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Comments on ‘‘The non-wavelike response of a
continental shelf to wind’’ by G. T. Csanady

by K. H. Brink1 and J. S. Allen2

1. Introduction

Csanady (1998) presents solutions for time-dependent wind-driven � ow in a barotropic
coastal ocean. We disagree with two of his three boundary condition options and wish to
clarify the origin of the non-wavelike aspect of the � ow.

2. Offshore boundary condition

There is nothing arbitrary about the appropriate choice of boundary condition at x 5 l
(where the topography meets the � at-bottom deep ocean). This point was dealt with clearly
by Buchwald and Adams (1968), Gill and Schumann (1974), and Allen (1976b), for
example. The cross-shelf transport and the pressure must be continuous at x 5 l. This
implies that cross-shelf velocity must be continuous if depth h and wind stress G are
continuous. Hence, from Csanady’s equation (1), both components of the pressure
gradient, z x and z y must be continuous at x 5 l. This in turn implies that pressure and its
derivative normal to the boundary, z and z x must be continuous at x 5 l. Csanady’s
condition 1 ( z de� ned as zero offshore) allows z to be continuous, but not z x. His second
(channel) condition causes pressure to be discontinuous at x 5 l, another unsatisfactory
property. His third condition is the traditional z x 5 0 at x 5 l, which allows both z and z x to
be continuous.

Csanady (1998) advocates that pressure approach zero far from shore in the ‘‘boundary
layer’’ or ‘‘long wave’’ approximation.This is equivalent to taking limits—far offshore vs.
long wave—in the wrong order, as we now demonstrate. Once the long-wave approxima-
tion is made, Csanady’s (4) reduces to

z xx 5 0 (1)

when the bottom is � at, far offshore. Requiring that z be bounded far from shore yields

z 5 z (y, t)

z x 5 0 6 for x . l. (2)
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Choosing z 5 0 for all x . l at this point makes it impossible, in general, for z x to be
continuous at x 5 l.

On the other hand, if the long-wave approximation is not made � rst, then the equivalent
of Csanady’s (4), for hx 5 0, becomes (in the absence of a wind stress curl)

z xx 1 z yy 5 0 (3)

or, for harmonic alongshore behavior with wavenumber k,

z xx 2 k2 z 5 0. (4)

In this case, the bounded solution indeed decays as x ® ` , but at a rate k 2 1. Matching to a
shelf solution allows both z and z x to be continuous. The long-wave limit (1) is equivalent
to letting k become in� nitesimally small, so the offshore decay scale for pressure becomes
in� nitely large. This, then, requires that z offshore be independent of x in the long-wave
limit, so z x is zero at x 5 l, and z is generally nonzero at this location. Thus, a careful
consideration of behavior far from shore leads to a nonzero solution offshore in the long
wave limit.

The outer shelf boundary condition for pressure can be derived quite systematically for
the wind-forced problem (by a derivation analogous to that in Allen (1976b)). Curiously,
Csanady (1998) does not present a mathematical argument for de� ning pressure to be zero
offshore. Instead, he argues on intuitivegrounds that, in a realistic ocean, coastal in� uences
should not be felt far from the shelf-slope topography. Thus, he comes to choose solutions
that do not conserve interior mass transport because of imposed discontinuities in z or z x.
Of course, in the real ocean, coastal-trappedwaves are not appreciably felt far offshore, but
the reason is that the inclusion of a realistic, continuous strati� cation leads to decay of the
dominant baroclinic component (offshore of the shelf-slope topography) on the relatively
short scale of the internal Rossby radius of deformation.

Stated succinctly,Csanady (1998) advocates the use of a non-mass-conserving boundary
condition as a means to compensate for incomplete model physics.

As Csanady (1998) states, ‘‘the best boundary condition [at x 5 l] is no boundary
condition.’’ We agree. It is straightforward to solve Csanady’s shelf wave problem
numerically, without using a conditionat x 5 l, or assuming a priori that z x 5 0 offshore. If
the long-wave approximation is not made, then the inviscid governing equation (equivalent
to Csanady’s (4)) becomes

(h z xt)x 1 h z yyt 1 fhx z y 5 0. (5)

Wave solutions are sought in the form

z 5 z (x) exp [i( v t 1 ky)] (6)

so

v (hz x)x 2 v hk2 z 1 fhx z k 5 0. (7)
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This is solved subject to

h(v z x 1 kz ) 5 0 at x 5 0, (8)

and

z x 1 * k * z 5 0 at x 5 L, (9)

where L . l. This offshore condition derives from (3), and in fact allows z ® 0 as x ® ` .
This problem (7–9) can readily be solved using resonance iteration on a � nite-difference

grid, using the code of Brink and Chapman (1987). We use the geometry:

h 5 h01 a x x # l (10a)

h 5 h0 1 a l x $ l (10b)

where h0 ½ a l since the numerical code does not allow h 5 0 anywhere. We chose h0 5
0.5 m, a l 5 4000 m, f 5 10 2 4 s 2 1, l 5 100 km and L 5 2l. We use 300 grid points.The long
wave limit corresponds to letting kl ® 0, so we solve the problem with k 5 10 2 6, 10 2 7, and
10 2 8 m 2 1. The results, respectively, for the � rst mode are c1 5 2.65, 2.72, and 2.72 m/s.
Results do not change, to this accuracy, when h0 is halved (0.25 m). Clearly, in the ‘‘long
wave’’ or ‘‘boundary layer’’ limit, kl ® 0, c1 ® 2.72 m/s or c1 5 0.272� , thus vindicating
Csanady’s third (correct) x 5 l boundary condition and invalidating the other two.

Given that there is only one correct choice of x 5 l boundary condition, Csanady’s
(1998) Eq. (6) also needs correction to

ge
0

`
h z xdx 5 e

y

`
Gdy 2 e

y

`
gh z ydy * x 5 ` (11a)

although part of his (7),

c ` 5 e
y

`
(G/f )dy (11b)

is correct.

3. Interpretation

The ‘‘non-wavelike’’ aspect of Csanady (1998) was found in the solutions obtained by
Allen (1976a) by expanding the long-wave wind-forced problem in terms of its free modes.
This is, of course, a valid procedure since Huthnance (1975) demonstrated that the
long-wave modes represent a complete set.

The governing wind-forced, undamped � rst order wave equations are

cn
2 1Fnt 2 Fny 5 bnG, (12)

where Fn( y, t) is a modal amplitude function and bn is a coupling coefficient computed
knowing across-shelf modes f n(x) and wind structure. If there is no alongshore variation in
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the wind, then

Fnt 5 cnbnG (13)

for all modes. Following Allen (1976a) or by analogy with Csanady (1998), we now
choose

G 5 G0H( 2 y)H(t). (14)

The total solution for pressure is then

p 5 G0 o
n5 0

`

bnf n(x)[H(t)H( 2 y 2 cnt)cnt 2 H( 2 y)H(y 1 cnt)y ]. (15)

At y 5 2 Y, the response for a given mode is governed by (13), a two-dimensional
non-wavelike behavior, until time t 5 cn

2 1Y, when the information that an edge to the
forcing exists reaches the site. More complicated geometries lead to the same result: that
‘‘knowledge’’ of alongshore variations reach a site after a wave propagation time. Before
that time, there is no way to tell that the system is not two dimensional. Further, in the rigid
lid limit that is relevant here, the mode equivalent to the barotropic Kelvin wave has c0 5 `
and f 0 5 constant. Thus, a spatially uniform, steady alongshore pressure gradient is set up
instantly. In both senses (short time or fast waves), the wave Eq. (12) yields solutions with
non-wavelike aspects.

This physical behavior is difficult to observe in Csanady’s (1998) unbounded wedge
problem because all coastal-trapped waves propagate with in� nite celerity in that case: the
knowledge of the edge is immediate and the adjustment is continuous.
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