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Imperfections of the North Atlantic wind-driven ocean
circulation: Continental geometry and windstress shape

by Henk A. Dijkstra1 and M. Jeroen Molemaker1

ABSTRACT
Multiple equilibria of the wind-driven gyres have been found in idealized quasi-geostrophicand

shallow water models. In this paper we demonstrate that multiple equilibria persist within a reduced
gravity shallow water model under quite realistic continentalgeometry and windstress forcing for the
North Atlantic. Multiple mean � ow patterns of the Gulf Stream exist and differ with respect to their
separation behavior along the North American coast. The origin of these equilibria is investigated by
determining the structure of steady solutions within a hierarchy of equivalent barotropic ocean
models using continuationtechniques.Within each model, the magnitude of lateral friction is used as
a control parameter. It is shown that symmetry breaking, found in a quasi-geostrophic model for a
rectangularocean basin with idealizedwind forcing is at the origin of two different mean states of the
Gulf Stream. The steady states found become unstable only to a small number of oscillatory modes,
which either have intermonthly or interannual periods. The modes of variability remain strongly
related through the hierarchy of models indicating that their physics is not strongly dependent on the
shape of the continents but is controlled by internal ocean dynamics.

1. Introduction

Many concepts of geophysical � uid dynamics and physical oceanography have been
developed from results of theoretical models dealing with highly idealized situations. For
example, steady linear quasi-geostrophic rectangular basin models have lead to the
explanation of the intensi� cation of western boundary currents in the ocean (Stommel,
1948; Munk, 1950). Nonlinearities due to advection of vorticity introduce north-south
asymmetries and are responsible for strong recirculation regions. In the fully inertially
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dominated regime, special types of motion may occur; i.e., Fofonoff modes (Fofonoff,
1954) or modon type solutions (Stern, 1975). In this regime, several types of sensitivities
arise to the boundary conditionsand the parameterization of frictional processes (Pedlosky,
1996).

In reality, these � ows are unsteady, one of the reasons being that they are susceptible to
several kinds of instabilities.Advances in the understanding of the instability mechanisms
(e.g., barotropic and baroclinic instability) have been obtained through their study in
idealized models (Pedlosky, 1987), for example � ows in b -plane channels. The growth of
perturbations and their interaction with the background state and with each other leads to a
recti� cation of the mean state and synoptic scale time-dependent features, generally
referred to as oceanic eddies. The physics of these phenomena can be studied in detail in
the weakly nonlinear regime, for which only a small band of unstable wavenumbers is
involved (Pedlosky, 1987; Van der Vaart and Dijkstra, 1997).

Recently, the stability of full basin � ows has been addressed and multiple equilibria of
the double gyre wind-driven circulation in rectangular basins have been found in quasi-
geostrophic models (Cessi and Ierley, 1995; Dijkstra and Katsman, 1997). Under symmet-
ric (with respect to the mid-basin axis) windstress forcing, it is found that if lateral friction
is small enough, the anti-symmetric double gyre solution destabilizes and asymmetric
stable steady states exist. The mechanism of the existence of the asymmetric double gyre
� ows is related to a symmetry breaking pitchfork bifurcation and has a barotropic origin.
Also in reduced gravity shallow water models, multiple equilibria exist in rectangular
basins (Jiang et al., 1995; Speich et al., 1995). In both type of models, the asymmetric
� ows destabilize through Hopf bifurcations as the friction is further decreased, leading to
time-dependent behavior. There are strong indications that in these idealized models, the
time-dependent behavior is controlled by only a few degrees of freedom in the strongly
nonlinear regime (Berloff and Meacham, 1997; Meacham and Berloff, 1998).

Over the last decades, eddy-resolvingocean models have been developedwhich are able
to produce many features observed in reality; e.g., the formation and propagation of
mesoscale eddies (McWilliams, 1996). In quite idealized situations, many studies have
addressed the problem of eddy-mean � ow interaction (Holland, 1978). An accurate
representation of the eddy � eld turns out to be crucial to obtain the correct properties of the
large-scale � ow (Holland and Schmitz, 1985). The eddies are also essential to understand-
ing the temporal variability of the � ow, which occurs on time scales from several weeks to
several years (Schmitz and Holland, 1982).Although much of the observed variability may
be forced by atmospheric noise, results from eddy-resolving models indicate that intrinsic
variability of the ocean is large, and not only in the region of strong currents, but over the
whole basin (Miller et al., 1987).

Ocean general circulation models (OGCM’s), having a realistic continental geometry
and bathymetry and incorporating the thermohaline circulation, are run now with an
eddy-resolving resolution, not only for the Atlantic (New et al., 1996) but also on a global
scale (Semtner and Chervin, 1992). These results also show large internal variability on a
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wide range of time scales and the in� uence of the eddies on the mean � ow. The
interpretation of results of these models is not without problems because of the multitude
of physical effects which can in� uence a phenomenon under study. For example, it appears
that several physical processes control the mean � ow path of the Gulf Stream, in particular
its separation near Cape Hatteras. In models of 1° horizontal resolution (Holland and
Bryan, 1994), separation of the Gulf Stream is very diffuse between Cape Hatteras and
Newfoundland and no recirculation regions are present. For very high resolution models of
1�6° (Beckmann et al., 1994; Bryan et al., 1995) the time mean state shows a large
anticyclonic gyre north of Cape Hatteras giving an actual separation north of the observed
position with undesirable consequences for the simulated heat transport.

The problem of Gulf Stream separation has been recently reviewed in Dengg et al.
(1996). External factors such as bottom topography, continentalgeometry and the structure
of the windstress curl each have been identi� ed to be important factors. Also several
mechanisms which are related to internal ocean dynamics have been suggested, such as
outcropping of isopycnals (Gangopadhyay et al., 1992; Chassignet and Bleck, 1993),
vorticity crisis (Cessi et al., 1995) and inertial overshoot (Dengg, 1993). Combined factors
such as JEBAR may also be important (Meyers et al., 1996). Several studies were
performed to isolate only one or two factors but then the relation between these results and
those in more realistic models is hard to establish. The same holds for the internal
variability of the models. Many parameter studies which were performed with idealized
models cannot easily be done with the OGCM’s.

In intermediate models of the Gulf Stream region, with less idealized continents,
signatures of multiple � ow states have been found, although not for exactly the same
conditions (Dengg, 1993). Combined with the fact that multiple equilibria do exist for the
double gyre � ows mentioned earlier (Cessi and Ierley, 1995), this suggests that multiple
equilibria may play a role in the problem of ocean models to simulate the correct Gulf
Stream separation. If so, one � rst has to demonstrate that these exist in realistic geometry
and under realistic windstress forcing. In this paper, we demonstrate the simultaneous
existence of two mean � ow paths of the Gulf Stream within a shallow water model.

In order to determine the (topological) origin of these multiple equilibria, we use a
hierarchy of models. At one end of the model hierarchy is a 1.5 layer quasi-geostrophic
model in a rectangular basin and at the other end is a 1.5 shallow water model with realistic
North Atlantic continental geometry. We compute the structure of the equilibria within
each model using continuation techniques. In this way, a connection is established—
insofar as the in� uence of continental geometry and (equivalent) barotropic phenomena is
concerned—between results of a simple model and the more complex model of the North
Atlantic wind-driven ocean circulation. The existence of the two possible mean � ow paths
of the Gulf Stream near Cape Hatteras can be traced back to originate from the symmetry
breaking mechanism of the double gyre � ow in the 1.5 layer quasi-geostrophic model.
Modes of variability which arise as instabilities of the steady states have either inter-
monthly or interannual period and are continuously related through the model hierarchy.
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2. Formulation

As basically two different type of models are considered in this study, each with slightly
different model parameters, the equations and their nondimensionalization are presented
below. Consider an ocean basin with an arbitrary horizontal domain V (with a typical
horizontal lengthscale L) and bounded by a closed contour G , on a mid-latitude b -plane
with Coriolis parameter f ( f 5 f0 1 b 0y). An active layer of mean depth D with density r is
situated above a slightly heavier deeper layer having a density r 1 D r which is supposed to
be motionless. The interface between the two layers, the thermocline, is able to deform and
the reduced gravity g8 is given by g8 5 g D r /r . The � ow is driven by a windstress t (x, y) 5
t 0( t x, t y), where t 0 is the amplitude and ( t x, t y) provides the spatial pattern. Lateral
friction, with lateral friction coefficient AH and bottom friction, with bottom friction
coefficient e 0, are the dissipative mechanisms in both models.

a. The 1.5 layer quasi-geostrophic (QG) model

Characteristic horizontal and vertical length scales in this model are L and D, a velocity
scale is the depth-averaged velocity U, the advective time scale is L/U and t 0 is the
characteristic amplitude of the windstress. If the Rossby number e 5 U/( f0L) is small,
quasi-geostrophic theory is a useful approximation of the dynamics of the � ow (Pedlosky,
1987). In this case, the dimensionless potential vorticity equation describing the � ow
becomes

3  t
1 u



 x
1 v



 y4 [z 2 F c 1 b y] 5 Re 2 1 = 2 z 1 a Q 3  t y

 x
2

 t x

 y 4 2 r z (1a)

z 5 = 2c . (1b)

In the equations above, the streamfunction c and vorticity z are used, with the zonal and
meridional geostrophic velocity vector determined by (u, v) 5 ( 2  c /  y,  c / x). On the
boundary G of the domain no-slip conditions are prescribed, i.e.

x 2 G : c 5 0, = c · n 5 0 (2)

where n is the outward normal on G .
Five parameters appear in the system of Eqs. (1); i.e., the Reynolds number Re, the

strength of the planetary vorticity gradient b , the strength of the windstress forcing a Q, the
rotational Froude number F and the bottom friction parameter r. These parameters are
de� ned as

Re 5
UL

AH
; b 5

b 0L 2

U
; a Q 5

t 0L

r DU 2
; F 5

f 0
2L 2

g8D
; r 5

e 0L

U
. (3)

The parameter F 5 (L/l )2 relates to the internal Rossby deformation radius through l 5
(g8D)1/2/f0. Since U is not an independent parameter, there are only four independent
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control parameters in the governing equations of the model. Additional parameters are
introduced by the shape of the domain; for example, if a rectangular basin with length L
and width B is considered, a new parameter is the aspect ratio of the domain. Standard
values of the dimensional and dimensionless parameters are listed in Table 1. The Rossby
deformation radius l for these parameter values is about 75 km.

b. The 1.5 layer shallow water (SW) model

In a shallow water formulation, the Rossby number e need not be small and, for
example, deviations of the thermocline from its equilibrium value, D, can be large. In the
usual notation, the velocities in eastward and northward directions are indicated by u and v,
respectively and h is the thickness of the upper layer (with equilibrium value D). The
governing shallow water equations are nondimensionalized using scales L, D, U*, L/U*
and t 0 for length, layer depth, velocity, time and windstress, respectively, and become
(Jiang et al., 1995; Speich et al., 1995)

e 1  u

 t
1 u ·= u2 2 (1 1 e b *y)v 5 2 e F*

 h

 x
1 E = 2u 2 r*u 1 a S

t x

h
(4a)

e 1  v

 t
1 u · = v2 1 (1 1 e b *y)u 5 2 e F*

 h

 y
1 E = 2v 2 r*v 1 a S

t y

h
(4b)

 h

 t
5 2

 (hu)

 x
2

 (hv)

 y
. (4c)

On the boundary G of the domain no-slip conditionsare prescribed, i.e.

x e G : u 5 v 5 0. (5)

Table 1. Standard values of parameters in the 1.5 layer QG model.

Dimensional parameters

Parameter Value Parameter Value
L 1.0 3 106 m t 0 5.0 3 102 2 Pa
D 5.0 3 102 m b 0 2.0 3 102 11 (ms)2 1

f0 5.0 3 102 5 s 2 1 AH 2.0 3 102 m2 s 2 1

g8 3.0 3 102 2 m s2 2 U 1.0 3 102 2 m s 2 1

r 0 1.0 3 103 kg m 2 3 e 0 5.0 3 102 8 s2 1

Dimensionless parameters

Parameter Value Parameter Value
b 2.0 3 103 Re 5.0 3 101

a Q 1.0 3 103 F 1.7 3 102

r 5.0
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The parameters in these equations are the Rossby number e , the strength of the planetary
vorticity gradient b *, the Froude number F*, the Ekman number E, the windstress
coefficient a S and the bottom friction parameter r*. Expressions for these parameters are

e 5
U*

f0L
; F* 5

g8D

U*2
; E 5

AH

f0L
2

; a S 5
t 0

r f0DU*
; b * 5

b 0L
2

U*
; r* 5

e 0

f0
(6)

and since again U* is not independent, the governing equations contain � ve independent
parameters. Standard values of the parameters in this model are listed in Table 2 and the
internal Rossby deformation radius is the same as in the quasi-geostrophicmodel.

The shallow water model differs only in one detail from that used in Speich et al. (1995).
The parameterization of lateral friction is different; i.e., in the zonal momentum balance the
difference is re� ected by = 2(hu) versus h = 2u. The latter formulation, for example, used in
Holland and Lin (1975), occurs more consistently in deriving the shallow water model with
the horizontal velocities assumed depth-independent. With this formulation, it is not a
priori guaranteed (i.e., not easy to prove) that the dissipation operator in both the steady
state and linear stability problem is negative de� nite. However, it turns out for all results
presented below (through a posteriori calculation) that this is actually the case and hence
the present form of lateral momentum exchange is consistent.

c. Numerical methods

For the QG model, a � nite difference discretization on an equidistant grid was used as
described in Dijkstra and Katsman (1997). Within the SW model, a � nite element
discretization was used, with Taylor Hood triangular elements as described in Molemaker
and Dijkstra (1999). In each case, a set of nonlinear algebraic equations of the form

F(u, p) 5 0 (7)

Table 2. Standard values of parameters in the 1.5 layer SW model.

Dimensional parameters

Parameter Value Parameter Value
L 1.0 3 106 m t 0 5.0 3 10 2 2 Pa
D 5.0 3 102 m b 0 2.0 3 10 2 11 (ms)2 1

f0 5.0 3 10 2 5 s 2 1 AH 2.0 3 102 m2 s 2 1

g8 3.0 3 10 2 2 m s2 2 U* 1.0 m s 2 1

r 1.0 3 103 kg m 2 3 e 0 5.0 3 10 2 8 s 2 1

Dimensionless parameters

Parameter Value Parameter Value
b * 2.0 3 101 E 4.0 3 10 2 6

e 2.0 3 10 2 2 F* 1.5 3 101

r* 1.0 3 10 2 3 a S 2.0 3 10 2 3
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emerges from the discretization of the steady equations. Here u is a d-dimensional vector
consisting of the unknowns at the gridpoints, p is the p-dimensional vector of parameters
and F is a nonlinear mapping from Rd 3 Rp ® Rd, where d indicates the number of degrees
of freedom. To determine branches of steady solutions of the equations (7) as one of the
parameters (say µ) is varied, a pseudo-arclength method is used. The branches (u(s), µ(s))
are parameterized by an ‘arclength’ parameter s. An additional equation is obtained by
‘normalizing’ the tangent

u‚ 0
T (u 2 u0 ) 1 µ‚ 0(µ 2 µ0 ) 2 D s 5 0 (8)

where (u0, µ0) is an analytically known starting solution or a previously computed point on
a particular branch and D s is the steplength.Solutions to these equations in parameter space
are obtained using methods as described in Dijkstra et al. (1995).

To calculate a steady state solution of the system of equations (7) an extra condition for h
is required to regularize the equations, since h is determined up to an additive constant. In a
previous study (Speich et al., 1995) the layer depth at one point was kept � xed at a
prescribed value. The correct condition to use is an integral condition for h over the domain
V that removes the ambiguity from the layer depth, i.e.

e
V

h dx dy 5 * V * (9)

which is an expression of conservation of mass of the upper layer. The integral is equal to
* V * , the (dimensionless) area of the domain, since the layer depth is scaled with D. In
models that integrate the equations in time, this regularization problem is absent, since the
integral of the layer depth is set by the initial conditions.

When a steady state is determined, the linear stability of the solution is considered and
transitions that mark qualitative changes such as transitions to multiple equilibria (pitch-
fork bifurcations of limit points) or periodic behavior (Hopf bifurcations) can be detected.
The linear stability analysis amounts to solving a generalized eigenvalue problem of the
form

x 5 s x (10)

where and are nonsymmetric matrices. Solution techniques for these problems are
presented in Dijkstra et al. (1995) and bifurcations are detected from crossings of s with
the imaginary axis (Guckenheimer and Holmes, 1983).

In the results below, the strategy is to ‘deform’ the steady solutions from simple
rectangular geometry and idealized wind stress to the full complex geometry and realistic
windstress � eld of the North-Atlantic basin.

3. Results: Idealized case

The domain is rectangular with the width B of the basin being 2000 km. This introduces
the aspect ratio A 5 B/L as a new parameter (with A 5 2) similar to that used in earlier
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studies (Jiang et al., 1995; Speich et al., 1995). In this section, the windstress forcing on the
domain [0, 1] 3 [0, A] is idealized as

t S
x (x, y) 5 2 cos (2p y/A ), (11a)

t S
y (x, y) 5 0. (11b)

a. Quasi-geostrophic model

Calculations were performed on an equidistant 48 3 96 grid (a resolution of about
20 km) which proved to give sufficiently accurate solutions. As in Dijkstra and Katsman
(1997), we use Re as a control parameter. The bifurcation diagram for the standard values
of parameters is shown in Figure 1, as a plot of Re against C , the latter being the sum of
maximum and minimum value of the streamfunction over the � eld. The quantity C is zero
when the streamfunction solution is antisymmetric. Drawn (dotted) branches indicate
stable (unstable) steady states, whereas bifurcation points are indicated by markers. The
antisymmetric double gyre solution (similar to Fig. 2(a) in Dijkstra and Katsman (1997)) is
stable at small Re. It becomes unstable through a stationary instabilityat Re 5 52 (the point
P in Fig. 1) and asymmetric solutions stabilize. One of these solutions is shown for Re 5 67
in Figure 2 as a contour plot of the streamfunction. In the � gure, the contour levels are
scaled with respect to the maximum value of the � eld. The asymmetric solution in Figure 2
has its jet displaced downward. The solution on the other asymmetric branch at the same
value of Re is symmetrically related to that in Figure 2 and has the jet displaced upward.

Both asymmetric solutions destabilize through a Hopf bifurcation (H in Fig. 1) at Re 5
64. The pattern of the mode which is destabilized is determined from the eigenvector x 5

Figure 1. Bifurcation diagram for the 1.5 layer QG model using the Reynolds number as control
parameter. On the vertical axis, the quantity C 5 max c 1 min c is plotted. Drawn (dotted)
branches indicate (unstable) stable states, whereas bifurcation points are indicated by markers.
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xr 1 ixi associated with the eigenvalue s 5 s r 1 is i in (10). These span an oscillatory
mode given by

F (t ) 5 [cos (s it )xr 2 sin (s it )xi] e s r t (12)

with dimensional period T 5 2 p L/(U s i).
The patterns of xr and xi of the slightly unstable eigenmode at Re 5 67 are plotted in

Figure 3, with the angular frequency s i and growth rate s r given in the caption. Note that
the propagation features can be determined by � rst looking at xi 5 F ( 2 p /(2 s i)) and than at
xr 5 F (0), which is the pattern of the mode just a quarter period later. The unstable mode
has an interannual period and it was argued in Dijkstra and Katsman (1997) that the period
is controlled by the advective time scale of the gyre. The axis connecting the extrema of the
perturbations, below referred to as the principal axis, is nearly orthogonal to the direction
of the jet of the steady state (Fig. 2) and the perturbations propagate southwestward.

As in Dijkstra and Katsman (1997), the destabilization of the asymmetric solutions
occurs through a small number of modes. The second mode (not shown) is still quite stable
at Re 5 67, and its pattern could therefore not be accurately computed. However, the
not-yet-fully-convergedresults indicate that it has an intermonthly period, and its pattern is
characterized by a principle axis which points in zonal direction, unrelated to the direction
of the jet of the steady state. The perturbations propagate in zonal direction and have

Figure 2. Asymmetric solutionof the QG model at Re 5 67, just above the Hopf bifurcationH on the
lower branch in Figure 1.
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similar characteristics as the basin modes in Dijkstra and Katsman (1997). This second
mode destabilizes at larger Re through the increase in horizontal shear of the basic state.
The third mode (also not shown) has a similar time scale as the second, but its (negative)
growth factor is about twice that of the second mode and it is therefore very stable.

b. Shallow water model

The � nite element grid generated for the rectangular basin of aspect ratio A 5 2 is shown
in Figure 4 and consists of 2442 triangular elements that become smaller toward the
western boundary. The resulting system of nonlinear algebraic equations has 11322
degrees of freedom. Using the � nite element model and continuation method, branches of
stationary solutions are computed using the Ekman number as control parameter (� xing all
other parameters as in Table 2).

The basic bifurcation diagram (Fig. 5(a)) consists of a perturbed pitchfork bifurcation
(Golubitsky and Schaeffer, 1985). On the vertical axis, the maximum northward volume
transport f (in Sv) over a section is shown which is calculated as

f 5 (U*DL ) max e
0

xe
vh dx (13)

where the maximum is taken both over y and xe. Again, drawn (dotted) branches represent
stable (unstable) solutions. Compared to the result in the quasi-geostrophic model, the
lower branch is no longer connected to the branch that originates from the higher Ekman

Figure 3. Unstable eigenmode at Re 5 67, which is slightly above the Hopf bifurcation H. The
eigenvalue at this point is s r 5 5.98 10 2 2 and s i 5 2.87 the latter corresponding to a period T 5
6.9 [yr]. The mode is represented by contour plots of the streamfunction c of (a) real part of the
eigenvector; (b) imaginary part of the eigenvector.

10 Journal of Marine Research [57, 1



number regime. On the upper branch in Figure 5(a), a Hopf bifurcation occurs at E 5
0.34 3 102 5 and is marked with H1. The steady state at this value of E is shown as a contour
plot of h in Figure 5(b) and shows a north-south asymmetry with the jet displaced
southward from the mid-axis of the basin. On the lower branch in Figure 5(a), the interval
of stable solutions is bounded by a limit point (L) at E 5 0.52 10 2 5 and a Hopf bifurcation
(H2) at E 5 0.36 102 5. The steady solution at the Hopf bifurcation H2 (Fig. 5(c)) has a
northward displacement of the jet and is nearly symmetrically related to that in Figure 5(b).

At the Hopf bifurcations, the steady state becomes unstable to one oscillatory mode. For
the shallow water model, the spectral separation between the modes is much smaller than
for the QG model and three modes become unstable nearly at the same conditions.The real
and imaginary parts of the eigenvector of the � rst three modes are shown at the Hopf
bifurcation H1 in Figure 6. The � rst mode (panels (a/b)) is neutral ( s r 5 0.0) and its period
is approximately (T 5 (L/U*)(2 p / s i)) 4.6 months. The pattern shows a maximum re-
sponse located to the north of the mid-axis which propagates westward. The second mode
(Fig. 6(c/d)) has a period of about 1.5 year, it is also stable and its pattern resembles the � rst
mode from the QG model (Fig. 3) in that the perturbations propagate southwestward with
the principle axis nearly orthogonal to the jet direction. The third mode (Fig. 6(e/f)), is
slightly damped and has a similar period (T 5 3.7 months) as the � rst mode. In fact, the
structures of the � rst and third mode appear symmetrically related.

Figure 4. Finite element grid used for computations with the shallow water model on a rectangular
domain.
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The modes at the Hopf bifurcation H2 are very similar to those at H1. The ordering of the
different modes with respect to their growth rate is different, with the � rst two modes
having intermonthly period. The patterns for the � rst two modes are slightly displaced
northward with respect to the patterns in Figure 6(a/b) and Figure 6(e/f). The pattern of the

Figure 5. (a) Bifurcation diagram using the Ekman number E as control parameter for the shallow
water model in the rectangular domain. On the vertical axis, the volume transport f as in (13) is
plotted. (b) Pattern of the layer thickness anomaly of the steady-state solution at the Hopf
bifurcationH1 (E 5 0.34 102 5). (c) As in (b) but at the Hopf bifurcationH2 (E 5 0.36 102 5).
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interannual mode, which is now the third mode with a period of 2.5 [yr], follows the
orientation of the jet and its principle axis is again orthogonal to the direction of the jet.

At � rst sight, the bifurcation diagram in Figure 5(a) appears in agreement with Figure 2
in Speich et al. (1995). The solutions correspond very well, and also the positions of the
Hopf bifurcations are very similar. However, closer inspection reveals that the branches are
differently connected. In Speich et al. (1995), each solution on the branch existing for all
values of E has its con� uence point displaced northward, whereas in our case the
con� uence point is displaced southward (e.g., Fig. 5(b)). A slightly different representation
of friction in both models leads to a different imperfect pitchfork.

In the results of Speich et al. (1995) the � rst mode at the Hopf bifurcation on the ‘jet
down’ branch has an interannual period, whereas that on the ‘jet up’ branch has an
intermonthly period. Although in our results the group of three modes is very close with
respect to growth rate, the interannual mode appears only as second or third mode, while
one of the intermonthly modes is most unstable. This indicates that small differences in

Figure 6. First three eigenmodes at the Hopf bifurcation H1 (E 5 0.34 102 5). (a/b) Layer thickness
perturbations for the real and imaginary part of the most unstable mode with s r 5 0.0 and s i 5
0.52. (c/d)As (a/b) but for the 2nd mode (s r 5 2 3.6 102 2, s i 5 0.13). (e/f) As (a/b) but for the 3rd
mode (s r 5 2 4.2 10 2 2, s i 5 0.65).
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formulation and discretization may lead to a slightly different reordering of internal modes
of variability. The interannual mode is, therefore, not robust as being the most dominant
mode, but when this is the case, it destabilizeseasily at slightly smaller friction.Although it
is likely that the interannual mode plays a signi� cant role in the � ow dynamics, only an
analysis of the transient solutions is able to demonstrate this.

c. Relation between QG and SW results

A close relation between the solutions of the QG and SW models exists. In Figure 7, the
two bifurcation diagrams for the QG (drawn) and SW (dotted) model are replotted using
the same control parameter within both models and the same norm f of the solution. Note
that the values of the other parameters were chosen in such a way that they exactly
correspond and that for the QG-model, f 5 max ( c LUD ) Sv and E 5 ( e U/U*)Re. As is
explained in more detail in the Appendix, the QG-model admits a re� ection symmetry
through the mid-axis of the basin (Cessi and Ierley, 1995) and hence a pitchfork bifurcation
is found. This symmetry is broken in the SW-model (Jiang et al., 1995), in a manner which
is most clearly understood in the low forcing limit (a S ® 0) as explained in the Appendix.

In the limit of large E, the models have the same transport since they both become
approximately linear. Small deviations from the equilibrium thermocline and advection
induce an imperfection, illustrated by the break-up of the pitchfork bifurcation in the
SW-model. In the SW-model, the branch of the stable antisymmetric double gyre solution
(present in the QG-model) is connected continuously to one of the asymmetric solutions.
The other asymmetric solution has connected to the branch originating from the unstable
part of the anti-symmetric solution in the QG-model, resulting in a limit point. It is clear
that the occurrence of multiple equilibria in the SW-model has its origin in the symmetry

Figure 7. Bifurcation diagram for both the QG-model (drawn) and SW-model (dotted) in a
rectangularbasin using the Ekman number E as control parameter.
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breaking within the QG-model. The mechanism for this symmetry breaking was explained
in detail in Dijkstra and Katsman (1997) and hence, applies in essence also to explain the
multiple states in the SW-model. The exact way in which the pitchfork is perturbed (and
hence which branch corresponds to the jet-up or jet-down solution) depends on a delicate
balance between the different ageostrophic terms which can be analyzed in the small
forcing limit but is outside the scope of this paper.

Also a close relationship between the modes appearing as instabilitieson the asymmetric
solutions in both models exists. The patterns of the intermonthly modes in the QG-model
(not shown) are slightly more symmetric and more localized in the jet than those in the
SW-model. Their time scale is slightly shorter but they certainly deform into the
intermonthly modes computed in the SW-model. The interannual mode in the QG-model
hardly changes structure between both models. The ordering of the modes and their
spectral separation (the distance between the growth rates of the modes) depends on the
model formulation, is much larger in the QG model and may have important impact on the
time-dependent behavior of each model.

4. Results: ‘Realistic’ case

A realistically shaped basin V is de� ned by using data from a standard bathymetry data
set. In Figure 8, the � nite element grid for the shallow water model is shown; this consists
of 2489 triangular elements and amounts to a total of 11591 degrees of freedom. To keep a
manageable set of equations for continuation, the basin size was slightly reduced (with
respect to the real basin size) and the dimensions are about 2500 3 2000 kilometers, which
may modify actual time scales of variability and volume transport with respect to reality.

To represent a realistic wind forcing, the windstress was obtained from the Hellerman
and Rosenstein (1983) data set. These data consist of values on a 2° 3 2° grid that is

Figure 8. Finite element grid used for computations on a realistically shaped North Atlantic basin
from 10N to 60N.
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interpolated using a cubic spline � t to the � nite element grid. The resulting windstress
pattern is indicated by ( t HR

x , t HR
y ).

a. Multiple mean paths of the Gulf Stream

For a maximum value of the windstress amplitude of 0.05 Pa, which is slightly less than
that in reality, the bifurcation diagram is shown in Figure 9 using E as control parameter.
Main result is the existence of multiple equilibria, just as in the rectangular geometry
considered in the previous section. Two solution branches are found, on which solutions

Figure 9. (a) Bifurcation diagram for the realistic case, using the Ekman number as control
parameter; drawn (dotted) branches indicate stable (unstable) steady states. (b) Contour plot of the
layer thickness anomaly for the ‘de� ected’Gulf Stream at E 5 3.0 3 102 6. (c) Contour plot of the
layer thickness anomaly for the ‘separated’Gulf Stream at E 5 3.0 3 102 6.
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are already unstable for E , 7.5 10 2 6. One of the branches is connected to the large E
regime and a solution on this branch is shown for E 5 3.0 10 2 6 in Figure 9(b). The Gulf
Stream passes along Cape Hatteras northward and near the North England Seamount Chain
it turns into the open ocean. There is a very weak northern circulation region and at this
value of E the transport f is about 21.5 Sv, which is substantially smaller than current
estimates near Cape Hatteras of about 50–65 Sv (Johns et al., 1995).

The other branch exists only for values of E smaller than 3.2 10 2 6, which is the position
of the limit point on this branch. The solution at E 5 3.0 10 2 6 displays (Fig. 9(c)) a Gulf
Stream which turns into the open ocean near Cape Hatteras. There is now a strong northern
circulation region, although too much concentrated near the coast compared to reality. At
this value of E, the maximum transport of this ‘separated’ Gulf Stream is about 26.2 Sv,
which is larger than that of the ‘de� ected’ Gulf Stream (Fig. 9(b)). The latitude and
longitude at which the maximum in northward volume transport f occurs are very similar
and hence the separation behavior causes the different transport.

The � rst Hopf bifurcation is found at E 5 7.5 10 2 6 on the branch of the de� ected Gulf
Stream solution (H in Fig. 9(a)). At E 5 3.0 10 2 6, the de� ected solution in Figure 9(b) is
unstable to only one oscillatory mode. The real and imaginary part of the eigenvector of
this mode are shown in Figure 10(a/b); the period of oscillation is about 5 months. It is
clear that the center of action for the oscillation is located in the Gulf Stream. The scale of
the perturbations is about 500 km and the principle axis makes about a 45° angle with the
x-axis. This orientation does not appear directly related to the orientation of the jet itself.
The disturbances propagate south-westward against the � ow direction of the mean current
of the steady state. During propagation, the principle axis of the perturbations does not
change much.

The separated solution (point (c) in Fig. 9(a)) is also unstable to only one oscillatory
mode (Fig. 10(c/d)) having a period of about 4 months. Thickness perturbations with a
scale of about 400 km are again localized in the jet. The centers of action are located at
opposite centers of the jet and the response outside of the jet (e.g., for x . 2 1) is weak.
Contrary to the unstable mode for the de� ected solution, the orientation of the principle
axis changes during one cycle of the oscillation which indicates that the perturbation
moves around the jet in a clockwise manner.

Although both the bifurcation diagram as well as the structure of the modes of variability
have similar properties than those in the rectangular geometry, this relation is explored in
more detail below, by � rst ‘deforming’ the wind stress back to the simple form as in (11).
Subsequently, one intermediate type of geometry between rectangular and ‘realistic’ is
considered.

b. Effect of windstress shape

To study the transition of solutions from the Hellermann and Rosenstein windstress to
the simple windstress (11), a homotopy parameter ph is introduced that allows a continuous
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transition between the two different shapes of the windstress, according to

t x 5 (1 2 ph) t S
x 1 ph t HR

x (14a)

t y 5 ph t HR
y . (14b)

In Figure 11, the curl of the windstress � eld is shown for different values of the homotopy
parameter ph. For the simple windstress forcing t S (ph 5 0), the change in sign of the curl of
the windstress is located just above Cape Hatteras. When ph is increased, this zero contour
rotates slightly counterclockwise.

The bifurcation diagram using ph as control parameter at � xed E 5 7.6 102 6 is shown in
Figure 12(a). From ph 5 1.0 down to ph 5 0.3, the transport increases nearly linearly due to
the change in the windstress curl. For 0.3 , ph , 0.6, multiple steady states exist because
two limit points appear and since the value of E is quite large, two of these states are

Figure 10. Eigenfunctions corresponding to the unstable mode at the marked points in Figure 9(a)
for E 5 3.0 10 2 6; shown are the layer thickness perturbations.(a/b): Real and imaginary part of the
unstable oscillatory mode on the steady state shown in Figure 9(b), with s r 5 0.71 3 10 2 1 and
s i 5 0.51. (c/d): As in (a/b) but for steady state shown in Figure 9(c), with s r 5 0.15 3 10 2 1 and
s i 5 0.61.
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linearly stable; the third solution is unstable. The origin of these multiple equilibria is
related to the imperfect pitchfork bifurcation since a different reconnection occurs around
ph 5 0.5. Hence, the jump in transport of the different solutions is connected to the different
transports of the jet-up and jet-down solutions in the rectangular domain.

The two stable solutions for the same wind forcing (ph 5 0.5) are shown in panels (b)

Figure 11. Curl of windstress (14) for three different values of ph. All panels are scaled with respect
to the same maximum amplitude (a) ph 5 0.0 (b) ph 5 0.5. (c) ph 5 1.0.
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and (c) of Figure 12. For one solution, separation of the Gulf Stream occurs near Cape
Hatteras, whereas for the other solution, separation occurs at higher latitudes. The
separated solution in Figure 12(c) has a maximum northward transport of 41.5 Sv which is
much larger than that of the de� ected solution in Figure 12(b) ( f 5 32.2 Sv). Again, on the
upper branch, transport increases nearly linearly and for ph 5 0, a Gulf Stream is found
which separates at Cape Hatteras and meanders into the North Atlantic, with a maximum
northward transport of 80 Sv.

The chosen value of E in Figure 12 corresponds to that of the � rst Hopf bifurcation for
ph 5 0 and hence, the solution in Figure 12(d) is just critical. The corresponding
eigenfunctions of the two most unstable modes are shown in Figure 13. The period of the
critical mode ( s r 5 0) is approximately 6 months (panels (a/b)) and its pattern is similar to

Figure 12. (a) Bifurcation diagram using the homotopy parameter ph as control parameter to
continue from simple wind forcing (11) to the Hellermann and Rosenstein forcing ph 5 1.0 at E 5
7.6 102 6. (b) Layer thickness anomalies for the steady state at ph 5 0.5 ( f 5 41.5 Sv). (c) Layer
thickness anomalies for the steady state at ph 5 0.5 ( f 5 32.2 Sv). (d) Layer thickness anomalies
for the steady state at ph 5 0.0 (f 5 80.0 Sv).
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that of the � rst mode in the rectangular geometry (Fig. 6(a/b)). Its principle axis points in
zonal direction and does not change much during the oscillation. The second oscillatory
mode has a period of approximately 17 months (panels (c/d)). Both its interannual time
scale and orientation of the principle axis correspond to that of the mode in Fig. 6(e/f) for
the rectangular basin.

c. Effect of geometry

As a � nal step to demonstrate the connection between qualitative features within the
hierarchy of models, the realistic domain is ‘deformed’ into a trapezium domain. The � nite
element grid for this domain is shown in Figure 14(a). The bifurcation diagram is similar to
that in Figure 9 and not shown. The steady solution for the simple wind forcing (11) at E 5
10.1 10 2 6 (which is at the Hopf bifurcation for this case) is shown in Figure 14(b). This
solution resembles one of the asymmetric solutions of the rectangular basin, i.e., the ‘jet
down’ solution, which is slightly deformed due to the geometry. Note that the value of E at

Figure 13. Eigenfunctions at the � rst Hopf bifurcation (E 5 7.6 102 6) for the windstress forcing
(11), i.e., ph 5 0. (a/b): Layer thickness perturbations for the real and imaginary part of � rst
eigenmode, with s r 5 0.0 and s i 5 0.43. (c/d): As in (a/b) but for the second mode, with s r 5
2 0.10 10 2 3 and s i 5 0.14.
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the critical boundary has increased, indicating that the solutions are more unstable than
those in the rectangular basin. This is due to the larger basin size which induces a stronger
jet. The solution is also very similar to Figure 12(d) obtained for realistic geometry and the
windstress (11). Because the value of E at the � rst Hopf bifurcation is smaller than that for
the trapezium geometry, the effect of the realistic continental geometry is stabilizing.

The � rst two most unstable modes are shown at the Hopf bifurcation in Figure 15 and
again display the same type of features as those in the rectangular domain (Fig. 6). The � rst
mode has an intermonthly period and resembles the mode in Figure 6(a/b), whereas the
second has an interannual period and resembles Figure 6(c/d). Therefore, the order of
intermonthly and interannual mode remains the same and this sequence of modes can be
traced from simple to realistic geometry and windstress in the SW-model.

5. Summary and discussion

A close qualitative connection between steady solutions and modes of variability exists
within a hierarchy of equivalent barotropic models. The model range is from a quasi-
geostrophic model in a rectangular basin forced by a cosine shaped zonal windstress to a
shallow water model within a realistically shaped North Atlantic basin forced by the
Hellerman and Rosenstein windstress. The main result is the existence of multiple
equilibria in the latter model, with two different mean states for the Gulf Stream path.

The dynamical origin of these multiple mean paths can be understood by looking at the
changes in the bifurcation diagram through the model hierarchy. The unforced quasi-
geostrophic equations in a rectangular geometry are invariant with respect to a re� ection
symmetry, because the balances of the geostrophic and ageostrophic terms, each group
having a different symmetry, are considered separately. If the windstress has a re� ection
symmetry, such as the idealized windstress (11), then symmetry breaking of the resulting
� ow occurs through a pitchfork bifurcation. The physical mechanism of the symmetry
breaking is easily understood from the perturbation structure at bifurcation (Dijkstra and

Figure 14. (a) Finite element grid used for computations on the trapezium domain. (b) Basic state at
the � rst Hopf bifurcationat E 5 10.1 10 2 6.
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Katsman, 1997). It is barotropic in nature and involves an asymmetric weakening/
strengthening of the subpolar/subtropical gyre with a positive feedback from the resulting
change in horizontal shear. The symmetry breaking leads to multiple equilibria and
asymmetric solutions, and the latter solutions are related through the re� ection symmetry.
These asymmetric solutions are destabilized at Hopf bifurcations through basin modes,
having an intermonthlyperiod, and gyre modes, having an interannual period (Dijkstra and
Katsman, 1997).

In the shallow water formulation for the rectangular basin, the balances of geostrophic
and ageostrophic terms are not separated and consequently, the equations are not invariant
with respect to the re� ection symmetry. This was demonstrated in the low forcing limit
a S ® 0, where for the velocity � eld the geostrophic and ageostrophic balances are
decoupled up to O ( a S) (see the Appendix). However, the solution of the thermocline depth
is not invariant under the re� ection and hence even with the idealized windstress (11) no
perfect pitchfork bifurcation is found. Instead, an imperfection of this structure is found,

Figure 15. Eigenfunctionat the � rst Hopf bifurcation (E 5 10.1 10 2 6) for the trapezium domain and
ph 5 0. (a/b) Layer thickness perturbations of the real and imaginary part of the � rst eigenmode
with s r 5 0.0 and s i 5 0.42. (c/d) Layer thickness perturbationsof the real and imaginary part of
the second eigenmode with s r 5 2 0.018 and s i 5 0.18.
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with the consequence that the multiple equilibria still exist, but that the solutions on each
branch are no longer exactly symmetrically related.

In deforming the rectangular basin to the realistic geometry of the North Atlantic basin,
and the forcing into a realistic windstress pattern, the imperfect pitchfork structure remains
robust. The ‘jet up’ and ‘jet down’ solution, i.e., the multiple equilibria in the simple case,
deform into solutions with different separation behavior near the North American coast of
the Gulf Stream for the realistic case. No new equilibria are introduced by the change in
geometry, which strongly suggests that the simultaneous existence of the de� ected and
separated Gulf Stream is not due to continental geometry. This is supported by results of
intermediate cases, such as a trapezium geometry and a realistically shaped basin forced by
the windstress (11).

The existence of the two solutions can be traced back as being caused by internal ocean
dynamics; i.e., the existence of symmetry breaking in the highly idealized case. This result
is at � rst sight surprising, since one would think that geometry would have a strong impact
on the � ow. Of course there is a quantitative dependence, since the patterns of both steady
states and the modes of variability change and adapt to the geometry. Qualitatively,
however, the � ow is strongly controlled by the internal dynamics and no new changes are
introduced by the geometry. In a way, the symmetry breaking observed in the QG model in
rectangular geometry is still present, but it is localized in the real continental geometry and
the extent of imperfection is not controlled by the overall details of the geometry, but by the
local dynamics (i.e. jet structure) of the � ow. Of course, the jet structure itself is controlled
by boundary conditions and the values of the parameters in the model.

This also explainswhy the modes of variability are closely linked within the hierarchy of
the models. In the range of parameters studied, there are only a few modes which can
contribute to the dynamics; these modes easily extract energy from the basic state. Among
those are intermonthly modes and interannual modes and their actual importance depends
on the spectral separation, which is larger in the QG-model than in the SW-model.
Although the actual ordering of the modes is sensitive to details in the model, only these
type of modes appear through the whole hierarchy. The time scale of these modes does not
depend much on the continental geometry and windstress and even their pattern is not
strongly modi� ed. The reason is that already in rectangular geometry, these modes are
strongly localized within the jet, which basically does not change through the range of
different models.

Since multiple equilibria exist in these models, it is not unlikely that these play a role in
the problem of Gulf Stream separation in realistic models. Preliminary computed trajecto-
ries, within the most realistic model used here, show that if one starts on the separated
solution near Figure 9(b), the trajectory is � rst attracted toward a periodic orbit associated
with the oscillatory unstable mode on this state. However, after some time it moves away
from this orbit and � nally arrives at a stable periodic orbit around the de� ected solution.
The periodic orbit coming out of the Hopf bifurcation on the branch which is continuously
connected to the large E solution (Fig. 9(a)), appears more stable than that on the isolated
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branch. The connection within the imperfect pitchfork is central to get on the right solution
branch. For the shallow water in the rectangular basin case, this connection is very
sensitive to details in parameterization of subgrid scale processes. It is already different
between the model used here and that in Speich et al. (1995), which only differs slightly in
the parameterization of lateral friction.

Even if the steady solution branches are unstable to a few other types of instabilities (i.e.,
baroclinic instabilities) they may still in� uence the mean state, since they are stable to
many other modes. A delicate balance in the western boundary region may therefore
determine whether the right separated Gulf Stream will be obtained as a mean state in a
simulation of the circulation. Since this delicate balance is easily in� uenced by all kinds of
(even minor) phenomena, this may be the reason that a multitude of mechanisms has been
proposed to be important for separation. Of course, further work on this delicate balance is
needed. The low forcing limit seems an attractive limit to consider this problem in more
detail, since it is here that the connection is already determined.

The use of continuation methods has been essential in obtaining the correspondence
between qualitative behavior through a hierarchy of models. For transient codes, this
correspondence would always remain hidden because many of the steady states are
unstable, mostly to time periodic perturbations. Hence, they would not be seen from the
results of these models, although features of the steady states would appear in the
trajectories. The results presented here give support for the relevance of studies using
models in idealized geometry. Although certainly these models have their limitations with
respect to quantitative prediction of phenomena in the real system, the results have more
than only conceptual value, since the correct qualitative dynamics of the � ow is captured.
This is important knowledge when tackling hard problems such as the separation problem
of western boundary currents with simple models and may temper critique on these studies
related to the simpli� cations made. In fact, the strong qualitative correspondence found
here may be a reason why studies with simple models have indeed contributed to
improving aspects of OGCM’s.
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APPENDIX

Symmetry properties of QG- and SW-equations

The unforced quasi-geostrophic model admits a re� ection symmetry through the
mid-axis of the basin (Cessi and Ierley, 1995). This re� ection RQG has the representation

RQS( c (x, A 2 y), z (x, A 2 y)) 5 2 (c (x, y), z (x, y)). (15)
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If the applied windstress forcing is symmetric, there are constraints on the type of
bifurcation points. For the idealized windstress forcing such as in (11), a symmetry
breaking pitchfork is the generic bifurcation (Golubitsky and Schaeffer, 1985).

The appropriate re� ection symmetry in the shallow water model is represented by

RSW (u(x, A 2 y), v(x, A 2 y), h(x, A 2 y)) 5 (u(x, y), 2 v(x, y), 2 h(x, y)). (16)

It can easily be shown that the SW equations (even with the idealized windstress (11)) are
not invariant with respect to the re� ection RSW. Symmetry is not only broken by
advection, but also by other ageostrophic effects, such as the thermocline deviations from
their equilibrium value. This asymmetry is therefore already present in the low forcing
limit, i.e. a S ® 0. If we expand quantities as

u 5 a Su (1) 1 a S
2u (2) 1 O ( a S

3 ) (17a)

v 5 a Sv (1) 1 a S
2v (2) 1 O ( a S

3 ) (17b)

h 5 1 1 a Sh (1) 1 a S
2h (2) 1 O ( a S

3 ) (17c)

the steady equations at O ( a S) (with t y 5 0, r 5 0 and t x 5 t x(y)) are

2 (1 1 e b y)v (1) 5 2 e F*
 h (1)

 x
1 E = 2u (1) 1 t x (18a)

(1 1 e b y)u (1) 5 2 e F*
 h (1)

 y
1 E = 2v (1) (18b)

 u(1)

 x
1

 v (1)

 y
5 0. (18c)

When h(1) is eliminated, we obtain the problem

b v (1) 5
1

Re
= 2z (1) 2

1

e

 t x

 y
(19)

where

z (1) 5
 v (1)

 x
2

 u (1)

 y
.

When t x is even with respect to A/2, the solutions for u(1) and v(1) are even and odd,
respectively. However, when the divergence of the � rst two equations (18) are taken, the
equation for the thermocline anomaly becomes

e F* = 2h (1) 5 (1 1 e b y)z (1) 2 e b u (1) (20)
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which can (in principle) be solved using appropriate boundary conditions. Since z (1) is odd
and u(1) is even, h(1) cannot be odd and the symmetry (16) is broken. Hence, no perfect
pitchfork bifurcation can occur and an imperfect one results.
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