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Three-dimensional stirring of thermohaline fronts

by Patrice Klein1, Anne-Marie Treguier1 and Bach Lien Hua1

ABSTRACT
This study investigates the stirring of the thermohaline anomalies in a fully turbulent quasi-

geostrophic strati� ed � ow. Temperature and salinity � elds are permanently forced at large scales and
are related to density by a linear equation of state. We show, using some inherent properties of
quasi-geostrophicturbulence, that the 3-D ageostrophiccirculation is the key dynamical characteris-
tic that governs the strength and the spatial distribution of small-scale thermohaline fronts that are
strongly density compensated. The numerical simulations well illustrate the formation by the
mesoscale eddy � eld of sharp thermohaline fronts that are mainly located in the saddle regions and
around the eddy cores and have a weak signature on the density � eld. One important aspect revealed
by the numerical results is that the thermohaline anomalies experience not only a direct horizontal
cascade but also a signi� cant vertical cascade. One consequence of this 3-D cascade is that the
ultimate mixing of the thermohaline anomalies will not be necessarily maximum at the depth where
the large-scale temperature and salinity anomalies are maximum. Some analytical arguments allow
us to identify some of the mechanisms that drive this 3-D cascade.

1. Introduction

Experimental data display abundant examples of small-scale thermohaline features, of a
few kilometers, characterized by a strong density compensation between temperature and
salinity gradients (see for example: Roden, 1977; Arhan, 1990; Yuan and Talley, 1992;
Arhan and King, 1995; Park and Gamberoni, 1997). One explanation of these observations
is that the large-scale thermohaline anomalies are broken up by the mesoscale eddies,
yielding strong small-scale thermohaline fronts on which diffusive processes are active and
efficient. A detailed understanding of the production and spatial distribution of these
thermohaline fronts is important to better assess the order of magnitude of the mixing of the
thermohaline anomalies.

Chen and Young (1995) have proposed a convincing explanation for the appearance of
compensated thermohaline fronts within the mixed layer that is based on a combination of
the horizontal mesoscale stirring processes with a nonlinear parameterization of the
diffusion coefficient. For the ocean interior where the diffusion is quite small, a heuristic
and qualitative argument, proposed by MacVean and Woods (1980) for a speci� c situation
which involves a region of normal strain rate, is often invoked to explain the larger strength
of the thermohaline fronts when compared to the density fronts. This argument, which is
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illustrated in Figure 1, states that motions within the ocean interior are almost parallel to
the isopycnals. The consequence is that they are not an effective mechanism for increasing
horizontal density gradients but are efficient enough to increase the gradients of properties
whose isopleths are inclined to the isopycnals.

The purpose of this study is to revisit the question of the formation and evolution of both
the mesoscale and small-scale thermohaline anomalies that are strongly density compen-
sated in the ocean interior. It attempts to extend and rationalize some of the concepts
developed in previous studies to the case of a time evolving, fully turbulent, 3-D eddy � eld.
Since the dynamics within the ocean interior are quasi-geostrophic, our rationalization, in
both spectral and physical spaces, is based on some inherent properties of forced
quasi-geostrophic (QG) strati� ed turbulence, and on analytical arguments from the
quasi-geostrophic equations. One novel aspect we focus on is the fully 3-D cascade of the
density-compensated thermohaline anomalies by the mesoscale eddy � eld. That is, not
only the horizontal cascade but also the vertical one is investigated. Other aspects include
the rationalization of the mesoscale thermohaline anomalies based on potential vorticity
arguments, and the location in physical space of the formation of the small-scale
density-compensated thermohaline fronts relative to the eddy � eld.

In most of this study, we consider the situation of an idealized distribution of the
large-scale forcings of the salinity and temperature � elds: the isotherms are horizontal and
the isohalines vertical. These large-scale anomalies are not unrealistic since similar
characteristics can be encountered in the Northeast Atlantic at a depth of 1000 m, where a
large-scale thermohaline front separates the Mediterranean Water from the Intermediate

Figure 1. In this area of normal strain rate (  u/  x , 0) the motions (u, w8), almost parallel to the
isolinesof the density � eld (that is a combinationof a temperature � eld and a salinity � eld), are not
an effective mechanism for increasing horizontal density gradients. However they are efficient
enough to increase the gradients of temperature and salinity whose isopleths are inclined to the
isopycnals.
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Arctic Water (Arhan and King, 1995). However, the main argument for using such
orthogonal large-scale temperature and salinity forcings is that they highlight the rôle of
the dynamical processes driving the QG turbulence in the formation of strongly density-
compensated, small-scale thermohaline fronts. Furthermore we use the approximation that
the equation of state is linear. The next section explains the appearance of density-
compensated, small-scale thermohaline fronts in a fully turbulent QG strati� ed � ow, using
the well-known properties of QG turbulence. Section 3 reports on some numerical results
on the formation and spatial distribution of the thermohaline fronts, using the QG 3-D
spectral model of Hua and Haidvogel (1986) (hereafter HH86). Sections 4 and 5 attempt to
rationalize the horizontal and vertical cascade of the thermohaline anomalies, as well as the
location of the thermohaline fronts in physical space.

2. QG stirring of temperature and salinity � elds

We consider a QG strati� ed turbulent � ow whose strati� cation is represented by the
Brunt-Väisälä pro� le,

N 2(z) ; 2
g

r o

d 7 r 8
dz

(z),

with g the acceleration of gravity, r o and 7 r 8 respectively the constant and vertically varying
part of the density � eld of the basic state. The QG turbulent � ow is forced by the baroclinic
instability of a mean vertically sheared zonal current, U(z), related to a large-scale
meridional density gradient, dr /dy (with r the meridionally varying part of the density � eld
of the basic state), through the thermal wind balance.

The density � uctuation is approximated as a linear combination of temperature (T ) and
salinity (S):

r 5 2 a T 1 b S, (1)

with a and b the constant thermal and salinity expansion coefficients, respectively. For the
sake of simplicity, and to be consistent with the density � eld of the basic state, the
large-scale forcings of the temperature and salinity � elds are chosen to be:

b S (y, z) 5 G Sy 2
r o

g
e N S

2(z) dz, (2)

2 a T (y, z) 5 G Ty 2
r o

g
e N T

2(z) dz, (3)

with:

G 5 G S 1 G T 5
d r

dy
, N 2 5 N S

2 1 NT
2 5 2

g

r o

d7 r 8
dz

, (4)
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where G S and G T are constant.

a. Thermohaline anomalies in geostrophic turbulence

The time evolution of the salinity and temperature perturbations,2 forced by the
large-scale forcings (2) and (3), and advected by the QG turbulent � ow, is given by:

d b S

dt
1 vG S 2 w8

r o

g
N S

2 5 0, (5)

d ( 2 a T )

dt
1 vG T 2 w8

r o

g
N T

2 5 0, (6)

where d/dt 5  /  t 1 (U 1 u)  /  x 1 v(  / y), with u, v respectively the zonal and
meridional components of the geostrophic velocity associated with the mesoscale eddy
� eld, and w8 the ageostrophic vertical velocity.

From (1), the linear combination b S 2 a T leads to the density equation:

d r

dt
1 v

d r

dy
1 w8

d 7 r 8
dz

5 0. (7)

However two linear combinations lead to different equations that help to understand the
production and spatial distribution of the thermohaline anomalies. If we de� ne x ˜ ;
N T

2 b S 1 N S
2a T and g ˜ ; G Tb S 1 G S a T, we obtain the following equations:

d x˜

dt
1 vD 5 0, (8)

d g˜

dt
1 w8

r o

g
D 5 0, (9)

with D ; G SN T
2 2 G TN S

2. Let us assume D Þ 0, which means that the isotherms and
isohalines of the large-scale forcings depart from the isopycnals of the basic state. In that
situation (7), (8) and (9) are the key equations to understand the production of density-
compensated thermohaline fronts in geostrophic turbulence. Indeed, (8) is the equation of a
tracer � eld which is forced by a large-scale � eld and horizontallyadvected by a geostrophic
� ow. From the properties of geostrophic turbulence (Rhines, 1983), such a forced tracer
undergoes a direct horizontal cascade leading to a statistical equilibrium that is character-
ized by a wavenumber spectrum with a spectrum slope between k2 2 and k 2 1 (with k the
horizontal wavenumber). The consequence is that the variance of the horizontal gradients
of this tracer is mostly explained by the contribution of the smallest horizontal scales; i.e.,
the small-scale horizontal gradients are very energetic. On the other hand, the density

2. The equations introduced in this section are perturbations equations. This means that diffusive processes,
omitted in the discussion for the sake of simplicity, only affect the perturbation � elds and not the forcing � elds.
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perturbation of a forced-damped QG strati� ed turbulent � ow � eld, and any forced tracer
whose governing equation is similar to (7) [e.g. with analogous large-scale forcings], is
known to be characterized by a very steep spectrum slope (between k2 5 and k2 6)
(cf HH86). Thus the density perturbation � eld is large scale and its small-scale horizontal
gradients are very weak. The dynamical processes that lead to these important and very
different properties of r and x˜ are further elaborated and discussed in the next section. Let
us consider now Eq. (9). So far we know nothing (from the geostrophic turbulence studies)
about the statistical properties of g ˜ that is a tracer forced by the vertical advection.
However, if we consider the linear relation:

r 5
G x ˜ 2 N2 g ˜

D
(10)

(with N 2, G and D constant at a given level), we can deduce the statistical properties of g ˜ :
insofar as the variance of r and ( G / D )x ˜ have the same order of magnitude, the tracer � eld
(N 2/D ) g˜ should be characterized by very energetic small-scale horizontal gradients that
strongly compensate for the energetic small-scale horizontal gradients of (G /D ) x ˜ . In other
words the spectrum of g˜ should be characterized by a slope between k2 2 and k 2 1 and its
energetic small-scale features should be strongly anticorrelated with those of x ˜ .

The consequencesof the strong difference between the properties of r and those of x˜ and
g ˜ , on the T/S anomalies and the thermohaline fronts, emerge from the two following linear
relations:

b S 5
G S x ˜ 2 N S

2 g ˜

D
, 2 a T 5

G Tx ˜ 2 N T
2 g˜

D
. (11)

Since D Þ 0, these linear relations differ from (10). Consequently there is no exact
compensation between the energetic small-scale features of x˜ and those of g ˜ for the S and
T-� elds. The consequence is that in a fully turbulent QG � ow the salinity and temperature
horizontal gradients should be energetic and, from (1), strongly density compensated.

b. Mechanisms involved in the density compensation of the thermohaline fronts

As shown above the appearance of small-scale density-compensated thermohaline
fronts in a QG strati� ed turbulent � ow can be explained using two important properties: the
characteristics of the density � eld ( r ), that is entirely large scale, and those of a tracer � eld
which is horizontally advected ( x˜ ), that is dominated by small scales. In order to better
understand the mechanisms involved in the formation of these density-compensated fronts,
we consider now an idealized large-scale thermohaline distribution which highlights the
role of the dynamical processes involved in (7) and (8): the large-scale forcings of salinity
and temperature (de� ned by (2) to (4)) are chosen such that G T 5 N S

2 5 0 and D Þ 0, i.e. the
large-scale isotherms are purely horizontal while the large-scale isohalines are purely
vertical. Then the variables x and g de� ned by x ; ( G S/D ) x ˜ and g ; (NT

2/D ) g˜ can be
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directly associated to the density contributions of the salinity and temperature perturba-
tions, respectively (i.e. x 5 b S and g 5 2 a T ). Their equations are:

d x

dt
1 v

d x

dy
5 0, (12)

d g

dt
1 w8

d g

dz
5 0, (13)

with dx /dy 5 G S and d g /dz 5 2 ( r o/g)N T
2. The properties of x , r (5 x 1 g ) and g and the

mechanisms involved in their time evolution can now be directly discussed within the
context of the dynamical processes that drive the QG turbulence.

i. Properties of the x -� eld. The equation for x , similar to (8), is that of a tracer that is
known to experience a direct horizontal cascade leading to the production of very energetic
small-scale horizontal gradients (Rhines, 1983). This production is inferred from the
equation for = x (with = the horizontal gradient operator) which reads:

d = ( x 1 x )

dt
5 2 A = (x 1 x ) (14)

where A is a matrix de� ned as:

A ;
1

2 3 s n s s 1 v
s s 2 v 2 s n

4 , (15)

v , s n and s s are respectively the vorticity and the normal and shear strain rates de� ned as:
v ;  v/ x 2  u/  y, s n ;  u/ x 2  v/  y and s s ;  v/ x 1  u/  y. Note that A is just the
transpose of A* 5 = U, the velocity gradient tensor. Its eigenvalues are 6 l 0

1/2 where:

l 0 5 1�4[ s n
2 1 s s

2 2 v 2]. (16)

The quantity l 0 has been derived by Okubo (1970) and later on by Weiss (1991), and used
to partition the � uid into regions with different dynamical properties from the point of view
of tracer gradient evolution. Indeed, using the assumption that the velocity gradients are
slowly varying along a Lagrangian trajectory, the behavior of the tracer gradient can be
said to be locally determined by the nature of the eigenvalues of A. It follows that the
horizontal x -gradients cannot grow in vortex cores where l 0 , 0 since the eigenvaluesof A
are purely imaginary. On the other hand, in strain-dominated areas where l 0 . 0, the
eigenvalues of A are real and the horizontal x -gradients can exponentially grow. This
growth can be very rapid since the time scale involved in the eigenvalues of A is
statistically linked to that of the enstrophy (Hua, 1994), i.e. a very short time scale
compared to the advective time scale. Thus the x -fronts should grow very rapidly in
strain-dominated areas.
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ii. Properties of the r -� eld. In strati� ed QG turbulence, the density � eld is known to be
characterized by quite weak small-scale horizontal gradients (cf HH86). The key to
physically understand this very important property, and in particular the mechanisms that
strongly inhibit the formation of density gradients, is to consider the role of the ageostro-
phic circulation in maintaining the thermal wind balance (Hoskins et al., 1978). Let us
brie� y comment on this point. The thermal wind balance, that results from the geostrophic
and hydrostatic equilibria of the velocity and pressure � eld at zeroth order (in Rossby
number), reads:

= (r 1 r ) 5 k 3
f0 r 0

g

 u

 z
(17)

with k the vertical unit vector, u 5 (u 1 U, v) and fo the Coriolis parameter (using the
f-plane approximation for the sake of simplicity).

From the momentum and density equations for a QG � ow, the equations for the two
parts of the thermal wind balance read:

d = ( r 1 r )

dt
5 2 A = (r 1 r ) 1

N 2r o

g
= w8 (18)

d

dt 3 k 3
for o

g

 u

 z 4 5 A 3 k 3
fo r o

g

 u

 z 4 1
r o

g



 z
[u8 2 k 3 fo = p8] (19)

with u8 5 (u8, v8) the ageostrophic horizontal velocity component and p8 the ageostrophic
velocity.The matrix A (de� ned by (15)) appears in (18) and with the opposite sign in (19).
Consequently, in areas where the eigenvalues of A are real ( l 0 . 0) like in strain
dominated areas, the nonlinear geostrophic term involving A will induce an exponential
growth of horizontal density gradients and an exponential decay of the corresponding
vertical gradients of the horizontal velocity, leading to a rapid destruction of the thermal
wind balance. This thermal wind imbalance created by the nonlinear geostrophic terms
causes motions to depart from geostrophy and thus induces an ageostrophic circulation. In
the QG approximation the role of this ageostrophic circulation (through the second terms
on the right-hand sides of (18) and (19)) is to instantaneously reestablish geostrophy. In
other words the thermal wind balance is destroyed by the nonlinear geostrophic dynamics
but is instantaneously restored by the ageostrophic circulation. This is how the ageostro-
phic circulation prevents the formation of strong horizontal density gradients and vertical
gradients of the horizontal velocity: this leads to a steep spectrum slope (between k2 5 and
k 2 6) of the density � eld, and therefore of the x 1 g -� eld.

iii. Properties of the g -� eld. From the arguments developed in Section 2a, these quite
different statistical properties of the x 1 g and x -� elds lead us to deduce (insofar as the
variance of x 1 g and x have the same order of magnitude) that the g -� eld, which is forced
only by the vertical advection, should be characterized by energetic small-scale horizontal
gradients that are strongly anticorrelated with the energetic small-scale horizontal gradi-
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ents of x . It follows, from the preceding discussion on the mechanisms that drive the
evolution of the perturbated density � eld and its characteristics, that this strong anticorrela-
tion between the small-scale horizontal gradients of x and g can be explained by the
existence of a relationship that involves the ageostrophic vertical velocity, the Okubo-
Weiss quantity l 0 and the horizontal and vertical forcings of the density � eld. Since l 0 is
directly related to the Laplacian of the ageostrophicpressure (see Hua et al., 1998), one can
say that the ageostrophic circulation is the key dynamical characteristics that governs the
strength and the spatial distribution of these thermohaline fronts.

3. Numerical simulations

The formation and spatial distribution of the thermohaline fronts have been assessed
through direct numerical simulations of the advection of the salinity and temperature
density contributions by a forced-damped QG strati� ed turbulent � ow on the b -plane. The
forcing mechanism is provided by the baroclinic instability of a vertically sheared � ow
U(z). Damping is produced by a bottom Ekman layer (at z 5 2 H ) and parameterized with
a friction coefficient k . The simulations make use of the 3-D spectral model described in
HH86 to integrate the following equation for the perturbated potential vorticity (q):

dq

dt
1 v

 q

 y
5 2 k D w * z 5 2 H, (20)

with w the streamfunction and where

q 5 D w 1  /  z( fo
2N 2 2  w /  z)

and

 q/  y 5 b 2  / z( fo
2N 2 2  U/ z)

In addition, f 5 fo 1 b y is the Coriolis parameter and N 2(z) an exponential Brunt-Väisälä
pro� le. Physical parameters are the same as those used in the pivot simulation of HH86
except for the friction coefficient that is three times smaller (see Table 1 in HH86).
Hyperviscosity is used to remove enstrophy at the smallest scales. Nondimensionalization,
using an appropriate velocity scale and a length scale that is the domain size, is such that
the nondimensional time unit corresponds to an advective time scale of 34 days. The � rst
Rossby radius of deformation (whose dimensional value is 50 km) corresponds to the
nondimensional wavenumber kR 5 7. Thus the corresponding dimensional length of the
domain size is L < 2000 km. The numerical resolution involves 256 3 256 Fourier modes
on the horizontal. A normal mode expansion has been used on the vertical that leads to
approximate the streamfunction, w , by the following truncated series:

w (x, y, z, t ) 5 o
m 5 0

M

w m(x, y, t )Fm(z), (21)
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where Fm are the eigenmodes of the Sturm-Liouville problem involving N 2(z). The
numerical resolution involves eight vertical normal modes (M 5 8).

The large-scale thermohaline forcings used in the numerical simulations are those
involved in the idealized large-scale thermohaline situation of Section 2b: the salinity
density contribution ( x ) is forced by  r /  y ( 5  U/ z) and the temperature density
contribution ( g ) is forced by d7 r 8 /dz ( 5 2 ( f o

2/g)N 2(z)). As in HH86, d 7 r 8 /dz(z) has an
exponential vertical pro� le with a maximum near the surface and the vertical pro� le of
 r / y(z) is that of the � rst baroclinic mode with a maximum near 500 m. Within the
quasi-geostrophic approximation, the z-dependence of  r / y has no impact on the equation
for x . Thus the large-scale isohalines are almost vertical and the large-scale isotherms are
purely horizontal. The integration of Eqs. (12) and (13) for x and g is similar to that of the
potential vorticity equation but using an appropriate vertical modes representation. Their
integration makes use of the horizontal geostrophic velocity components deduced from the
streamfunction � eld and of the ageostrophic vertical velocity obtained from the equation
for the density ( r 5 2  w /  z). Note that r , x and g are nondimensional variables with the
characteristics density scale being r o e F (with e the Rossby number and F ; fo

2L2/gH).
Initial conditions for x 1 g and r are identical and the numerical simulations performed
have clearly con� rmed that both � elds remain identical at any depth. The next two
subsections examine the characteristics of x and g (the salinity and temperature density
contributions, respectively) and their differences with the density � eld.

a. Fields of T/S anomalies and of density

A statistical analysis performed at different times reveals that the variances of r , x and g ,
at any depth between 100 m and 1200 m, have the same order of magnitude and their
spectra (not shown) exhibit a peak near the wavenumber k 5 4. However their spectrum
slopes strongly differ: the ones of x and g are close to k 2 2 whereas the one of r is close to
k 2 6.

Figures 2a, b and c show the � elds of r , x and g at a depth of 800 m after an integration
time of 30 time units. Note that positive values of x and g refer respectively to salty and
cold water and negative values to fresh and warm water because of the particular
large-scale thermohaline forcings that have been chosen. The contour intervals on these
� gures are identical in order to better reveal the differences in terms of horizontal gradients.
Since density is mainly captured by the � rst baroclinic mode, its isolines are close to the
streamlines (with the opposite sign) and as such, identify well the location of the mesoscale
eddy cores which roughly correspond to the extrema of r . The r -� eld (Fig. 2a) is mostly
dominated by mesoscale structures and displays rather weak horizontal gradients.Analysis
of Figures 2a, b and c reveals that, within the eddies core, the positive contribution to r
mainly comes from x whereas g has mostly a negative impact. Thus in terms of
thermohaline anomalies the cores of the cyclonic eddies, which are denser, are salty and
warm whereas the cores of the anticyclonic eddies, which are lighter, are fresh and cold.
The x and g -� elds (Figs. 2b and 2c) are characterized by the presence of energetic
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small-scale structures that have the form of elongated tongues and � laments of either warm
and salty or cold and fresh water. These small-scale structures of the x and g -� elds are
strongly anticorrelated since they are absent in the r -� eld (Fig. 2a) that is identical to x 1
g -� eld.

Figure 3 shows the spatial distribution of the x -horizontal gradients whose values are
larger than the nondimensionalvalue of 100. These gradients have locally a value ten times
larger than that of the correspondingdensity gradients. Thus they are strongly compensated
by the energetic horizontal gradients of g and consequently are strongly anticorrelated with

Figure 2. Isocontours of the horizontal � elds of r (a), x (b) and g (c) at a depth of 800 m. The
dimensional length of the domain is L 5 2000 km. The contour interval in nondimensionalunits is
1 for the three � elds. The isocontours range from 2 14 to 14 for x , from 2 11 to 13 for g and from
2 8 to 6 for r . Solid and dashed lines respectively refer to positive and negative values.
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those gradients.These strongly anticorrelated x and g -horizontal gradients are what we call
the thermohaline fronts. They involve thin � laments and are characterized by small
horizontal scales. Most of the x -fronts are almost aligned with the density isocontours. But
some of them cross the density isocontours (Fig. 3). The latter thus have no signature on the
density � eld.

The examination of the vertical spatial distribution of x or g relative to the density � eld
reveals some interesting features related to the T/S anomalies. Figures 4a and 4b show
vertical sections of the r and x -� eld. The vertical section of the r -� eld displays mesoscale
features with a maximum near 500 m. These features have a low vertical mode structure
close to the � rst baroclinic mode. On the other hand, the vertical section of the x -� eld
displays quite small horizontal, as well as, small vertical energetic structures that are absent

Figure 2. (Continued)
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in the r -� eld. These small-scale vertical features that are distributed over a depth up to
1500 m (Fig. 4b) clearly reveal that the small-scale horizontal thermohaline anomalies and
the associated energetic thermohaline fronts are characterized by small vertical scales.

Thus the numerical results clearly illustrate that the thermohaline anomalies are strongly
anticorrelated, strongly density compensated and are characterized by small horizontal and
vertical scales.

b. Relation between the thermohaline anomalies and the potential vorticity

Equation for x (12) differs from the one for the potential vorticity q (20) only through the
forcing term and the bottom friction term. So the only difference between x and q in the

Figure 2. (Continued)
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upper layers is the forcing term. This means that, insofar as the initial conditions are quite
close, we should expect in these layers the x -� eld to resemble the potential vorticity � eld at
any depth through the relation:

x < q

 r

 y
(z)

 q

 y
(z)

. (22)

Figure 3. Horizontal x -gradients at the same level and time as Figure 2. Dark areas correspondto the
highest values of * = x * (from 100 up to 500 in nondimensional units). Isocontours of the
perturbated density are shown.
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Figure 5 shows the correlation between the x and q-horizontal � elds at different depths.
Although the initial conditions used for x and q in the simulations performed are not quite
similar, the numerical results display a correlation larger than 0.9 between 100 m and
1000 m. This correlation changes its sign at 2000 m and attains 2 0.8 at 2500 m. At depth
larger than 3500 m the correlation becomes weak ( < 2 0.2). The sign change at 2000 m is
due to  q/ y that is positive above 2000 m and negative below while  r /  y is positive
throughout the water column. The weak correlation below 3500 m is due to the in� uence of
the bottom Ekman friction that affects q and not x . The strong similarity between the x and
q-horizontal � elds in the upper layers is illustrated by the comparison between Figure 2b
and Figure 6 that reveals the almost perfect overlap in physical space of the mesoscale as

Figure 4. Vertical sections of r (a) and x (b) at the same time as Figure 2. The contour interval in
nondimensionalunits is 1 for both � elds. The isocontours range from 2 8 to 6 for r and from 2 14
to 14 for x . Solid and dashed lines respectively refer to positive and negative values.
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well as the small-scale features of both � elds. One important consequence is that most of
the thermohaline fronts are potential vorticity fronts.

The strong correlation between the x and q-horizontal � elds in the upper layers allows us
to understand the order of magnitude of the mesoscale anomalies of salinity and tempera-
ture (in terms of x and g contributions) relatively to the density itself. Let us consider an
eddy core characterized by a horizontal wavenumber K such that:

b /U , 2K 2 , kR
2. (23)

This relation is reasonable in the upper layers for a forced quasi-geostrophic strati� ed
turbulent � ow since the most energetic length scales (K 2 1, with K 5 4 in our simulations)
are usually larger than the � rst Rossby radius of deformation (kR

2 1) and smaller than the
Rhines scale (HH86). Furthermore let us assume that the eddy core is mainly captured by

Figure 4. (Continued)
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the � rst two vertical modes (the barotropic and the � rst baroclinic ones) whose order of
magnitude are found to be almost equal in the upper layers. Then, from (22) and using
 q/  y 5 [ b 1 kR

2 U] and the expressions for q and r in terms of the barotropic and the � rst
baroclinic modes, we get:

x <
2K 2 1 kR

2

b

U
1 kR

2

r (24)

g <

b

U
2 2K 2

b

U
1 kR

2

r . (25)

These relations reveal that within the eddies that verify (23), x and r have the same sign
while g and r have different signs. Furthermore they show that the orders of magnitude of
the three quantities x , g and r are similar, which rationalizes the numerical results of the
preceding section.At last, since x is related to the salinity and g to the temperature because
of the chosen large-scale thermohaline forcings, this explains why the cyclonic eddies that

Figure 5. Vertical pro� le of the correlation between x and q. The thick line represents the values
averaged over a period of a year while the thin lines represent the extrema over this period.
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are denser are salty and warm, whereas the anticycloniceddies that are lighter are fresh and
cold.

c. Evidence of a three-dimensional cascade of the thermohaline fronts

To measure quantitatively the difference between the thermohaline fronts and the
density fronts we have calculated at different depths * = x * and * = r * where:

* = X * 5
1

A e e A [ = *X = X]1/2 dxdy (26)

Figure 6. Potential vorticity � eld at the same level and time as Figure 2. The contour interval in
nondimensional units is 10 and the isocontours range from 2 80 to 90. Solid and dashed lines
respectively refer to positive and negative values.

1998] 605Klein et al.: Stirring of thermohaline fronts



with A the horizontal domain and X either x or r . Again = designates the horizontal
gradient operator and p the transpose. These quantities have been calculated at different
times over a period of a year ( < 10 time units).

The corresponding vertical pro� les (Fig. 7) � rst reveal that the time dispersion of * = r *
and * = x * is less than 20% of the mean value at any depth.Values of * = x * in the � rst 1200 m
are much larger than the maximum values of * = r * : their ratio is 4.5 at 500 m (where * = r * is
maximum) and increases up to 8 at 1200 m (where * = x * attains one of its largest values).
Since the horizontal spectrum of x has a k 2 2 slope in the � rst 1200 m, the large values of
* = x * at these depths are mostly explained by the contribution of the smallest horizontal
scales. In other words the large values of * = x * are mainly explained by the most intense
x -fronts as the ones shown in Figure 3. On the other hand the small horizontal scales of r
very weakly contribute to * = r * because of the steep ( < k 2 6) spectrum slope of the density.
This quantitative analysis con� rms that the thermohaline anomalies experience a signi� -
cant 2-D horizontal cascade whereas the density does not, which leads to intense
thermohaline gradients strongly density compensated.

The last comment concerns the vertical distribution of these horizontal gradients. * = r * is
maximum at 500 m and then exponentiallydecays with increasing depths.A rationalization
of this result comes from an analysis, in terms of baroclinic mode contribution, that has
revealed that * = r * is mostly captured (as that of r ) by the � rst baroclinic mode which

Figure 7. Vertical pro� les of * = r * and * = x * in nondimensional units. The thick lines represent the
values averaged over a period of a year while the thin lines represent the extrema over this period.
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exhibits only one maximum at 500 m. On the other hand the * = x * -pro� le displays a more
complex vertical structure: Figure 7 reveals in the � rst 1200 m several well-de� ned
maxima with a vertical spacing between 200 m and 400 m. Furthermore the largest
maxima are located at deeper levels than the * = r * maximum. The analysis in terms of
vertical modes content reveals that the complex vertical structure of * = x * is due to modes
two to four. Since the forcing of x (  r / y(z)) has a vertical structure that involves only the
mode one, this implies that this tracer, besides the horizontal cascade, experiences as well a
signi� cant vertical cascade. Furthermore, since the density does not experience such a 3-D
cascade and since r 5 x 1 g , it can be stated that both the x and g -� elds undergo a
signi� cant 3-D cascade. One consequence of this 3-D cascade of the thermohaline
anomalies is that the ultimate mixing will not be necessarily maximum where the
large-scale T/S forcings are maximum.

4. Topology of the 3-D cascade

A � rst insight into the rationalization of the strong horizontal and vertical cascades
revealed in the preceding sections can be gained from the examination of the � rst order
equation for the time evolution of the tracer gradients.

The results of Section 2b can be used to understand the 2-D horizontal cascade of the
thermohaline anomalies and in particular the formation of strong horizontal gradients at a
given depth. Indeed the examination of the � rst order equation (14) and the assumption of
slowly varying velocity gradients along a Lagrangian trajectory led us to use the
Okubo-Weiss quantity, l 0, as a criterion to discriminate the regions of physical space where
the horizontal cascade is strongly active (involving the largest positive l 0-values) from
those where the horizontal cascade is inhibited (involving the largest negative l 0-values).
Thus the spatial distribution of l 0 should allow to identify the location of the thermohaline
fronts relatively to the eddy � eld and to quantify their growth. Figure 8a shows the regions
with large positive l 0-values. These regions are mainly located in saddle areas and between
co-rotating eddies, thus explaining the presence of thermohaline fronts in those regions of
the � ow (see Fig. 3).

The mechanisms that govern the vertical cascade and therefore the production of small
vertical scales can be identi� ed using an approach similar to the one followed by Haynes
and Anglade (1997). De� ning kh 5 ( x 1 x ) 2 1= ( x 1 x ) and kz 5 ( x 1 x ) 2 1  (x 1 x )/  z,
and using d( x 1 x )dt 5 0 we get:

dkh

dt
5 2 Akh, (27)

dkz

dt
5 2 Skh, (28)

1998] 607Klein et al.: Stirring of thermohaline fronts



with S 5 [  (u 1 U )/ z ,  v/  z]. These equations emphasize that the time evolution of kh

does not depend explicitly on kz whereas the kz-evolution entirely depends on kh. Thus the
vertical cascade is strongly constrained by (or ‘‘slaved’’ to) the horizontal cascade, through
the action of the vertical shear of the horizontal velocity. Further insights into the 3-D

Figure 8. Spatial distributionof l 0 (a) and l 1 (b) at the same level and time as Figures 2 and 3. Black
areas correspond to the largest values ( . 100). Isocontours of the perturbateddensity are shown.
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cascade can be obtained from the analytical expression of the aspect ratio of the
thermohaline fronts, a , de� ned by kz 5 a kh. Using (27) and (28), the equation for a is:

da

dt
5 a A 2 S. (29)

The matrix A appears in (27) and (29) but with the opposite sign. This means that, in the
direction where the horizontal gradients grow, the aspect ratio a should tend to a steady
solution. The exact form of the steady solution for a is (using A2 5 l 0 I with I the identity
matrix):

a 5
SA

l 0
5 3 2 Q2

l 0
,
Q1

l 0
4 (30)

where Q1 and Q2 are directly related to the components of the Q-vector of Hoskins et al.
(1978). The Q-vector is simply de� ned as being the nonlinear geostrophic terms that
appear in the right-hand side of (18) and its divergence is equal to the 3-D normalized
Laplacian of the ageostrophic vertical velocity (see Hoskins et al., 1978). Two comments
arise from (30). First, since the Q-vector and l 0 are directly related to the ageostrophic
circulation, it emphasizes the important rôle of the ageostrophic circulation in the 3-D
cascade of the thermohaline fronts. Second, from the thermal wind relations, the density
horizontal gradients are directly involved in the componentsQ1 and Q2. This means that the
vertical wavenumber kz can become large only in regions where both l 0 and the density
gradients are large. We have found that in those regions the ratio * a * is usually of order one
(in nondimensionalunits). Thus in the black regions of Figure 8a, the results reveal that * a *
ranges from 1.5 to 4.

5. A more accurate criterion for horizontal stirring properties

The preceding analytical arguments clearly show that the vertical cascade is strongly
constrained by the horizontal one, which emphasizes the importance of the mechanisms
that drive the formation of the horizontal gradients. As stated before, the use of l 0 as a
criterion to partition the horizontal physical space into regions of different dynamical
properties is based on the assumption of a slowly varying velocity � eld. However the
validity of this assumption has been questioned recently by Basdevant and Philipovitch
(1994) and Hua and Klein (1998). To illustrate this point, let us consider the second order
equation for the time evolution of the horizontal tracer gradient. From (14) we get:

d 2 = ( x 1 x )

dt 2
5 3 A 2 2

dA

dt 4 = ( x 1 x ) (31)

where A2 5 l 0I. If the assumption of a slowly varying velocity � eld along a Lagrangian
trajectory is valid, dA/dt should be negligible compared to A2 and the eigenvalues of A2 2
dA/dt should be just close to l 0. However Basdevant and Philipovitch (1994) and Hua and
Klein (1998) have found that the eigenvalues of dA/dt (denoted as 6 l 1) can in some
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regions be quite large when compared to l 0, implying that the preceding assumption is not
veri� ed everywhere. In this context a new criterion for both particle dispersion and tracer
gradient evolution, based on the acceleration gradient tensor, has been recently derived
(Hua and Klein, 1998). The latter comes from considering the eigenvalues of the second
order problem ( l 6 5 l 0 6 l 1), and as such differs markedly from the Okubo-Weiss
criterion. The distribution of l 1 is shown on Figure 8b. We have found that the positive
values of l 1 and l 0 are close in many regions such as saddle areas and between corotating
eddies. However in other regions, in particular at the periphery of the eddies, l 1 and l 0

differ signi� cantly: the ratio l 1 / l 0 attains 2 to 3, thereby invalidating the assumption of
slowly varying velocity � eld in those speci� c regions. The comparison of Figures 3 and 8b
reveals that the majority of the thermohaline fronts are located in regions where l 1 is the
largest. This means that this criterion is more accurate in locating precisely the regions
where tracer gradients are able to grow. The rationalization for using l 1 instead of l 0 as a
criterion to identify the location of the formation of tracer gradients and to quantify their
growth is detailed in Hua and Klein (1998) and Hua et al. (1998). As stated in Hua et al.
(1998), the physical signi� cance of using l 1 , i.e. of considering the second order problem
instead of the � rst order one, can be explained as follows. Except in some sparse locations,
the matrix A is not constant along a Lagrangian trajectory. In that sense the Okubo-Weiss
criterion measures the growth associated with the instantaneous Eulerian strain rate rather
than the strain rate averaged along a trajectory. So it is correct near the stagnation points (as
in saddle areas) but it is misleading elsewhere. The second order problem, which leads us
to use l 1 , takes into account this tendency. So it is like incorporating some trajectory
averaging (over short trajectories). This explains why the use of l 1 allows us to better
identify the location of the thermohaline fronts in physical space.

6. Conclusion

We have investigated the stirring of the thermohaline anomalies in a fully turbulent time
evolving strati� ed � ow using idealized large-scale thermohaline forcings. The key assump-
tion used is the quasi-geostrophic approximation veri� es within the ocean interior. It
allows us to rationalize the time evolution and the characteristics of the thermohaline
anomalies in terms of some generic properties of forced QG turbulence, and in particular
those of the density and potential vorticity � elds which are characterized by very different
spatial scales. This leads us to identify the 3-D ageostrophic circulation as the key
dynamical process that governs both the strong density compensation of the small-scale
thermohaline fronts and their spatial distribution relative to the eddy � eld. The numerical
results illustrate the formation, by a mesoscale eddy � eld, of sharp thermohaline fronts
with almost no signature on the density � eld. These fronts are mainly located in the saddle
regions and around the eddy cores. Compared with the density fronts, their strength can be
ten times larger. One novel aspect revealed by these numerical results is the efficient
vertical cascade, strongly coupled to the horizontal one, that is experienced by the
thermohaline anomalies. Another aspect concerns the location, in physical space, of the
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formation of the small-scale density compensated thermohaline fronts relatively to the
eddy � eld.

The experimental data often reveal that salinity and temperature can have a complex
vertical distribution which is characterized by laminated structures, with a thickness of one
or two hundreds meters and a strongly intermittent or � lamentary horizontal structure (see
for example Park et al., 1997) which resemble some results of this study. So the following
question arises: can the 3-D cascade of the thermohaline anomalies induced by the
mesoscale eddy � eld be an alternating mechanism to explain the observed laminated
structures, or interleaving phenomena, instead of the double diffusion mechanism often
invoked in the litterature? Answering this question requires the systematic exploration of
the 3-D cascade of the thermohaline anomalies and more speci� cally the vertical dimen-
sion. That necessitates, in particular, the consideration of a higher vertical resolution than
the one considered in this study. We intend to explore this aspect in a future study.
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the Cray C98 of the Institut du Développement et des Ressources en Informatique Scienti� que
(Orsay, France).

REFERENCES
Arhan, M. 1990. The North Atlantic Current and Subartic Intermediate Water. J. Mar. Res., 48,

109–144.
Arhan, M. and B. King. 1995. Lateral mixing of the Mediterranean Water in the eastern North

Atlantic. J. Mar. Res., 53, 865–895.
Basdevant, C. and T. Philipovitch. 1994. On the validity of the ‘‘Weiss criterion’’ in two-dimensional

turbulence.Physica D, 73, 17–30.
Chen, L. and W. R. Young. 1995. Density compensated thermohaline gradients and diapycnal � uxes

in the mixed layer. J. Phys. Oceanogr., 25, 3064–3075.
Haynes, P. and J. Anglade. 1997. Vertical cascade in tracer � elds. J. Atmos. Sci., 54, 1121–1136.
Hoskins, B. J., I. Draghici and H. C. Davies. 1978. A new look at the v -equation. Quart. J. Roy.

Meteor. Soc., 104, 31–38.
Hua, B. L. 1994. Skewness of the generalized centrifugal force divergence for a joint normal

distributionof strain and vorticity components. Phys. Fluids, A6, 3200-3202.
Hua, B. L. and D. Haidvogel. 1986. Numerical simulations of the vertical structure of quasi-

geostrophic turbulence. J. Atmos. Sci., 43, 2923–2936.
Hua, B. L. and P. Klein. 1998.An exact criterion for the stirringproperties of nearly two-dimensional

turbulence.Physica D, 113, 98-110.
Hua, B. L., J. McWilliams and P. Klein. 1998. Lagrangian accelerationsin geostrophic turbulence. J.

Fluid Mech., (in press).
MacVean, M. K. and J. D. Woods. 1980. Redistribution of scalars during upper frontogenesis: A

numerical model. Quart. J. Roy. Meteor. Soc., 106, 293–311.
Okubo, A. 1970. Horizontal dispersion of � oatable particles in the vicinity of velocity singularities

such as convergence.Deep-Sea Res., 17, 445–454.

1998] 611Klein et al.: Stirring of thermohaline fronts



Park, Y. H. and L. Gamberoni. 1997. Cross-frontal exchange of Antarctic Intermediate Water and
Antarctic Bottom Water in the Crozet Basin. Deep-Sea Res., 44, 963–986.

Rhines, P. B. 1983. Lectures in geophysical � uid dynamics, in Lectures in Applied Mathematics, 20,
3–58.

Roden, G. I. 1977. Oceanic subarctic fronts of the central Paci� c: Structure of and response to
atmospheric forcing. J. Phys. Oceanogr., 7, 761–778.

Weiss, J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D,
48, 273–294; [see also Weiss, J. 1981. Report LJI-TN-81-121, La Jolla Inst., San Diego, CA].

Yuan, X. and L. D. Talley. 1992. Shallow salinity minimum in the North Paci� c. J. Phys. Oceanogr.,
22, 1302–1316.

Received 24 June 1997; revised 17 February1998.

612 Journal of Marine Research [56, 3


