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Energetics of linear geostrophic adjustment
in strati� ed rotating � uids

by Roger H. J. Grimshaw1, Andrew J. Willmott2 and Peter D. Killworth3

ABSTRACT
The energy conversion ratio, g , is shown to be bounded below by 0 and above by 1/2 in the

two-dimensional linear geostrophic adjustment of a continuously stably strati� ed, incompressible,
inviscid non-Boussinesq � uid. ‘‘Two-dimensional’’ refers to problems in which the initial isopycnal
displacement � eld is an arbitrary function of the vertical (parallel to the rotation axis) and a single
horizontalcoordinate.By using Fourier analysis techniques, the paper also identi� ed classes of initial
isopycnal displacement pro� les for which the adjustment process leads to g . 1/3. Finally, an
expression for g is derived when the initial isopycnal displacementpro� le is three dimensional.

1. Introduction

The problem of how a � uid, initiallynot in geostrophic balance, adjusts to that balance is
a fundamental problem in the theory of rotating � uids. Blumen (1972) gave the � rst review
in the area, and discussed many concepts which have been used since, including potential
vorticity conservation and minimum energy principles.

In this paper, upper and lower bounds are derived for the energy conversion ratio in the
geostrophic adjustment problem for a uniformly rotating strati� ed � uid. A feature of all
geostrophic adjustment problems is that only a fraction of the potential energy released,
D PE, is converted into kinetic energy, D KE, of the � nal geostrophically adjusted state. The
energetics of the geostrophic adjustment problem are usually expressed in terms of the
energy conversion ratio g 5 D KE/ D PE.

In the literature, following Blumen’s work, the ‘‘classical’’ linear geostrophic adjustment
problem refers to the adjustment of a horizontally unbounded, uniformly rotating, baro-
tropic � uid which initially is at rest (with respect to the rotating frame of reference) with a
step in the � uid surface which is maintained by a vertical barrier. Upon removal of the
barrier the � uid adjusts to a steady geostrophic state by the propagation of Poincaré waves.
In the adjusted state Gill (1976, 1982) shows that g 5 1�3; the radiation of Poincaré waves
implying a loss of energy from any � nite region.
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In this paper we focus on the small amplitude (linearized) geostrophic adjustment
problem. Within the context of this linearized theory, what is the value of g for an arbitrary
initial � uid surface displacementwhen the � uid is initially at rest? This question is partially
answered by Middleton (1987) for an initial surface displacement which depends only
upon one horizontal spatial variable. Middleton (1987) demonstrates that g # 1�2 for this
case. When the initial surface displacement is sinusoidal with wavelength, l , Killworth
(1986) and Middleton (1987) demonstrate that g smoothly varies from 0 to 1�2 as l
increases from 0 to in� nity. Both authors, therefore, stress the importance of the horizontal
characteristic length scale of the initial � uid surface displacement in determining the value
of g .

Problems in which the initial surface displacement is of square wave form with a
horizontal extent given by L lead to an adjusted state in which 0 # g # 1�3, as shown by
Killworth (1986). As L ® ` , g ® 1�3, because the adjustment process at each end of the
initial square wave pro� le occurs independently of the other. On the other hand, g ® 0 as
L ® 0 because the effects of rotation are then negligible in the adjustment process and
hence D KE ® 0 as L ® 0.

The nonlinear version of the problem considered by Gill (1976, 1982) is discussed by
Boss and Thompson (1995). To calculate the geostrophically adjusted state in the nonlinear
problem, conservation of mass and potential vorticity (PV ) are required. Boss and
Thompson (1995) show that g 5 1�3, although D KE is slightly smaller than its linear
counterpart.The authors also consider the nonlineargeostrophic adjustment for a two-layer
� uid with a rigid lid and show that g 5 1�3 in this case too. However, both D KE and D PE in
the nonlinear adjusted state are less than the equivalent values for the linear problem. This
difference is greatest when the mean depth of the interface is close to the upper or lower
boundary, and increases with the height of the initial step in the interfacial displacement.

In a model of tidal mixing, van Heijst (1985) calculates the nonlinear geostrophically
adjusted state which results after the removal of a barrier separating a stably strati� ed
two-layer � uid from a homogeneous � uid of intermediate density. In essence this study is
similar to that of Boss and Thompson (1995) except that the number of � uid layers is
increased. van Heijst (1985) shows that g 5 1�3, irrespective of the value of the initial depth
ratio of the strati� ed region.

Nonlinear geostrophic adjustment of a continuously strati� ed inviscid, incompressible
Boussinesq � uid is considered by Ou (1984, 1986), Blumen and Wu (1995) and Wu and
Blumen (1995). All these studies consider two-dimensional motion in a � uid which is
unbounded horizontally and bounded in the vertical by two rigid planes. Ou considers a
� uid that initially is at rest, with a density � eld that is homogeneous in the vertical, but in
which the density varies smoothly from one uniform value to another in the horizontal.
Consequently, the initial value of the PV is zero, and is conserved throughout the
adjustment. Blumen and Wu (1995) refer to the Ou problem as a ‘‘zero PV � ow.’’ Ou
(1986) and Blumen and Wu (1995) establish that g 5 1�2 for the zero PV adjustment
problem provided that fronts do not form during the adjustment. Since a two-layer � uid is
an asymptotic limit of a continuously strati� ed � uid, Ou (1986) deduces that g must
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decrease smoothly from 1�2 to 1�3 in the parameter regime where fronts form. Blumen and
Wu (1995) also extend the Ou study to the case when the � uid is initially at rest with a basic
state density � eld which is made up from the sum of two parts; a � eld which is linear in
depth and one which depends only upon a horizontal spatial coordinate. These initial
conditions lead to a uniform value for the PV which is conserved throughout the � ow, and
Blumen and Wu (1995) show that g # 1�2 for particular distributions of the initial density
� eld. The value of g depends upon the horizontal length scale of the initial density � eld.

Wu and Blumen (1995) extend the Ou (1984, 1986) studies to include an initial
geostrophic velocity, but still maintain the zero PV assumption. Although the initial
velocity � eld can alter the distributions of the density and velocity � elds in the adjusted
state compared with the Ou problem, it is found that g 5 1�2.

Kuo (1997) examines the temporal evolution of a radially symmetric disturbance with
initially unbalanced velocity or pressure, for general pro� les, but does not discuss the
energy of the � nal system from the perspective of g .

It seems that an overlooked aspect of the geostrophic adjustment problem relates to the
linear adjustment of a continuouslystrati� ed, inviscid, incompressible � uid bounded above
by a free surface, and below by a rigid horizontal plane, unbounded in the horizontal, with
an initial PV distribution which is an arbitrary function of depth and one horizontal spatial
coordinate. Under these assumptions, the motion is two-dimensional and the goal of this
paper is to derive upper and lower bounds for g .

2. Formulation of the problem

Consider an incompressible, stably strati� ed, inviscid � uid rotating with uniform
angular speed f/2 about a vertical axis, where f is the Coriolis parameter in geophysical
applications. The governing equations for small amplitude motions in the hydrostatic
approximation about an equilibrium state in which the density is r 0(z) are

ut 2 fv 1 r 0
2 1px 5 0, (2.1)

vt 1 fu 1 r 0
2 1py 5 0, (2.2)

pz 5 2 g r , (2.3)

ux 1 vy 1 wz 5 0, (2.4)

r t 2 r 0N 2g2 1w 5 0, (2.5)

where

N 2 5 2 g(d r 0 /dz) r 0
2 1,

is the buoyancy frequency. The system (2.1) to (2.5) is referred to a right-handed Cartesian
coordinate frame 0xyz, with 0z directed vertically upward; t is time; u, v, w denote the
velocity components along the 0x, 0y and 0z axes, respectively; p is the perturbation
pressure; r is the perturbation density; g is the gravitational acceleration. If in (2.1) to (2.5)
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the Boussinesq approximation is made, then r 0(z) becomes a constant, r * , but d r 0/dz
remains unchanged.

For a � uid of uniform depth h, with the undisturbed free surface at z 5 0, the boundary
conditions for (2.1) to (2.5) are

w 5 0 at z 5 2 h (2.6)

w 5 h t

p 2 g r 0h 5 0 6 at z 5 0. (2.7)

The � rst of (2.7) states that a � uid particle in the free surface will remain in it (the
kinematic boundary condition), while the second of (2.7) is a statement of continuity of
pressure at the � uid surface (see LeBlond and Mysak, 1978, Ch. 2, Section 9). Here h is the
free-surface displacement.

It will be convenient to recast the equations in terms of the vertical isopycnal
displacement � eld z (x, y, z, t). Consider an isopycnal surface r 0 1 r 5 constant, which in
the rest state coincides with z 5 z0. Let z (x, y, z0, t) denote the vertical displacement of this
surface from z 5 z0:

z 2 z0 5 z (x, y, z0, t).

In fully nonlinear motion, r 0 1 r is conserved following a � uid particle and therefore

r 0 1 r 5 r 0(z 2 zˆ), (2.8)

where

zˆ(x, y, z, t) ; z (x, y, z0, t) 5 z (x, y, z 2 z , t). (2.9)

Then to the leading linear order it is readily seen that,

zˆ 5 z (x, y, z, t) 1 . . . , (2.10)

and

r 5 2 r 0zz 1 . . . (2.11)

Holliday and McIntyre (1981) derive similar expressions to higher order in amplitude in a
paper which considers expressions for the potential energy density in a continuously
strati� ed incompressible � uid when isopycnal displacements are large. Note that (2.11)
shows that to this leading linear order,

w(x, y, z, t) 5 z t. (2.12)

Thus (2.12) in effect replaces (2.5), and to this leading linear order, the hydrostatic balance,
(2.3), becomes,

pz 1 r 0N
2 z 5 0. (2.13)
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Finally, the two boundary conditions (2.7) are replaced by the single boundary condition,

p 2 g r 0z 5 0 at z 5 0. (2.14)

To summarize, the governing equations are (2.1), (2.2), (2.4), (2.11), (2.12), and (2.13).
In a discussion of the governing equations for a nonrotating continuously strati� ed
incompressible � uid, Gill (1982, Ch. 6) also introducesan isopycnal displacement function
which is equivalent to z . An energy equation for this system is straightforward to derive and
takes the form



 t
(K 1 P) 1 = ? (pu) 1 (pw)z 5 0, (2.15)

where the kinetic and potential energy densities are given by

K 5
1

2
r 0(u2 1 v2),

P 5
1

2
r 0N 2z 2,

respectively, u 5 (u, v) and = denotes the two-dimensional horizontal gradient operator.
The kinetic and potential energy densities per unit area are then obtained by integrating
these expressions over the depth, so that,



 t
(KE 1 PE ) 1 = · F 5 0 (2.16)

where the expressions KE, PE and F are given by,

KE 5 e
2 h

0 1

2
r 0(u2 1 v2) dz,

PE 5 e
2 h

0 1

2
r 0N 2z 2 dz 1

1

2
r 0(z 5 0)gz 2(z 5 0).

F 5 e
2 h

0
(pu) dz.

6 (2.17)

Initially the � uid is at rest with a speci� ed density anomaly:

u 5 0, w 5 0, z 5 z 0(x, y, z) at t5 0. (2.18)

From (2.1), (2.2), (2.4) the perturbation PV, II, which is a conserved quantity following the
motion, is given by

II 5 vx 2 uy 2 f z z 5 2 f z 0z (2.19)

and is therefore spatially nonuniform.
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3. Normal mode decomposition

Next all dependent variables are written in terms of the modal expansion (e.g., Gill
(1982) though with a different notation):

u : (u, v) 5 o
n5 0

`

Bn(x, y,t)
døn

dz
, (3.1)

p 5 o
n 5 0

`

r 0 Dn(x, y, t)
døn

dz
, (3.2)

z 5 o
n5 0

`

An(x, y, t)øn(z), (3.3)

where the vertical modal functions f n(z) satisfy

d

dz 3 r 0

d f

dz 4 1
r 0N 2

c2
f 5 0, (3.4a)

subject to

f 5 0 at z 5 2 h, (3.4b)

d f

dz
5

g

c2
f at z 5 0. (3.4c)

The modal functions have dimensions of length, while c is the linear long-wave phase
speed. Both are indexed such that n 5 0 denotes the barotropic mode. The orthogonality
condition is

e
2 h

0
r 0 f nzf mz dz 5 d nmIn, (3.5a)

which de� nes In when n 5 m, and upon integrating by parts it becomes

e
2 h

0
r 0N 2f n f m dz 1 (r 0g f n f m) *

z 5 0
5 cn

2 d nmIn, (3.5b)

upon using (3.4). In (3.5), d nm denotes the Kronecker delta. Multiplying (3.1) and (3.2) by
r 0f mz, vertically integrating and applying (3.5a) gives

InBn 5 e
2 h

0
r 0f nzu dz, InDn 5 e

2 h

0
pf nz dz.

Similarly, multiplying (3.3) by r 0N2 f m, vertically integrating and applying (3.5b) yields

Incn
2An 5 e

2 h

0
r 0N 2f n z dz1 ( r 0gf n z ) *

z 5 0
.
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The hydrostatic balance (2.13) can be written as

cn
2InAn 5 2 e

2 h

0
pz f n dz 1 (p f n) *

z 5 0

5 e
2 h

0
p f nz dz 5 InDn

which gives

Dn 5 cn
2An. (3.6)

To obtain a single equation for An, two approaches are possible. First, we may either
proceed from the full linearized time-dependentequations,which yields after some algebra

Antt 1 f 2(An 2 An0) 5 cn
2 = 2An, (3.7)

which is a two-dimensional Klein-Gordon equation and demonstrates that the adjustment
process involves Poincaré wave propagation for each mode. In (3.7), An0(x, y) denotes the
Fourier coefficients of z 0. Since (3.7) is simply a re-statement of the conservation of the PV
equation (2.19), we can also proceed by expressing that conservation between initial and
� nal states. Now, in the � nal steady state, for each vertical mode, the � ow is geostrophic, so
that

fk 3 Bn 5 2 = Dn 5 2 cn
2 = An, (3.8)

after use of (3.6). Then (2.19) gives for each vertical mode (i.e., multiply (2.19) by r 0f nz

and integrate over z)

= 2Dn

f
2 fAn 5 2 fAn0,

where we have used (3.8). Then using (3.6) we get

f 2(An 2 An0) 5 cn
2 = 2An, (3.9)

which is merely the steady state version of (3.7).
Hereafter, we will consider a two-dimensional adjustment problem in which z 0 ;

z 0(x, z), is otherwise arbitrary. In the � nal geostrophically adjusted steady state let

An 5 An0(x) 1 a n(x),

where

a 9n 2 Rn
2 2 a n 5 2 A9n0, (3.10)
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from (3.9), Rn 5 cn/f is the Rossby radius of deformation associated with the nth vertical
mode and the prime denotes a derivative with respect to x. The solution of (3.10) which
satis� es a n ® 0 as * x * ® ` is given by

a n 5
Rn

2
e

2 `

`
exp [2 Rn

2 1 * s 2 x * ]A9n0(s)ds, (3.11)

which upon integration by parts twice becomes

a n 5 2 An0 1
1

2Rn
e

2 `

`
exp [2 Rn

2 1* s 2 x * ]An0(s)ds,

and hence

An 5
1

2Rn
e

2 `

`
exp [2 Rn

2 1 * s 2 x * ]An0(s)ds. (3.12)

Eq. (3.12), in slightly different form, was derived by Blumen (1972). The Green’s function
exp[2 Rn

2 1 * s 2 x * ] demonstrates that initial conditions spread a distance O(Rn) during the
adjustment process. It also implies that in the geostrophically adjusted state, z (x, z) has a
characteristic horizontal length scale bounded above by R1.

4. Energy conversion ratio

From (2.17) the kinetic energy of the adjusted state is given by

D KE 5 e
2 `

` e
2 h

0 1

2
r 0(u2 1 v2) dz dx,

5 o
n 5 0

`

e
2 `

` 1

2
In * Bn * 2 dx

where (3.5a) has been used. Using (3.8), this gives

D KE 5 o
n 5 0

` cn
4

f 2

1

2
In e 2 `

`
(A8n)2 dx. (4.1)

Hereafter, the range of the summation index will be omitted, and unless stated otherwise, S
denotes an in� nite sum in which the index n of the nth term satis� es n $ 0.

From (2.17) the potential energy released during the adjustment is given by

D PE 5 e
2 `

` e
2 h

0 1

2
r 0N 2( z 0

2 2 z 2) dzdx

1 e
2 `

` 1

2
r 0(0) ( z 0

2 2 z 2)*
z 5 0

dx,

(4.2)
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where the second term on the right-hand side of (4.2) represents the free surface
contribution.With the aid of (3.3) and (3.5b), (4.2) can be written as

D PE 5
1

2 o e
2 `

`
[(An0)2 2 (An)2] dx5 e 2 h

0
r 0N 2 f n

2 dz

1 g r 0(0) f n
2(0) 6 ,

5
1

2 o cn
2Ine 2 `

`
[(An0)2 2 (An)2] dx.

Therefore, the energy conversion ratio

g 5
D KE

D PE
5

o
n 5 0

`

cn
4In e 2 `

`
(A8n)2dx

o
n 5 0

`

cn
2In f 2 e

2 `

`
(An0

2 2 An
2) dx

. (4.3)

Suppose that An0 is everywhere bounded, with An0 ® Aǹ
1 (a constant) as x ® ` and

An0 ® An `
2 (a constant) as x ® 2 ` . Clearly, as * x * ® ` , An has identical bounds to An0. In

the adjusted state, (3.7) becomes

cn
2A9n 5 f 2(An 2 An0). (4.4)

By integrating by parts and using (4.4) it can be shown that

cn
2

f 2 e 2 `

`
(A8n)2 dx 5 e

2 `

`
An(An0 2 An) dx,

5 e
2 `

`
(An0

2 2 An
2) dx 1 e

2 `

`
An0(An 2 An0) dx.

Substituting into (4.3) we obtain

g 5 1 2
o cn

2In e 2 `

`
An0(An 2 An0) dx

o
n 5 0

`

cn
2In e 2 `

`
(An0

2 2 An
2) dx

, (4.5a)

5
o cn

2In e 2 `

`
An(An0 2 An) dx

o cn
2In e 2 `

`
(An0

2 2 An
2) dx

. (4.5b)
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Finally, in terms of a n, (4.5a) takes the form

g 5 1 2
o cn

2In e 2 `

`
An0a ndx

o cn
2In e 2 `

`
a n( a n 1 2An0)dx

. (4.6)

The results (4.5) and (4.6) have not appeared elsewhere as far as we can determine. They
are quite general in that they enable the energy conversion ratio to be calculated for
two-dimensional linear geostrophic adjustment of a non-Boussinesqcontinuouslystrati� ed
incompressible � uid, given an initial two-dimensional isopycnal displacement � eld.
Furthermore, it will be shown in the next section that (4.6) can be bounded above and
below.

5. Bounds on the energy conversion ratio

A useful simpli� cation of the formula (4.6) is obtained if we introduce a new variable,
b n, where

b 8n 5 a n, and b n( 2 ` ) 5 0. (5.1)

Substitution into (3.10), and one integration yields

b 9n 2 Rn
2 2b n 5 2 A8n0, (5.2)

which also serves to establish that b n( ` ) 5 0. Then it follows that, using successive
integrations by parts,

e
2 `

`
An0a n dx 5 e

2 `

`
An0 b 8n dx 5 2 e

2 `

`
b nA8n0 dx

5 e
2 `

`
b n( b 9n 2 Rn

2 2b n) dx (5.3)

5 2 e
2 `

`
( b 82

n 1 Rn
2 2 b n

2) dx , 0.

Thus the numerator in the expression for 1 2 g in (4.6) is negative. Next, consider the
denominator,

e
2 `

`
a n( a n 1 2An0) dx 5 e

2 `

`
b 82

n dx 1 2 e
2 `

`
a nAn0 dx,

5 2 e
2 `

`
( b 82

n 1 2Rn
2 2 b n

2) dx , 0,
(5.4)
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on using (5.3). Thus the denominator is also negative, con� rming that g , 1 as expected.
Further, on substituting (5.3) and (5.4) into (4.6) we � nd

g 5
o In e 2 `

`
b n

2 dx

o Ine 2 `

`
(Rn

2b 82
n 1 2 b n

2) dx
. (5.5)

It follows immediately that

0 , g ,
1

2
. (5.6)

Further, it is clear that if the scale of b n is much larger than Rn, then g becomes arbitrarily
close to 1�2. Alternatively, if the scale of b n is much smaller than Rn, then g becomes
arbitrarily close to 0. It is clear that for general � ows these bounds are the tightest possible.

In our strati� ed example, the bound of 1�2 is achieved for initial conditions with very
large length scales. However, for initial conditions with any � nite (but small) length scale,
sufficiently high-order vertical modes will have a smaller deformation radius than this
length scale, so that some of these initial conditions must lead to adjusted states with g
greater than, but close to, zero. For a single vertical mode, Middleton (1987) and Killworth
(1986) give examples which achieve these bounds.

Let us consider some examples. The simplest is a pure sinusoidal initial condition (as in
the Middleton (1987) and Killworth (1986) examples above). If only one mode (n, say) is
present, An0 5 sinkx implies a n 5 2 k2Rn

2sinkx/(1 1 k2Rn
2) and g 5 1/(2 1 k2Rn

2). Sugges-
tively, this takes the value 1/3 when kRn 5 1; i.e., when the length scale of the initial
condition is exactly Rn

4.
This leads us to consider whether an improved lower bound can be obtained for g under

restrictions corresponding to physically sensible conditions.From previous studies, and the
above discussion, we might expect g . 1�3. With the idea in mind of � nding under what
circumstances g . 1�3, we consider

g 2
1

3
5

o Ine 2 `

`
( b n

2 2 Rn
2b 82

n ) dx

3 o Ine 2 `

`
(Rn

2 b 82
n 1 2 b n

2) dx

;
NUM

DEN
,

(5.7)

4. Note that strictly An0 and An do not satisfy the required boundary conditions at in� nity, and are essentially
Fourier transforms (see also the Appendix). However, such simple sinusoidal expressions can be used here
provided we replace the in� nite integrals above by integrals over one wavelength, 2p /k.
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on using (5.5). Thus g . 1�3 when NUM . 0. Clearly, we can anticipate that this will be the
case when the scale of b n is much larger than Rn. To illustrate this, suppose we choose

b n 5 bn exp ( 2 x2/Ln
2). (5.8)

where 5 bn 6 are a set of constants with dimensions of length. Of course, this is an inverse
problem as we should � rst choose An0 and then determine b n from (5.2). However this
inverse procedure is simpler to implement, and substitution into (5.2) readily shows that

An0 5
1

2
(An0

1 1 An0
2 ) 1

2bnx

Ln
2

exp ( 2 x2/Ln
2) 1

1

2
(An0

1 2 An0
2 ) erf (x/Ln) (5.9)

where the constants An0
1 and An0

2 denote the value of An0 as x ® ` , 2 ` respectively, and
An0

1 2 An0
2 5 2 bnLn Î p /Rn

2. Consider the case when An0
1 5 1 5 2 An0

2 and nondimensional-
ize b n and x by Rn. Then (5.9) becomes

An0 5 erf (x/ l n) 1
2x

l n
2

exp ( 2 x2/ l n
2),

where l n 5 Ln/Rn. This is plotted in Figure 1 with l n as a parameter.
Next it is readily shown from (5.5) that

g 5
o Inbn

2Ln

o Inbn
2Ln(2 1 Rn

2/Ln
2)

. (5.10)

For a single mode (e.g., bn 5 0 for all n Þ N), clearly g _ 1�3 according as RN + LN. If the
horizontal length scale associated with b n is independentof n (L, say) we can also infer that
that g . 1�3 if L $ R1, since Rn ® 0 as n ® ` , with R1 . R2 . R3 . . . . .

Further progress is mathematically technical and can be found in the Appendix. The
results are summarized in Section 7.

6. Examples

In this section we consider two forms for the initial isopycnal displacement � eld, namely

z 0(x, z) 5 z *0
z

h 1 1 1
z

h 2 e 2 µ * x * , (6.1)

and

z 0(x, z) 5 z *0
z

h 1 1 1
z

h 2 F(x), (6.2)
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where

F(x) 5 5
1, x . b

x

b
, * x * # b

2 1, x , 2 b.

In (6.1) and (6.2), µ and b are positive constants, while z *0 is a constant, with dimensions of
length, which controls the amplitude of the isopycnal displacement � eld. The exact value
of g will be calculated for (6.1) and (6.2). Speci� c conditions relating to the structure of z 0

are derived in the Appendix which lead to 1�3 , g , 1�2, and their utility will be illustrated
using (6.1) and (6.2).

For conveniencea rigid lid is imposed at z 5 0, thereby � ltering out the barotropic mode.
In addition, the Boussinesq approximation is made throughout this section, in which case

Figure 1. Plot of An0(x) 5 erf(x/l n) 1 2x exp(2 x2/l n
2)/l n

2 for (a) l n 5 0.2; (b) l n 5 1.0; (c) l n 5 5.0.
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the eigenvalues and eigenfunctions become cn 5 N0h/(np ) and f n(z) 5 z *0 sin(n p z/h),
respectively, for a � uid with constant buoyancy frequency N0. Now the Fourier coefficients
of (6.1) are simply

An0(x) 5 ane
2 µ* x * , (6.3)

while for (6.2) they are

An0(x) 5 anF(x), (6.4)

where

an 5
8

p 3(2n 1 1)3
, n 5 0, 1, 2, . . .

Consider the initial isopycnal displacement � eld (6.1). After adjustment

An 5
an

Kn
2 2 1

(Kne
2 * x * / Rn 2 e2 µ* x * ),

where Kn 5 µRn. Figure 2 shows a plot of the initial and adjusted isopycnal displacements
at selected depths. Twenty baroclinic modes are used to calculate the adjusted isopycnal
displacement � eld, and indeed the value of g , for both examples in this section. Using (4.3)
we � nd that

g 5
1

2

o
n 5 0

`

(2n 1 1)2 6
Kn

2

(Kn
2 2 1)2 3 1 1 Kn 2

4Kn

1 1 Kn
4

o
n 5 0

`

(2n 1 1)2 6
Kn

2

(Kn
2 2 1)2 3 Kn

2

2
2

Kn

2
2 1 1

2

1 1 Kn
4
.

Table 1 shows the values of g for various values of µ, using the parameter values N0
2 5

102 5 s 2 2, h 5 4000 m.
The characteristic horizontal length scale of An0 (and hence z 0) is µ 2 1, and when µ 2 1 ¾

R1 we expect g . 1�3 (see the Appendix). Table 1 shows that when µ 2 1 $ 100 km . R1 .
40 km, the value of g exceeds 0.4. Following the notation adopted in the Appendix, we � nd
that

Gn(k) 5
4an

2 m 2k2

( m 2 1 k2)2
,

which has local maxima at k 5 6 µ. As µ decreases, the symmetric function Gn becomes
concentrated around the origin, and this example falls into category (ii) of Section 6.
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Figure 2. Plots of the initial (solid lines) and adjusted (broken lines) isopycnal displacement � elds at
z/h 5 2 0.25, 2 0.5 and 2 0.75, using the initial condition (6.1) with µ 5 10 2 5 m 2 1. On the
horizontal axis, one unit corresponds to 2/µ meters. z 0(0, 2 0.5 h) 5 2 0.25z *0 can be used to relate
the plot displacements to dimensional units.

Table 1. The energy conversion ratio for various values of the parameter µ when An0 5
an exp(2 µ * x * ), where the coefficients an are given in Section 6.

µ (m2 1) g

102 3 2.372 3 10 2 2

102 4 0.166
102 5 0.416
102 6 0.49
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Now consider the initial isopycnal displacement � eld (6.2). After adjustment, An is the
odd function given by

An(x) 5 an5
x

b
2

Rn

b
e 2 b/Rn sinh 1 x

Rn
2 , 0 # x # b

1 2
Rn

b
e 2 x/Rn sinh 1 b

Rn
2 , x . b.

Figure 3 shows a plot of the initial and adjusted isopycnal displacement � elds at various
depths when b 5 50 km.

Figure 3. As in Figure 2, but for the initial condition (6.2). One unit on the horizontal axis
corresponds to 2b km. To relate the plot displacement to dimensional units, note that z 0(x,
2 0.5h) 5 2 0.25z *0 for x . b.
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The energy conversion ratio is given by

g 5

o
0

`

(2n 1 1)2 6l n
2 23 1 1

1

2
e2 2l n 2

3

2
e2 l nl n

2 1 sinh l n 4
o

0

`

(2n 1 1)2 6 l n
2 2 3 2 1

1

2
e2 2l n 2

5

2
e2 l nl n

2 1 sinh l n 4
where l n 5 b/Rn. We also � nd that

Gn(k) 5
4an

2

k2
sin2 (bk).

As b ® 0, the initial isopycnal displacement � eld becomes a step distribution and g ® 1�3,
from above. Table 2 shows the values of g for various values of b. Referring to the
Appendix, we observe that when b 5 1, 10 and 100 km

G1(R1
2 1) $ max

k $ k1

G1(k)

where k1 is the smallest positive turning point, which for this example, is approximately
p /b. When b 5 100 km, R1 . k1. The � rst baroclinic mode is dominant in the adjusted � eld
and in the calculation of g .

7. Summary and discussion

The energy conversion ratio ( g ) is shown to be bounded below by 0 and above by 1�2 in
the two-dimensional linear geostrophic adjustment of an incompressible, continuously
(stably) strati� ed, inviscid, non-Boussinesq uniformly rotating � uid. By ‘‘two-dimen-
sional’’ we mean that the initial isopycnal displacement � eld is an arbitrary function of the
vertical coordinate and a single horizontal coordinate. A vertical normal mode expansion
technique is used to derive the upper bound for g .

Whether the energy conversion ratio lies within the range (0, 1�2) depends on the length
scale of the initial conditions. If this scale is long, the ratio tends to 1�2. If the length scale is
small, less can be said since any � nite length scale will still be much larger than the

Table 2. As in Table 1, except that An0 5 anF(x) where F is an odd function with F (x) 5 1, x . b and
F(x) 5 x/b, 0 # x # b.

b (km) g

1 0.337
10 0.366

100 0.468
1000 0.497
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deformation radius for an in� nite number of high-order modes (of course, such modes
would be affected more strongly by nonideal � uid effects such as diffusion and viscosity).

We also address in this paper whether there is a class of initial isopycnal displacement
pro� les for which a nonzero lower bound for g applies. To this end the initial two-
dimensional isopycnal displacement � eld z 0(x, z) is decomposed into a sum of vertical
normal modes of the form

z 0(x, z) 5 o An0(x) f n(z).

Loosely speaking, g . 1�3 when x ˆ n(k) ; F 5 dAn0/dx 6 , where F denotes the Fourier transform
operator, is concentrated around k 5 0, but the precise conditions we have obtained are as
follows:

(i) When x ˆ n(k) 5 F 5 dAn0/dx6 is a monotonicallydecreasing function for k $ 0.

(ii) When An0 is continuous and has a characteristic length scale L ¾ Rn, the Rossby
radius of deformation.

(iii) When An0 is antisymmetric, with An0 bounded as * x * ® ` , provided that either * x ˆ n * 2

satis� es condition (i) or

Gn(Rn
2 1) $ max

k $ k1 . 0
Gn(k),

where G ; * x ˆ n * 2, k1 is the smallest (positive) turning point of Gn and Rn . k1
2 1.

The utility of these precise conditions is shown in Section 6, where two particular initial
isopycnal displacement pro� les are examined. In each case, g is calculated using (4.3) and
is shown to lie in the interval (1�3, 1�2) when at least one of the three conditions above is
satis� ed.

In the case when An0 5 An0(x, y) the ensuing geostrophicadjustment is three-dimensional
and it can be shown, using the methods discussed in Section 4, that

g 5
o cn

4Ine e * = An * 2 dS

o cn
4Ine e [2 * = An * 2 1 Rn

2( = 2An )2] dS

where the domain of integration is the entire x–y plane. Once again g , 1�2, and if An is
purely large-scale, such that * = An * is small everywhere then g ® 1�2. By choosing An0 with
‘‘small horizontal scales’’ the solution for An will exhibit the same behavior and g can be
made arbitrarily close to zero.

Finally, it would be interesting to extend this investigation to the case in which localized
topography is included. Willmott and Johnson (1995), and the references therein, discuss
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how the geostrophic adjustment problem is modi� ed by the presence of an in� nitely long
step escarpment in both homogeneous and two-layer systems, and could provide a useful
starting point for the analysis.
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New Zealand Industrial and Applied Mathematics Conference which enabled him to visit RHJG
during March 1997.

APPENDIX

This Appendix discusses conditions under which g . 1�3. We recast NUM in Fourier
space by invoking Parseval’s theorem to obtain

NUM 5
1

2 p o Rn
4Ine 2 `

` (1 2 k2Rn
2)

(1 1 k2Rn
2)2 * x ˆ n(k) * 2 dk, (A1)

where

xˆ n ; F (A8n0) 5 e
2 `

`
A8n0e

2 ikx dx,

is the Fourier transform of A8n0, and it follows from (5.2) that

b ˆ n ; F ( b n) 5
Rn

2 x ˆ n

1 1 k2Rn
2

.

To determine the sign of NUM, we rewrite (A1) as

NUM 5
1

p o Rn
3In e 0

1 (1 2 k2)

(1 1 k2)23 * x ˆ n1 k

Rn
2 *

2

2 * x ˆ n 1 1

kRn
2 *

2

4 dk. (A2)

It is illuminating at this stage to consider two speci� c examples which will facilitate the
general treatment of (A2). Suppose that z 0 has a step discontinuity:

An0 5 An0
1 H(x) 1 An0

2 H( 2 x),

where An0
1 /2 are constants and H denotes the Heaviside function. Now

A8n0 5 D nd (x), D n 5 An0
1 2 An0

2 .

and x ˆ n 5 D n. In this case (A2) shows that

NUM 5 0.

and hence g 5 1�3. However, two or more step discontinuitiesin An0 will lead to x ˆ n which is
dependent upon k and g Þ 1�3.
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If A8n0 5 (2L) 2 1 exp(2 * x * /L), we � nd that x ˆ n 5 (1 1 k2L2)2 1, which is a monotonically
decreasing function for k $ 0, and (A1) becomes

NUM 5 p 2 1o Rn
4In e 0

` (1 2 k2Rn
2)

(1 1 k2Rn
2)2

dk

(1 1 k2L2)2
,

5 p 2 1o Rn
3In e 0

` 1 2 k2

(1 1 k2)2

dk

(1 1 an
2k2)2

,

(A3)

where an 5 L/Rn. To evaluate the integral in (A3) we note that for constants b and g

e
0

` x2dx

( b 1 x2)( g 1 x2)
5

p

2
( Î b 1 Î g ) 2 1, (A4a)

and

e
0

` dx

(b 1 x2)( g 1 x2)
5

p

2
( b Î g 1 g Î b ) 2 1, (A4b)

(see Gradshteyn and Ryzhik, 1980, p. 300), and by partially differentiating (A4) with
respect to the constants b and g and then setting b 5 1, we obtain

e
0

` (1 2 x2)

(1 1 x2)2(x2 1 g )2
dx 5

p

4

(1 1 3Î g )

4 g 3/2(1 1 Î g )3
.

Therefore (A3) becomes

NUM 5
1

4 o Rn
3In

an(3 1 an)

(1 1 an)3
. 0,

and hence 1�3 , g , 1�2.
More generally if xˆ n(kf /cn) is a monotonicallydecreasing function for k $ 0 then

* xˆ n1 k

Rn
2 * . * x ˆ n 1 1

kRn
2 * , 0 , k , 1,

and (A2) shows that NUM . 0, in which case 1�3 , g , 1�2. The second of the two examples
above falls into this category.

We also see from (A1) or (A2) that if An0 has a length scale L ¾ Rn, then x ˆ n will be
narrow banded (i.e., essentially of nonzero support only on ( 2 k*, k*) where k* 5 L 2 1 and
NUM . 0 (i.e., g . 1�3). The exception to this rule is when the initial isopycnal pro� le has
two or more step discontinuities in the horizontal. In this case g ® 1�3 as L ® ` , where L
now denotes the minimum distance between any pair of adjacent step discontinuities in z 0.
For example, when the initial pro� le for z 0 is of ‘‘top hat’’ type of width b, the generalized
Fourier coefficients in (3.3) will take the form

An0 5 an[H(x) 2 H(x 2 b)],
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where an and b are constants. Using (3.12) and (4.5b) it can be shown that

g 5
o cn

2In[Rn(1 2 e2 l n) 2 be 2 l n]

o cn
2In 3 72 Rn(1 2 e 2 l n) 2

1

2
Rn(1 2 e2 2l n) 2 be2 l n4

(A5)

where l n 5 b/Rn. As b ® ` (A5) shows that g ® 1�3, as expected, because the adjustment at
each end of the initial step pro� le takes place independentlyof the other end. Now suppose
that the adjustment takes place in a single mode, n 5 N say, in which case

g 5
1 2 e 2 l N 2 l Ne2 l N

7

2
(1 2 e2 l N) 2

1

2
(1 2 e 2 2 l N) 2 l Ne2 l N

. (A6)

From (A6) it is readily seen that g # 1�3 and that g ® 0 as b ® 0.
Suppose that An0 is antisymmetric with A8n0 $ 0 and An0 bounded as * x * ® ` . Then,

x ˆ n(0) . 0, xˆ 8n(0) 5 0 and x ˆ 9n(0) , 0, which implies that Gn(k) ; * x ˆ n(k) * 2 is symmetric with a
local maximum at k 5 0. Clearly the qualitative behavior of Gn falls into one of two
categories. If Gn is a monotonically decreasing function for k $ 0, then we have seen that
1�3 , g , 1�2. Otherwise, suppose that Gn has two or more turning points in k . 0, with the
� rst occurring at k 5 k1 5 L 2 1, say. Consider

Hn(k) ; Gn 1 k

Rn
2 2 Gn 1 1

kRn
2 , 0 , k , 1,

which appears in the integrand of (A2). Now it is readily shown that if Rn . L and

Gn(Rn
2 1) $ max

k $ k1

Gn(k)

then Hn(k) $ 0, and so NUM . 0 (i.e. g . 1�3).
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