
always eventually become steady. Thus, by simply dropping the O(u2) terms in (3.13–15)
we eventually obtain solutions of the planetary geostrophic equations in the form (4.3) and

f k 3 hu 5 2 gh= h 1
h

h 1 d E
t 1 n = 2(hu) (4.7)

Figures 3 and 4 depict LB solutions of the shallow water (SW) and planetary geostrophic
(PG) equations using the forcing and parameter settings just described.All solutions begin
from a state of rest with uniform upper layer depth h. The solutions differ only in their

Figure 2. The streaming of particles from a lattice point near the boundary.The boundary is dashed.
(a) Elastic collisions with the boundary correspond to the boundary condition of no stress, that is,
no normal transport of tangential momentum. (b) So-called ‘‘bounce back’’ collisions correspond
to no-slip boundary conditions.

520 Journal of Marine Research [57, 3



dynamics (SW or PG), their boundary conditions (no slip or no stress), and in the total
volume of upper layer water. If the upper layer volume is sufficiently small, then, according
to the theory of Veronis, the wind stress (4.5) produces a northeastward � owing separated
western boundary current (like the North Atlantic Current) and a southward � owing
isolated western boundary current (like the Labrador Current). Between these two currents,
the motionless lower layer outcrops at the sea surface. All the solutions of Figure 3 have an
upper layer volume equivalent to an average h of 500 m. This is just above the critical value
for which lower layer outcropping occurs. In contrast, all the solutions of Figure 4 have a
mean layer depth of 300 m. For this lower volume of upper layer water, the lower layer
outcrops over a broad area in the northern gyre. The outcrop region is in fact a region of
small but nonvanishingh maintained by the requirement that h remain greater than 5 m. If,
at any lattice point, h falls below 5 m, upper layer water is added to make h 5 5 m. Without
this simple augmentation, the LB algorithm described in Section 3 eventually becomes
unstable for the solutions in which h vanishes.

Table 1 summarizes all of the numerical solutions discussed. The ‘‘years’’ column gives
the duration of the experiment in simulated years. All of the solutions became steady or
statistically steady after about two decades, but some were run much longer to check for
stationarity or to investigate small trends. The h-column in Table 1 gives the range of upper
layer depth in the corresponding � gure. The * hu * -column gives the maximum transport, in
Sverdrups per kilometer distance in the direction normal to u. (1 Sverdrup 5
1 Sv 5 106 m3 sec2 1.) This maximum transport corresponds to the longest arrow in the
corresponding � gure and thus sets the scale for the arrows. The last column in Table 1 gives
the total transport of the southern (northern) gyre in Sverdrups. The northern transport
approaches the southern transport only in the cases where h . d E over most of the northern
gyre, that is, only in the experiments with the greater upper layer volume.

In every case, the SW solutions remain unsteady, but approach statistically steady states
that are well established by the times given in Table 1 and shown in the � gures. The
� uctuations about the mean are largest in the two SW solutions with the deeper upper layer
(Fig. 3a–b), which feel the full wind forcing over a greater fraction of the domain.
However, even in the SW no-slip solution of Figure 3a, which exhibited the largest
� uctuations, the depth and velocity � elds shown on the � gure closely resemble those in
many other snapshots taken at different times. The two SW solutions with the shallower
upper layer (Fig. 4a–b) exhibited very small � uctuations, and could be described as
quasi-steady.

In contrast, the PG solutions, corresponding to the LB equivalent of (4.3, 4.6), always
eventually become steady; hence we may consider them as solutions of (4.3, 4.7). The PG
solutions lack the quasi-stationary meanders and large inertial recirculations of the SW
solutions near the western boundary. However, the corresponding SW and PG solutions
generally resemble one another, especially in the ocean interior. Overall, the PG solutions
could be described as everywhere laminar and therefore somewhat less interesting than the
corresponding SW solutions.
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Figure 3. Numerical solutions of the reduced gravity model using the 8-velocity lattice Boltzmann
method described in Sections 3 and 4. All 4 solutions correspond to an average layer depth of
500 m. Contours represent the layer depth h, with darker contours corresponding to larger h. See
Table 1 for the range of h in each picture.Arrows represent the transporthu, with the length of each
arrow proportional to the square root of the transport (to reduce the range of arrow sizes). The
longest arrow correspondsto the maximum transportgiven in Table 1. (a) Shallow water dynamics
with no-slip boundary conditions.(b) Shallow water dynamics with no-stress boundaryconditions.
(c) Planetary geostrophic dynamics with no-slip boundary conditions. (d) Planetary geostrophic
dynamics with no-stress boundary conditions.



Figure 3. (Continued)
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Figure 4. The same as Figure 3, but for an average layer depth of 300 m. At this lower volume of
upper layer water, the motionless lower layer outcrops over a broad area in the northern gyre.
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Figure 4. (Continued)
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Like the full shallow water equations (4.2–3), the system (4.3, 4.6) contains inertia-
gravity waves; the linearized approximations to both systems are identical. Thus, both
systems contain the same number of fast and slow modes, and both systems demand about
the same amount of computation. (Because of the need for predictor/corrector, the
streaming step uses the most processor time, so the time saved by not calculating the O(u2)
terms in (3.13–15) is relatively insigni� cant.) Beyond the comparison between SW and PG
solutions, what then is gained by throwing out the momentum advection?

5. The 4-velocity model

I believe there are two advantages to the omission of momentum advection. One
advantage has a physical basis; the other is computational.Both advantages are likely to be
much more signi� cant in three dimensions than in two dimensions, but it is worthwhile to
consider them here. We consider the physical advantage of PG in the following section and
devote this section to the computational advantage.

The computational advantage of (4.6) arises from the fact that the corresponding LB
model requires only 4 nonzero velocities at each lattice point. Refer to Figure 5a. Including
the rest particle, this 4-velocity model contains only 5 (instead of 9) modes, and only 2 of
the 5 modes are fast modes in the sense of Section 2.

The 4-velocity model of Figure 5 cannot be used for the physics (3.13–15) containing
momentum advection, because its lower degree of isotropy leads to a completely incorrect
representation of the momentum � ux tensor.2 For example, it is intuitivelyobvious that the
4-velocity model cannot represent the northward advection of eastward momentum
because the 4-velocity model lacks diagonal links; the northward moving particles have no
eastward momentum, and vice versa. In the full shallow water equations, this de� ciency is
associated with the existence of spurious line invariants, that is, with the conservation, in

2. The need for a lattice with sufficient symmetry to represent the desired physics was � rst recognized by
Frisch et al. (1986); their classic paper inspired much of the subsequent interest in lattice gases and related
methods like LB.

Table 1. Summary of numerical experiments.

Fig. Dynamics Average h B. cond. Years
h min
(max)

Maximum
* hu *

s (n) gyre
transports

3a SW 500 m no-slip 40 100m (687 m) 0.20 Sv km2 1 25.3 Sv (22.4 Sv)
3b SW 500 no-stress 60 87 (697) 0.30 26.4 (23.8)
3c PG 500 no-slip 30 44 (695) 0.20 26.4 (24.0)
3d PG 500 no-stress 60 5 (710) 0.33 28.7 (24.6)
4a SW 300 m no-slip 55 5 (582) 0.17 25.6 (11.3)
4b SW 300 no-stress 85 5 (597) 0.22 26.9 (11.9)
4c PG 300 no-slip 40 5 (550) 0.17 21.9 (11.3)
4d PG 300 no-stress 40 5 (560) 0.26 22.7 (11.9)
6a PG-4 500 m no-normal 40 173 (674) 0.41 22.7 (21.2)
6b PG-4 300 m � ow 60 5 (531) 0.31 19.3 (11.3)
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unbounded � ow, of the momentum along each lattice row and column. However, when, as
in the planetary geostrophic equations, we neglect the momentum advection a priori and
drop the corresponding terms in (3.13–15), then the symmetry of the 4-velocity model
proves nearly sufficient to yield isotropic equations for the � uid. The remaining subtlety
involves the viscosity.

In the 4-velocity model, the 4 moving particles move in the 4 coordinate directions with
velocities

c1 5 (c, 0), c2 5 (0, c), c3 5 ( 2 c, 0), c4 5 (0, 2 c). (5.1)

Refer again to Figure 5. The LB dynamics, analogous to (3.12), is

hi(x 1 ci D t, t 1 D t) 2 hi(x, t) 2
D t

2c2
cia 1 12 Fa (x, t) 1

1

2
F a (x 1 ciD t, t 1 D t)2

5 2 l D t(hi(x, t) 2 hi
eq(x, t)).

(5.2)

Now, however, the equilibrium populations are given by

h0
eq 5 h 2

gh2

c2

h i
eq 5

gh2

4c2
1

h

2c2
cia u a , i Þ 0,

(5.3)

Figure 5. (a) In the 4-velocity model, particles move only in the 4 coordinate directions. (b) Only
particles moving in the normal direction collide with the boundary.
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which contain no O(u2) terms. The equilibrium populations (5.3) satisfy (3.16), (3.17), and

o
i

cia ci b h i
eq 5

1

2
gh2d a b , (5.4)

the analog of (3.18).
Once again, we may use the Chapman-Enskog expansion to derive equations for the

slow modes. However, because the 4-velocity model contains only 2 fast modes, it is more
interesting to follow the � rst of the two methods illustrated in Section 2—the expansion in
D t alone. To the � rst order in D t, (5.2) implies

1  t
1 ci a



 x a
2 hi 5

1

2c2
ci a Fa 2 l (hi 2 h i

eq). (5.5)

As usual, we obtain the slow mode equations from the weighted sums of (5.5). Summing
(5.5) from i 5 0 to 4 yields the continuityequation (4.3); summing ci a times (5.5) yields the
momentum equation



 t
(hu a ) 1

 R a b

 x b
5 F a , (5.6)

where

R a b ; o
i

ci a cib hi (5.7)

and F a is given by (4.1). At equilibrium, (5.7) takes the value (5.4); as in Section 3, the
difference between (5.7) and (5.4) is the viscous tensor. In the 4-velocity model,

R11 5 c2(h1 1 h3), R22 5 c2(h2 1 h4), R12 5 R21 5 0. (5.8)

Thus it is convenient to take R11 and R22 as the remaining two (fast) modes of the LB
system. Directly from (5.5), we obtain the fast mode equations

 R11

 t
1 c2

 (hu)

 x
5 2 l (R11 2 R11

eq)

 R22

 t
1 c2

 (hv)

 y
5 2 l (R22 2 R22

eq).

(5.9)

Eqs. (5.6) and (5.9) are analogous to (2.14) and (2.10), respectively.Eq. (4.3, 5.6, 5.9) form
a complete set of equations for all 5 modes. Eliminating R11 and R22 between (5.9) and
(5.6), we obtain the analogs of (2.17),

l [(hu)t 2 fhv 1 ghhx] 1 [(hu)tt 2 f (hv)t 2 c2(hu)xx] 5 0

l [(hv)t 1 fhu 1 ghhy] 1 [(hv)tt 1 f (hu)t 2 c2(hv)yy] 5 0
(5.10)
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in which, for simplicity, we have temporarily dropped the wind forcing terms. As in
Section 2, the leading order LB dynamics corresponds to l times the equations of interest
plus ‘‘textbook’’ wave equations, now modi� ed by rotation.

For small time step and lattice spacing, the 4-velocity LB dynamics (5.2–3) is equivalent
to (4.3) and (5.10). For large enough l and c, solutions of (5.10) approximately satisfy

(hu)t 2 fhv 5 2 ghhx 1 n (hu)xx

(hv)t 1 fhu 5 2 ghhy 1 n (hv)yy

(5.11)

where n 5 c2/ l . Eqs. (5.11) are analogous to (2.20). The Chapman-Enskog expansion also
yields (5.11), but with the more accurate value

n 5 1 1l 2
1

l max
2 c2, (5.12)

where l max 5 2/ D t as before. Eq. (5.12) is analogous to (4.4). The momentum equations
(5.11) differ from (4.6) only in the form of the viscosity, which is anisotropic in (5.11). This
anisotropy results from the relatively low degree of symmetry of the 4-velocity lattice.

As in the case of (4.6), LB solutions of (5.11) always approach a steady state. In steady
state, = · (hu) 5 0, and the transport is described by a streamfunction: hu 5 ( 2 c y, c x). In
the case of (4.6), the streamfunction satis� es

b c x 5 curl 1 h

h 1 d E
t 2 1 n = 4c (5.13)

with boundary conditions of no-normal-� ow, and no-slip or no-stress. If h is everywhere
much greater than d E, then (5.13) reduces to Munk’s classic equation, and c is determined
independently of h; in fact, the 8-velocity PG solution of Figure 3c closely resembles
Munk’s solution.

In the case of (5.11), the streamfunction satis� es

b c x 5 curl 1 h

h 1 d E
t 2 1 2 n c xxyy. (5.14)

Once again, the viscosity in (5.14) is anisotropic, and accommodates only the single
boundary condition of no-normal-� ow. (This is obvious from the fact that the general
solution of c xxyy 5 0, easily obtained by integrations, contains only 4 arbitrary functions.
These 4 functions are completely determined by the requirement that c vanish at each of
the 4 boundaries.) This property of (5.11) and (5.14), that only boundary conditions of
no-normal-� ow may be satis� ed, is also obvious from the underlying 4-velocity LB
dynamics: As shown in Figure 5b, only the particle moving normal to the boundary
encounters the boundary. That is, the 4-velocity model lacks the particles striking the
boundary at a 45° angle in the 8-velocity model of Figure 2. It is the rebound of these
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particles that determines the second boundary condition, no slip or no stress, in the
8-velocity model.

In the case of (5.13), the western boundary layer equation contains only x-derivatives; its
thickness is d M 5 ( n / b )1/3. However, in the case of (5.14), the western boundary layer
equation is a partial differential equation,

b c x 5 2n c xxyy. (5.15)

From (5.15) we see that the western boundary layer thickness is

d s 5
2 n

b l2
, (5.16)

where l is the scale for long-shore variation in c , determined by the interior solution.Thus,
in the case of the 4-velocity model, the western boundary layer is proportional to the
viscosity coefficient, as in Stommel’s classic ‘‘bottom friction’’ model.

Figure 6 shows two LB solutions of the PG equations using the 4-velocity model. The
geometry and wind forcing are the same as in the 8-velocity solutions of Figures 3 and 4.
Figure 6a, depicting a PG solution with mean upper layer thickness equal to 500 m, should
be compared with Figures 3c–d. Figure 6b, with mean h equal to 300 m, should be
compared to Figure 4c–d. In both 4-velocity solutions, l 5 0.6 l max. With l 5 L/2p , this
corresponds to a western boundary layer thickness (5.16) of 40 km, about 1 lattice spacing.
This thickness is about half the western boundary layer thickness of the 8-velocity
solutions shown in Figures 3 and 4. At lower viscosities, the 8-velocity models tend to
misbehave. Thus the 4-velocity PG solutions of Figure 6 exhibit very thin but stable western
boundary layers that take maximum advantage of the limited spatial resolution. However,
they also show the effects of the anisotropic friction, particularly at the point in Figure 6b
where the separated western boundary current turns northeastward after leaving the coast.

The computational advantage of the 4-velocity PG model is that it requires only half the
computation and storage of the 8-velocity model. In three dimensions, the savings would
be greater still; the three-dimensional analogue of the 4-velocity model has 6 velocities,
whereas the three-dimensional analogue of the 8-velocity model has 26 velocities. To be
fair, Frisch et al.’s (1986) optimal two-dimensional model, with complete symmetry of the
viscosity and Reynolds stress, contains only 6 velocities. However, the face-centered
hypercubic lattice—the optimal symmetric lattice for use in 3 dimensions—contains 24
velocities, still 4 times as many as the three-dimensional PG model with anisotropic
viscosity. This factor of 4 represents a huge advantage when one considers the daunting
challenge of modeling the global ocean in three dimensions. However, there are other,
somewhat more philosophical reasons to favor PG over SW.

6. Discussion

In two dimensions,planetary geostrophic dynamics seem somewhat plain and uninterest-
ing in comparison to the richer shallow water dynamics. However, in three dimensions,
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Figure 6. Solutions of the reduced gravity model based upon planetary geostrophicdynamics and the
4-velocitymodel of Section 5. The forcing and geometry are the same as in the 8-velocitysolutions
of Figures 3 and 4, but the viscosity now re� ects the anisotropyof the underlying lattice. (a) Mean
upper layer depth h of 500 m. (b) Mean h of 300 m.
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with bathymetry of realistic complexity, solving and understanding planetary geostrophic
dynamics will prove to be a considerable challenge. In three dimensions, even linear
dynamics offer a signi� cant computational challenge; see Salmon (1998b).

The primitive equations (PE)—the three-dimensional analogues of the shallow water
equations—may simply be too complex for the present level of dynamical understanding
and computational power. In fact, three-dimensional PE admit such a vast range of
phenomena that it is conceivable that PE performance may actually degrade as model
resolution increases, unless the eddy viscosity is unrealistically large, or the viscous cutoff
for molecular viscosity is resolved—an utter impossibility.

For example, consider small-scale Kelvin-Helmholtz instability, an apparently ubiqui-
tous phenomenon in the atmosphere and ocean. If model resolution reaches the point where
such instability can occur but is still too coarse to resolve the turbulent cascade that damps
the instability, then the instability could become a damaging source of computational
noise.3

In any case, considering the present state of ignorance about global ocean dynamics, it
would seem safest to begin three-dimensional LB modeling with PG dynamics. The
three-dimensional analogue of the 4-velocity model in Section 5 offers the advantages of
dynamical and computational simplicity, massively parallel construction, and only slightly
more dependent variables than in traditional primitive equation models.

Signi� cant difficulties remain. The present method of incorporating the Coriolis force,
which makes the LB equations implicit and forces us to use the predictor/corrector method,
is accurate but inefficient. I have not yet found an acceptable alternative. A much greater
difficulty is that the complex shapes of the real ocean basins seem to require an irregular
lattice. Unfortunately, LB methods do not adapt well to irregular lattices. Even the
seemingly unavoidable practice of choosing the vertical lattice spacing to be much smaller
than the horizontal spacing complicates the LB approach. However, with time and
persistence, these difficulties will be overcome. The efficiency and physical simplicity of
LB methods are too great to be ignored.

In more conventional numerical modeling, one begins with a relatively simple set of
partial differential equations, but the � nal algorithm is a complicated patchwork of
arbitrary steps and compromises that bears only a nebulous relationship to the original
differential equations. In the LB method, the algorithm always takes a simple form, and
itself acquires the status of an interesting physical system. To investigate its relation to
differential equations, we must pursue a relatively complicated analytical expansion, but
this is a separate activity, necessary only because of our psychological need to associate
models with differential equations.
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APPENDIX

Motivated derivation of (3.13–15)

In lattice gas theory, the local equilibrium state (3.10) is de� ned to be that set 5 hi(x) 6 that
maximizes an entropy, subject to the constraints (3.7) and (3.8) corresponding to mass and
momentum conservation. The entropy takes the form that occurs in the H-theorem for the
lattice gas. However, if, as here, we begin at the level of the Boltzmann equation, with no
precisely de� ned lattice gas in mind, then the form of the entropy is somewhat arbitrary. In
this circumstance, it is perhaps logical to de� ne heq as that set of populations which
maximizes the information-theoretic entropy

o
i

hi(x) ln hi(x) (A1)

at lattice point x, subject to (3.7) and (3.8). The resulting equilibrium state is a well-
determined function of h(x), u(x), and v(x) at each lattice point. However, the exact
solution to this variational problem is quite difficult, and one normally proceeds by means
of an expansion in which u and v are presumed to be small. From symmetry considerations,
this expansion takes the form

h i
eq(h, u, v) 5 A(h) 1 B(h)cia ua 1 C(h)ci a cib ua u b 1 D(h) d a b u a u b 1 O(u3). (A2)

The coefficients A, B, C and D depend only on h—not u—and are uniquely determined by
the maximum entropy principle. However, 3 of these 4 coefficients would be determined
by the constraints (3.7–8) alone, and the truncation of (A2) at quadratic order has
somewhat the same effect as demanding that the entropy be maximum. Thus it makes sense
to demand only that (A2) satisfy (3.7–8) for arbitrary h and (small) u. This leaves one of the
coefficients in (A2) undetermined, but the freedom to adjust this parameter is very helpful
at a later stage.

In fact, as previous workers have found, it proves very handy to generalize (A2) even
further, by demanding that (A2) hold with coefficients A(h), B(h), C(h), and D(h) that are
different for the three different classes of particle—the rest particle, the 4 particles moving
in the coordinate directions, and the 4 particles moving diagonally.Thus we assume

h0
eq(h, u, v) 5 A0(h) 1 D0(h) d a b u a u b (A3)

for the equilibrium rest-particle population,

h i
eq(h, u, v) 5 A(h) 1 B(h)cia u a 1 C(h)cia cib u a u b 1 D(h) d a b u a u b , i odd (A4)

for the particles moving in the 4 coordinate directions, and

h i
eq(h, u, v) 5 A(h) 1 B(h)ci a ua 1 C(h)ci a cib u a u b 1 D(h) d a b u a ub , i even (A5)

for the particles moving in the 4 diagonal directions.Altogether there are 10 coefficients to
be determined. Substituting (A3–A5) into (3.16) and equating the coefficients of h and
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u · u, we obtain

A0 1 4A 1 4A 5 h (A6)

and

D0 1 2c2C 1 4c2C 1 4D 1 4D 5 0. (A7)

Similarly, (3.17) implies

2c2B 1 4c2B 5 h. (A8)

From (3.18) we obtain the 4 conditions

2c4C 5 8c4C 5 h (A9)

2c2A 1 4c2A 5 1�2gh2 (A10)

2c2D 1 4c2D 1 4c4C 5 0. (A11)

Finally, the identity



 xg
o

i
ci a cib ci g h i

eq 5
1

3
c2 5 = · (hu) d a b 1



 x a
(hu b ) 1



 xb
(hua ) 6 (A12)

needed to reduce the viscous tensor (3.34) to the form (3.35) requires that

B 5 4B. (A13)

In deriving these equations, it is useful to realize that

o
i

cia 5 o
i

cia ci b cig 5 · · · 5 0, (A14)

o
i

ci a ci b 5 6c2 d a b , (A15)

and

o
i

cia ci b cig cid 5 4c4( d a b d g d 1 d a g d b d 1 d a d d b g ) 2 6c4 d a b g d . (A16)

The peculiar form of (A16) results from the anisotropy of the rectangular lattice.
We now have 8 equations for the 10 undetermined coefficients. Thus we are free to

impose 2 additional conditions. Eqs. (A9) and (A13) suggest the additional conditions,

A 5 4A and D 5 4D. (A17)
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These make all the coefficients in (A5) one fourth the size of the corresponding coefficients
in (A4). Then, solving for all the coefficients, we obtain (3.13–15). Note that, for
sufficiently small positive h, half of the populations (3.14–15) actually become negative.
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