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The salt � nger amplitude in unbounded T-S gradient layers

by Melvin E. Stern1 and Timour Radko1

ABSTRACT
Finite amplitude numerical calculations are made for a completely unbounded salt � nger domain

whose overall vertical ‘‘property’’ gradients (Tz and Sz ) are uniform and remain unaltered in time. For
diffusivity ratio t 5 k S /k T 5 O(1), Prandtl number n /k T ¾ 1, and density ratio R 5 Tz /Sz . 1 this
regime corresponds to a ‘‘double gradient’’ sugar (S) 2 salt (T ) experiment. Two-dimensional
pseudo-spectralcalculationsare made in the vicinity of the minimum critical condition for salt � nger
instability,viz., small e ; (R t ) 2 1 2 1 . 0; the allowed spectrumincludes the fastest growing wave of
linear theory. When the vertical wavelength of the fundamental Fourier component is systematically
increased the solution changes from a single steady vertical mode to a multi-modal statistically
steady chaotic state. Each of the long vertical modes can be ampli� ed by the (unchanging overall)
gradient Sz, and can be stabilized by the induced vertical T, S gradients on the same scale as the
modes; nonlinear triad interactions in the T 2 S equations can also lead to amplitude equilibration
even though e , k T/ n , and the Reynolds number are extremely small. When subharmonics of the
horizonal wavelength of maximum growth are introduced into the numerical calculations the new
wave ampli� es (via Sz ) and produces a quantitative change in the time average � uxes.

Experimentally testable values of heat � ux and rms horizontal T-� uctuations are computed in the
range 2.8 . R . 1.6 for t 5 1�3. Asymptotic similarity laws e ® 0 are also presented.

1. Introduction

Previous theoretical and experimental studies related to salt � nger convection in the
ocean have mainly considered a so called ‘‘fully developed’’ state consisting of two very
deep � uid layers whose given uniform temperatures and salinities (or solute concentra-
tions) determine the equilibrium thickness of a relatively thin intervening high ‘‘gradient
region’’ containingvertically coherent � ngers. The vertical velocity and � uxes produced by
these are also determined by the ‘‘temperatures’’ and ‘‘salinities’’ of the deep layers, as well
as by the viscosity n , the thermal diffusivity k T, and the salt diffusivity k S or t 5 k S / k T.
Although such thin � nger regions are sometimes observed (Williams, 1981) in oceanic
microstructure measurements, more often (Schmitt et al., 1987) the thickness of the
associated vertical gradient region is much too large for consistency with the aforemen-
tioned ‘‘fully developed’’ laboratory regime, and therefore the � ngers in that oceanic
region could only be coherent over a small fraction of the entire gradient region. In this
paper we consider what happens when this region is vertically unbounded, with initially
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given uniform vertical solute gradients whose values determine such average quantities as
heat � ux and rms concentration � uctuations.

Such deep gradient layers have been realized in double gradient laboratory experiments
(e.g., Stern and Turner, 1969; Taylor, 1993) using two solutes (such as sugar and salt with
t 5 O(1) , 1); these ‘‘(S, T ) properties’’ are analogous to ordinary temperatures and
salinities.These properties are converted to density � uctuations using the equation of state,
and it is convenient to absorb the expansion and contraction coefficients into new (T, S )
variables, so that henceforth these (‘‘temperatures, salinities’’) correspond to density or
buoyancy � uctuations in the Boussinesq equations. Nearly uniform vertical gradients with
Tz . Sz . 0 have been produced in a deep tank by the ‘‘double bucket’’ technique, wherein
a pure T-solution (e.g., salt) in one bucket is connected by a capillary siphon to a second
bucket at the same elevation containing a pure S-solution (e.g., sugar) of lesser density.The
latter is connected by a siphon to the lower lying bottom of the experimental tank, so that
when both siphons are opened pure S-water enters the tank, and pure T-water � ows into the
S-bucket where it is completely mixed by a mechanical stirrer. This slightly diluted mixture
then enters the tank bottom underneath the slightly less dense S-water, and so on until the
tank is � lled to a known depth with pure S-water at the top, pure T-water at the bottom, and
with nearly uniform Sz, Tz gradients in-between. For suitable � lling conditions and
moderately large R 5 Tz/Sz upgoing and downgoing salt � ngers form and occupy the entire
tank. Despite the predominant vertical structure and square planform (Shirtcliffe and
Turner, 1970), wiggles and bifurcations are observed in the � ngers, as well as planform
irregularity in the horizontal.As we shall see, the explanation of these features, as well as
the prediction of average quantities, pose a potentially tractable statistical mechanical
problem, even when the � nger Reynolds number is extraordinarily small.

The asymptotic regime relevant to the foregoing experiment consists of an unbounded
� uid with

n

k T
® ` , t 5

k S

k T
5 O (1), R 2 1 5 O (1) (1a)

0 , e ;
1

t R
2 1 5 O (1) (1b)

where R 5 Tz/Sz is the density ratio of the undisturbed state. It is well known (Stern, 1975,
p. 193) that such an unbounded model has an exact nonlinear solution for all Prandtl
numbers (n / k T) in which the amplitude of a depth (z) independentnormal mode continually
increases with time, so that it never reaches a steady state. Thus there must be other effects
which intervene to produce ­ / ­ z Þ 0, and to bring about equilibrium. In the oceanic
context, Kunze (1994) suggests that ambient large-scale vertical shear can do this by
disrupting the � ngers, but in the cited laboratory experiments there is no such external
current, and various secondary instabilities (Holyer, 1984) have been proposed; these draw
their energy from the steady depth independent � eld of salt � ngers which arise from the
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primary (Sz, Tz) instability. However, the equilibrium amplitude of that � nger � eld has yet
to be fully explained, despite the insights gained by the � nite amplitude theories of Joyce
(1982) and Proctor and Holyer (1986). These authors develop a weak nonlinear theory for
� ngers with a small but � nite aspect ratio d 5 d/H, where d is the canonical � nger width
(de� ned later) and H is the � nite vertical separation of boundaries at which either � ux or
(T, S ) conditions are speci� ed. Moreover the expansion technique requires the horizontal
wavelength to be in the vicinity of the one with zero growth rate, rather than maximal. It is
then shown that the slightly amplifying mode equilibrates as the result of its alteration of
the mean (Tz, Sz) � elds, in a manner similar to that which occurs in classical Rayleigh-
Benard convection (Malkus and Veronis, 1958) between two parallel boundaries. Proctor
and Holyer (1986) also show that two dimensional ‘‘sheets’’ rather than � ngers are stable,
and thus the observed (Shirtcliffe and Turner, 1970) square planform is as yet unexplained.

Numerical calculations for the evolution of the fastest growing two dimensional mode
have been made for the case of a thin heat-salt gradient region (Shen and Veronis, 1997),
but equilibrium was not reached for this very large amplitude case. Also for the � nite
gradient layer, Özgökmen et al. (1998), achieved two dimensional equilibrium in a long
numerical calculations (using Prandtl and Lewis numbers much different from heat-salt or
salt-sugar). The unbounded gradient case model has been considered by Whit� eld et al.
(1989) for t in the range (Eq. (1)) of sugar/salt experiments, but the Prandtl number was
much smaller; the numerically computed statistically steady state [their Fig. 6] consisted of
round blobs of salinity (and streamfunction) rather than the vertically elongated � nger
structure observed in all cited laboratory experiments.

We propose to obtain a better understanding of the amplitude and structure of salt � ngers
by focusing on a simpler parametric regime (Eq. (1)), but one which is still realizable. The
statistically steady state arising from a disturbance spectrum which includes the fastest
growing horizontal wavelength will � rst be computed for an unbounded sugar/salt gradient
when e in Eq. (1) is small but � nite, or when R is slightly less than the minimum critical
value for stability of the undisturbed vertical gradients.

Before turning to the relevant two-dimensional numerical calculations (Section 3a) we
note (Section 2) that in the marginally stable limit, as e ® 0, the maximum (linear) growth
rate shifts to slightly longer ( e 2 1/4d ) horizontal wavelengths, and all relatively long vertical
wavelengths have virtually the same linear growth rate. A rescaling (Section 2b) of the
nonlinear high Prandtl number equations then leads to a further simpli� ed asymptotic
( e ® 0) set of equations for the three dimensional temperature � eld (Eqs. 17–18b). These
asymptotic equations will be useful in interpreting the main results of this paper, provided
by the � nite e numerical solutions; but for practical computational reasons it is difficult to
make the latter for too small values of e ; furthermore, our ultimate interest is in the larger e

achieved in previous laboratory experiments.
It is also of interest to compare some of the numerical results of Section 3a with an

approximate analytic theory; this is similar to that of Joyce (1982), except that our
calculation is based on a single mode truncation for the fastest growing wave when e ® 0.

1998] 159Stern & Radko: Salt � ngers in an unbound � uid



The result [Appendix] is in acceptable agreement with the (exact) numerics only when the
fundamental Fourier wavelength 2 p /µ in the vertical direction is a small multiple of the
� nger width. When µ is decreased many long vertical wavelengths amplify (for reasons
previously mentioned), and the numerically computed steady state amplitude becomes
much larger than the single mode approximation,even though e ½ 1. With further decrease
of µ the solutions of the equations of motion become very irregular in time, and thus the
single mode truncation, or indeed any ‘‘weakly’’ nonlinear theory, is qualitativelyunable to
describe long salt � ngers even when the Reynolds number is extraordinarily small. The
long time integrations (Section 3b) of the high Prandtl number equations for e 5 0.0714, t
5 1�3 and various µ ½ 1, enable us to estimate the time average heat � ux and rms
temperature � uctuation. Section 4 reveals that these chaotic two dimensional solutions
undergo substantial quantitative change when subject to small amplitude disturbances with
horizontal wavelengths longer than the one of maximum growth. These are also ampli� ed
(by Sz, Tz ) because of their long vertical wavelength, and they are therefore not Holyer
(1984) or ‘‘collective’’ instabilities. In Section 5 the calculations are extended to larger e ,
and the corresponding heat � ux is presented. The reader who is less interested in the
mathematical details may skip from Eq. (4b) to (10a), and also skip Section 2b.

Although the oceanic values of t 5 102 2, n /k T 5 7 are signi� cantly different from the
sugar-salt values, the laboratory experiments for the latter case have proven extremely
suggestive of some ocean observations.We particularly refer to those experiments (Turner,
1978) involving large-scale lateral intrusions, and accompanied by salt � ngers in regions
of enhanced vertical gradients. Qualitatively similar intrusions seem to occur in an
important phase of the large-scale mixing process, wherein shear straining of T 2 S
variations on isopycnal surfaces produce the enhanced vertical gradients on which
signi� cant � nger and convective microstructure can occur. Such effects are strongly
implicated in Meddies (Ruddick, 1992), and in the ice covered Arctic where warm salty
Atlantic water intrudes (Carmack et al., 1995).

2. Asymptotic formulations

a. Large Prandtl number

The Boussinesq equations of motion will be nondimensionalizedusing the conventional
� nger width d 5 ( k Tn /gTz )1/4 as the length scale; Tzd is the scale for both the total
‘‘temperature’’ deviation (T 8(x, y, z, t ) 1 u (z, t )) and the total ‘‘salinity’’ deviation
(S 8 1 s (z, t )) from their respective undisturbed values (T, S ); k T/d is the velocity scale;
d 2/ k T is the time scale, and n k T/d 2 is the pressure scale. When Eq. (1) applies the nonlinear
inertial terms (O( k T/ n ) ½ 1) are negligible and the nondimensional Boussinesq equations
reduce to

0 5 2 = p 1 = 2V 1 (T 8 2 S 8 )K, (2a)

= · V 5 0, (2b)
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d

dt
[T 8 (x, y, z, t) 1 u (z, t )] 1 w 5 = 2 (T 8 1 u ), (3a)

t 2 1
d

dt
[S 8 (x, y, z, t) 1 s (z, t )] 1 t 2 1R 2 1w 5 = 2(S 8 1 s ) (3b)

where (w, u, v) are the (z, x, y) components of V, and K is the vertical unit vector. In these
equations the undisturbed temperature gradient is unity, and the undisturbed salinity
gradient is R 2 1 , 1. The dimensional convective heat � ux equals k TTz times the
nondimensional value, and the dimensional rms T 8 equals (Tzd ) times the nondimensional
value obtained from (2a)–(3b).

Let us look for solutions which are spatially periodic in (x, y, z) domains extending to
in� nity. If ( ) denotes a horizontal average and 7 8 a vertical average then

T 8 5 0 5 S 8 5 w, 0 5 7 u 8 5 7 s 8 ,

the horizontal averages of (3a,b) give the ‘‘mean � eld’’ equations

­ u

­ t
1

­

­ z
wT8 5

­ 2u

­ z 2
, (4a)

t 2 1 1
­ s

­ t
1

­

­ z
wS 8 2 5

­ 2 s

­ z 2
. (4b)

When the latter are subtracted from (3a,b) the results are

DT 8 1 w 5 2 w
­ u

­ z
2 1 = · (VT 8 ) 2

­

­ z
wT8 2 , (5a)

D t S8 1 R 2 1t 2 1w 5 2 t 2 1w
­ s

­ z
2 t 2 11 = · (VS 8 ) 2

­

­ z
wS 8 2 , (5b)

where

D ;
­

­ t
2 = 2, (6a)

D t 5
1

t

­

­ t
2 = 2, (6b)

and we shall also use

= 2
2 5 = 2 2

­ 2

­ z 2 ;
­ 2

­ x 2
1

­ 2

­ y 2
. (6c)
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By eliminating the horizontal pressure gradients from (2a) we obtain the vorticity equation
(useful in the three dimensional problem):

­ u/ ­ y 2 ­ v/ ­ x 5 0. (7a)

Eqs. (2a,b) also give

= 4w 5 = 2
2(S 8 2 T 8 ), (7b)

and when

r 8 5 S8 2 T 8 (7c)

is eliminated using (5a) and (5b) the result may be expressed as

L 1
­

­ t
,

­

­ x
,

­

­ y
,

­

­ z 2 w 5 N 1 Q (8)

where the linear operator in this equation is

L 1
­

­ t
,

­

­ x
,

­

­ y
,

­

­ z 2 ; D t D = 4 2 3 (R 2 1 t 2 1 2 1)= 2 1 t 2 1 (1 2 R 2 1 )
­

­ t 4 = 2
2. (9a)

There are two different nonlinear terms in Eq. (8), one of which, due to the mean � eld ( u , s )
modi� cation, is

Q 5 2 t 2 1D = 2
2 1 w

­ s

­ z 2 1 D t = 2
21 w

­ u

­ z 2 .

Since the last term in (5a) and (5b) is independent of (x, y), the value of the other nonlinear
term is

N 5 2 t 2 1D = 2
2 = · (VS 8 ) 1 D t = 2

2 = · VT 8. (9b)

The well-known solution of the linear problem L(w) 5 0 for w, T 8, S 8 gives the
eigenfunctions as the product of e l mt with

(wm, Tm, Sm ) ~ sin kx cos l y cos mz, (10a)

and thus the eigenvalue equation L(w) 5 0 for the growth rate l m is

( l m 1 k0
2 1 m 2 )[ l m 1 t (k0

2 1 m 2 )](k0
2 1 m 2 )2 1 l mk 0

2 (1 2 R 2 1) 2 k0
2 (k0

2 1 m 2) t e 5 0.

The e ® 0 limit for l m ® 0 is

l m 5
e t k0

2 (k0
2 1 m 2 ) 2 t (k0

2 1 m 2 )4

(k0
2 1 m 2 )3 (1 1 t ) 1 k 0

2 (1 2 R 2 1)
1 . . . ,
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and with the wavenumber rescaling given by

(k, l, m) ; e 1/4 (k̂, l̂, m̂), (10b)

k0
2 ; k 2 1 l 2, k̂ 0

2 ; k̂ 2 1 l̂ 2 (10c)

the leading term in the e -expansion is

l m 5 t e 3/2 (k̂0
2 1 m̂ 2 )

[k̂ 0
2 2 (k̂ 0

2 1 m̂ 2 )3]

(1 2 t )k̂ 0
2

1 . . . , (11)

where the rescaled wavenumbers are O(1). In this e ® 0 limit R 2 1 t 2 1 < 1, and the limit of
the Tm, Sm eigenfunctions (10a), obtained from the linearization of (5), (6), reduce to

Tm 5 Sm 5 2
wm

k0
2 1 m 2

5 2
wm

(k̂ 0
2 1 m̂ 2 ) e 1/2

. (12)

For ‘‘thin’’ � ngers with � nite m 2/k0
2 ½ 1, the maximum of (11) and the correspondingwave

number are

max l m 5 Î 4

27

t

1 2 t
e 3/2, k̂ 0

2 5
1

Î 3
. (13)

Note that wave number 2k̂0 is damped, but k̂0/2 is not if m̂ is small. It should be emphasized
that if t , 1 5 O(1) is � xed as e ® 0 then R 5 [ t (1 1 e )] 2 1 must be increased accordingly.

When e ® 0 the � nite amplitude of the disturbance should also vanish, and the solution
of a steady truncated version of these equations (Appendix) will be compared with the
numerical solutions of the exact two dimensional equations in Section 3a. But the steady
solutions will be found to be highly unstable, and our focus will be on the multi-modal
time-dependent solutions.

b. The nonlinear e ® 0 equations

Before turning to these calculations it is instructive to consider the e ® 0 limit to the
high Prandtl number equations.When Eq. (5a) is subtracted from (5b), and (7c) is used we
obtain a ‘‘density equation’’

2 = 2r 8 1
­

­ t 1
S 8

t
2 T 8 2 1 e w 5 2 w1 t 2 1

­ s

­ z
2

­ u

­ z 2 1 G, (14a)

G ; 2 t 2 11 = · S 8V 2
­

­ z
S 8w 2 1 = · T 8V 2

­

­ z
T 8w, (14b)
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in which the crucial term e w is reduced by a factor e relative to its value (w) in (5a). When
e ® 0 the � rst two terms in Eq. (12) suggest that r 8 5 S 8 2 T 8 ½ 0 (S 8), and Eq. (13)
suggests that ­ /­ t , e 3/2. Accordingly, all variables in (14a) are now transformed using e 2 3/2

as the time scale, x , e 2 1/4 as the horizontal scale (from 10b), but a much larger z-scale for
the � nite amplitude � ngers is anticipated. Since the nonlinear mean � eld terms in Eq. (14a)
are expected (for stabilization) to be of the same order as e w we have ­ u / ­ z , e , ­ s /­ z,
and from the diffusive advective heat balance (4a) wT8 , ­ u /­ z , e is obtained.The linear
terms in Eq. (5a) give w , = 2T 8 , ­ 2T 8/­ x2 , e 1/2T 8, and combining the foregoing results
yields w2e 2 1/2 , e , w , e 3/4, and e 1/4 , T 8 , S 8. A � nal assertion is that the nonlinear G
term is of the same order as all the other terms in (14a), e.g., ­ T 8/­ t; this is equivalent to
requiring ­ / ­ t , w ­ / ­ z, or e 3/2 , e 3/4 ­ / ­ z, giving z , e 2 3/4 for the ‘‘vertical scale’’ of the
� ngers. From the continuity requirement ­ u/­ x , ­ w/ ­ z, the horizontal velocity u ,
e 2 1/4 e 3/4 e 3/4 5 e 5/4 is obtained, and Eq. (7b) gives the density r 8 , ­ 2w/ ­ x2 , e 1/2 e 3/4.

These anticipated balances lead to the following formal transformations of the variables
in the temperature, salinity, momentum, and continuity equations. Let

(x, y) 5 e 2 1/4 (x1, y1 ), z 5 e 2 3/4z1, t 5 t 2 3/2t1 (15a)

w 5 e 3/4w1, (u, v) 5 e 5/4 (u1, v1 ), V1 ; (u1, v1, w1 ) (15b)

(T 8, S 8 ) 5 e 1/4 (T1, S1 ), ( ­ u /­ z, ­ s / ­ z) 5 e (b T(z1, t1 ), b s) (15c)

r 8 5 e 5/4 r 1, = h
2 5 ­ 2/ ­ x1

2 1 ­ 2/ ­ y1
2, = 3 5 (­ / ­ x1, ­ / ­ y1, ­ /­ z1 ). (15d)

The result of taking the e ® 0 limit is as follows. From (5a), (5b), (7b) we get = n
2T1 5 w1 5

= h
2S1, and = h

4w1 5 = h
2 r 1; and because of horizontal periodicity these simplify to

w1 5 = n
2T1, S15 T1, r 1 5 = h

2w1. (16a)

These time independent balances constitute ‘‘diagnostic’’ equations, as do Eqs. (7a) and
(2b), or

­ u1

­ y1
2

­ v1

­ x1
5 0,

­ u1

­ x1
1

­ v1

­ y1
1

­ w1

­ z1
5 0. (16b)

When Eq. (16a) is used in the e ® 0 limit of (14a,b), we get the ‘‘evolutionary’’ equation

( t 2 1 2 1)3
­ T1

­ t1
1 = 3 · (T1V1 ) 2

­

­ z1
(T1w1 ) 4

2 = h
6T1 1 = h

2T1 1 (t 2 1 b s 2 b T) = h
2T1 5 0

(17)

for the horizontal temperature � uctuation. When the mean � eld equations (4a, 4b) are
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differentiated, and then rescaled, the gradients ( b T, b S) in (15c) are given by

1
­

­ t1
2

­ 2

­ z 1
22 b T 5 2

­ 2

­ z 1
2

T1= h
2T1, (18a)

1
­

­ t1
2 t

­ 2

­ z 1
2 2 b s 5 2

­ 2

­ z 1
2

T1= n
2T1. (18b)

The velocities in Eq. (17) may be eliminated by using Eqs. (16b), the � rst of which is
equivalent to u1 5 ­ f / ­ x, v1 5 ­ f / ­ y, and then the second becomes

= h
2 f 1

­

­ z
= h

2T1 5 0.

Because of the horizontal periodicity this reduces to

f 5 2
­ T1

­ z
, (19)

and consequently

u 5 2
­ 2T1

­ x1­ z1
v 5 2

­ 2T1

­ y1­ z1
w 5 1

­ 2

­ x 1
2

1
­ 2

­ y1
2 2 T1. (20)

Thus we have complete equations (17)–(18) for the three dimensional temperature � eld,
and these are much simpler than Eqs. (2)–(3).

The time dependent equation (17) must be interpreted cautiously since it is not
uniformly valid in time, and because the highest z-derivatives have been eliminated;
consequently the linear part of (17) does not have a high growth rate cutoff, as does Eq.
(11). Likewise the time dependent term in Eqs. (18) may give unreliable long term
(t ¾ e 2 3/2) effects when m ½ 1 modes are included, because ­ b T/­ t1 ½ 1 for such modes.
Greater signi� cance may therefore be attached to the integral and qualitative properties
discussed below.

When (17) is multipied with T1 and the time average (av) is taken the � rst three terms
separately vanish and we get the important ‘‘power integral’’

av7 ( = h
2 = hT1 )2 8 5 av7 (= hT1 )2 (1 1 t 2 1 b S 2 b T) 8 . (21)

The positive de� nite � rst term, coming from = h
2r 8, can be interpreted as a dissipation of

density (not temperature) � uctuation, and the second term as a production due to the
vertical � ux of heat and the mean � elds. The dissipation term, with the sixth order
horizontal derivative, obviously occurs at smaller scales than the production term. If Eq.
(18a) is written in its pre-differentiated (cf. 4a) form ( ­ /­ t 2 ­ 2/ ­ z2) u b 5 2 ­ /­ z(T1 = n

2T1 ),
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where b T ; ­ u b /­ z1, and then multiplied by u b , the integrated result is

av7 b T
2 8 5 2 7 b T (= T1 )2 8 . (22a)

A similar procedure for (18b) gives

av 7 b s
2 8 5 2 t 2 1 7 b S( = T1 )2 8 , (22b)

and substitutionof these in (21) leads to the further simpli� cation:

av7 ( = h
2 = hT1 )2 8 5 av5 7 ( = hT1 )2 8 2 7 b s

2 8 1 7 b T
2 8 6 . (22c)

On purely dimensional grounds, Eqs. (15) suggest that the statistically steady solution of
the high Prandtl number equations when e ® 0 should have a nondimensional heat � ux
proportional to e ® 0, and a nondimensional horizontal temperature � uctuation propor-
tional to e 1/4; the corresponding dimensional heat � ux and rms temperature are

av 7 wT8 8
k T ­ T/ ­ z

5 e CH ( t ), (23a)

av 7 (T 8 )2 8 1/2

­ T

­ z
[ k Tn /(gTz )]1/4

5 e 1/4CT( t ),
(23b)

e 5
1

R t
2 1 ® 0,

where the C are universal functions of k S/ k T 5 O(1). In addition the ratio of the buoyancy
� ux (w r 1) to the heat � ux is proportional to e 5/4.

Such laws are predicated on the existence of a bounded ensemble of statistically steady
solutions when very large vertical wavelengths are permitted, a reservation which is
nontrivial because we know that there is a particular solution with ­ / ­ z ; 0 which does not
reach a � nite steady state. It is therefore instructive to point out the ways in which the
model can lead to equilibration of the mode with wave number m1 5 0 when other
(k1, l1, m) modes are present.

Let 7 T1 8 denote the average T1 over an in� nite vertical distance, so that this is the
amplitude of the Fourier m1 5 0 mode; then the corresponding average of (17) is

( t 2 1 2 1)3
­

­ t1
7 T1 8 1

­

­ x1
7 u1T1 8 1

­

­ y 7 v1T1 8 4 1 ( = h
2 2 = h

6 ) 7 T1 8 1 7 1
b S

t
2 b T2 = h

2T18 5 0. (24)
Â À Á

The two terms in À provide the linear growth rate of a mode whose (x, y, z) wave numbers
are (k1, l1, 0) and term Á can provide a reduction of this growth rate by modifying the
mean � elds. The two ‘‘triad’’ terms Â provide a vertically integrated eddy heat conver-
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gence by all m-modes which can alter the growth of the (k1, l1, 0) Fourier mode; e.g., the
(2k1, 2k1, m) mode interacting with (k1, k1, m) (in u1T1, etc.) can decrease the (k1, k1, 0)
component of 7 T1 8 in Eq. (24). This and other effects will appear in the more general � eld
equations considered below.

3. Numerical solutions of the 2D-large Prandtl number equations at small � nite e

In the pseudo-spectral calculations given below it is convenient to combine the T 8 1 u
of Eq. (3a) into T(x, z, t ) and S 8 1 s is combined into S; so that in two dimensions the high
Prandtl number equations for T, S, and the streamfunction c (x, z, t ) are

­ T/­ t 1 J ( c , T ) 1 ­ c /­ x 5 = 2T, (25a)

­ S/ ­ t 1 J ( c , S ) 1 R 2 1 ­ c /­ x 5 t = 2S, (25b)

= 4c 5 ­ (S 2 T )/ ­ x, (25c)

where J 5 c xTz 2 c zTx is the Jacobian. Solutions will be obtained which are periodic in
(x, z) with respective fundamental wavelengths (2 p /k0, 2 p /µ), where henceforth k0 is the
wavenumber of maximum growth rate (e.g., ( e /3)1/4 for small e ) and µ is an arbitrarily
chosen wavenumber which will be systematically decreased to ascertain whether averages
of the time dependent solution exist as µ ® 0. The higher vertical wavenumbers are m $ µ,
and the higher horizontal wavenumbers are k $ k0. In Section 4 the latter condition is
relaxed to consider k , k0.

By using a biperiodic grid with (Nx, Nz) points, Eqs. (25) were inverted exactly in
Fourier space, and the time integration in Fourier space was done using a fourth order
Runge-Kutta scheme. The time step D t necessary for computational stability is severely
limited by the high order of the derivatives in Eq. (9a) but this problem is somewhat
alleviated at small e because of the small linear growth rate, Eq. (11). Calculations were
performed for various (Nx, Nz); in those calculations for which a steady state was reached
the grid point numbers were (32, 32), while for the unsteady ones with smallest µ the
values were (16, 256). In Section 5 we will compare results obtained using a dealiased
code, with the one used in this section.

For t 5 1�3, e 5 0.111, k0 5 ( e /3)1/4, µ/k0 5 0.25 a preliminary run with D t 5 0.05 and
initialized with a normal mode of amplitude 0.1 (for T 8) gave very good agreement with
the growth rate of linear theory up to t 5 50. We emphasize here that even if T 8 is
initialized with a Fourier mode of the form sinµz sink0x, and even though a ‘‘pure sin-z’’
Fourier series is a possible solution, the full code used below calculates the evolution of all
harmonics (i.e., all the Fourier sine-z and cosine-z terms), such as are inevitably generated
by numerical noise. Reference will also be made to various ‘‘truncated’’ codes, one of
which suppresses the cosine-z series by setting it to zero after each time step, and another
one which suppresses some of the higher k components.
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a. Steady state numerical solutions at moderate m

At moderately small fundamental µ, the evolution of a normal mode with initially small
amplitude reached a steady state, as indicated for e 5 0.111 (Fig. 1) by the ‘‘x’’ points.
These are in fair agreement with the solid curve obtained from the analytical results (Eq.
(A7)) derived in the Appendix on the basis of a steady single mode truncation of Eqs. (4a),
(4b), (8) when e ® 0; this theoretical approximation is similar to that used by Joyce (1982),
except that our results apply to the fastest growing k 5 k0 at the point (Eq. 13) of marginal
instability. (But for reasons mentioned in the Appendix our result is not asymptotic in e ,
even though the amplitude approaches zero.) The single mode truncation theory also gives
reasonable agreement for the moderate µ/k0 in the calculation (Fig. 1) at the smaller e 5
0.0344, as indicated by the ‘‘x’’ points obtained from the full code. The circled points, on
the other hand were obtained using a � ltered code which suppressed all Fourier compo-
nents except the (k0, µ) and (0, 2µ) modes. This numerical truncation therefore corresponds
to the analytical theory in the Appendix; and except for a small difference due to the fact
that the � ltered numerical calculation did not use an explicit e ® 0 approximation the
circled points should lie on the analytical curve. The triangular points in Figure 1 were
obtained by using the � nal steady data corresponding to the circular points as initial
conditions for a temporal continuation of the calculation using the full code. The slightly
different steady state obtained at µ/k0 5 0.3 might be attributed to the approximation made
in the mode truncation calculation (circles). At µ/k0 5 0.5 there is no difference between the
circle and the triangle, and thus the small difference between the triangular and ‘‘x’’ points
may be signi� cant and may indicate multiple steady solutions for the same (k0, µ). We will
not pursue this point, but proceed to make an extensive series of calculations for one value
of e with decreasing µ.

Very good agreement of the analytical theory (curve) with the result of the full code was
obtained for e 5 0.0714 (Fig. 2a) at µ/k0 5 0.4, 0.5, 0.6), but at µ/k0 5 0.2 the numerically
computed steady state (x-point) has twice the amplitude [as measured by 7 ( 2 wT8 ) 8 1/2 ] of
the theoretical curve. The reason for this discrepancy is clear from the presence of the thin
‘‘boundary layers’’ (Fig. 2b) in the mean pro� les ( u , s ), since these are associated with the
high m modes neglected in the theory. The highest k . k0 modes, on the other hand, are
negligible, as veri� ed by a duplicate run with another � ltered code with suppressed all k .
k0. When µ/k0 5 0.1 (Fig. 2a) a steady state was also obtained with an even larger
amplitude, but this state required the use of a pure ‘‘sine-z’’ Fourier series, i.e., a � ltered
code was used to suppress the growth of all noise generated ‘‘cosine-z’’ components.
Although this yields a consistent steady solution, with � xed horizontal nodal surfaces
( c 5 0), it is unstable since some of the suppressed ‘‘cosine-z’’ components with small m
can be linearly ampli� ed, even in the presence of the other � nite amplitude components.
This was convincingly veri� ed by using the steady solution (µ/k0 5 0.1) as an initial
condition for the full code; the evolution of the numerical noise then produced a complex
non-stationary regime (not shown) without horizontal nodal surfaces. This case will now
be discussed using more controlled initial conditions.
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b. Unsteady solutions for m /k0 # 0.1

The previous e 5 0.0714, µ/k0 5 0.1 run was repeated using the full code and the slightly
different initial condition

T 8 (x, z, 0) 5 0.2[0.9 sin k0x cos µz 1 0.1 sin (k0x 1 µz)], (26a)

wherein the previous ‘‘vertical’’ mode is supplemented with a relatively small amplitude
(0.1) ‘‘oblique’’ normal mode, so that the nodal surfaces (T 8 5 0) are no longer horizontal.
Both modes in Eq. (26a) grow at the same rate, and both reach � nite amplitude, along with
their generated m . µ harmonics. The space-time complexity of the regime can be
ascertained by the variation of the u plots (Fig. 3), and by the streamlines (Fig. 4) of three
adjacent horizontal wavelengths at t 5 1700. Note the intense small scale eddies between
the larger scale updrafts and downdrafts. In Figure 4 the spatially averaged convective heat

Figure 1. Steady solutions of the high Prandtl number equations at t 5 1�3 for the amplitude (as given
by the square root of the average convective heat � ux) as a function of the fundamental Fourier
wave number (µ) in the z-direction.The fundamental x wavenumber is k0 5 (e /3)1/4. (a) e 5 0.111
(or R 5 2.7). The equilibrium amplitude computed by the un� ltered code was used to obtain the
three ‘‘x’’ points, and the solid curve was obtained from the single mode truncation theory,
Eq. (A7). (b) e 5 0.034. The ‘‘x’’ points are from the un� ltered code; the circled points are from a
� ltered � nite amplitude numerical code which closely corresponds to the single mode truncation
analytical theory; the triangles are from a temporal continuation of the circled runs using the
un� ltered code (see text).
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Figure 2. (a) Same as Figure 1 except e 5 0.0714 (R 5 2.8). Note that un� ltered runs at µ/k0 5 0.2,
0.1 give steady amplitudes very much larger than the single mode theory for the same µ/k0. (b)
Vertical pro� les of the modi� cation ( u , s ) of the horizontally averaged (temperature, salinity)
pro� les for µ/k0 5 0.2. Note the high m . µ harmonics associated with the large gradient regions.
The total vertical distance is one fundamental vertical wavelength.



� ux

2 7 wT8 8 5 0.206 (26b)

is almost twice the steady value in the constrained (sine-z series) run at µ/k0 5 0.1 in Figure
2a, but the � ux oscillates in time, as will be seen.

It is important to mention that although the 2k0 harmonic of T 8 (Fig. 4) has a much
smaller amplitude than the fundamental k0 of maximum growth rate, the presence of this
harmonic is crucial for limiting the time average amplitude. To demonstrate this the run
initialized with Eq. (26a) was repeated using a � ltered code which suppressed all k . k0

(while retaining all m). After increasing to a very large value at t 5 1300, the heat � ux at
2000 , t , 5000 settled down to a value which exceeded (26b) by a factor of thirty! An
explanation of the importance of the 2k0 harmonic can be obtained from the power integral
(21) of the asymptotic e ® 0 theory. If Tk,m denotes the amplitude of the (k, m) Fourier
component then the ‘‘dissipation’’ term S k6T k,m

2 on the l.h.s. of (21) is clearly weighted
towards k . k0, and we found that for Figure 4 the contribution of the 2k0 harmonic to the
dissipation exceeded that of the fundamental (k0) by a factor of three; all the other
(k . 2k0) harmonics have negligible contribution. The k . k0 harmonics are also dynami-
cally important insofar as their complete suppression will eliminate the ‘‘triad or mode-
interaction’’ term (e.g., term Â in Eq. (24)). This small-scale effect provides a horizontal
‘‘eddy diffusivity’which can reduce the average buoyancy force on larger vertical scales.

To examine the effect of decreasing µ, we start with a full code calculation of the
evolution of

T 8 (x, z, 0) 5 0.2 sin k0x cos 2µz 1 0.02 sin k0x cos µz, (27a)

µ 5 (0.05)k0, (27b)

Figure 3. e 5 0.0714, µ/k0 5 0.1. The mean temperature pro� les u (z, t ) in one vertical wavelength at
various times (t ) obtained from the initial condition (26a).
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whose fundamental (µ) amplitude is an order of magnitude smaller than its � rst harmonic
(2µ); this choice was made in order to proceed expeditiously toward a µ ® 0 sequence in
which Tk,m decreases monotonically with m. Since µ ½ k0 5 (e /3)1/4 5 (0.0714/3)1/4, the
amplitudes of both normal modes in (27a) grow at nearly the same rate. Eventually 2 7 wT8 8
settles down and oscillates between two bounds prior to t 5 1450 (not shown), at which

Figure 4. A plot (with no geometrical exaggeration) of the streamlines at t 5 1700 in Figure 3 for
three adjacent horizontal wavelengths and one vertical wavelength. The contour interval is 0.25.
The vertically averaged heat � ux is 0.21 at this time.
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time both modes have increased their amplitudes by a factor of eight; the dominant
harmonics (k0, 6µ) and (k0, 7µ) have respective amplitudes (six, four) times the fundamen-
tal (k0, µ). The heat � ux 2 7 wT 8 8 at t 5 1450 is only slightly larger than the value (26b) for
the run (Fig. 4) with half the fundamental wavelength.

At t 5 1450 (Fig. 5) we added a new and longer fundamental wavelength µ 5 (0.05/2)k0

with

T 8 5 0.1 sin (k0x) cos µz, µ 5 (0.05/2)k0.

The amplitude of this fundamental is smaller than that (0.162) of the m 5 0.05k0 mode
which constituted the fundamental immediately before t 5 1450. The number of grid
points was also increased from (16, 128) to (16, 256), and then the calculation was
continued to t 5 10,000. The time variation of the heat � ux is shown in Figure 5a, and the
time average, or

2 av 7 wT8 8 5 0.26 (28a)

appears to be statistically stationary; for the shorter time span of the rms spatially averaged
T 8 (Fig. 5b) we have

7 (T 8 )2 8 5 (1.17)2. (28b)

In the e ® 0 limit, Section 2b gives w 5 ­ 2 T 8/­ x2(1 6 O( e )), and therefore

lim
e ®0

2
7 wT8 8

7 (T 8 )2 8
5

7 ( ­ T 8/­ x)2 8
7 (T 8 )2 8

> k 0
2 5 1

e

3 2
1/2

5 0.15, (28c)

a result which is 15% smaller than the ratio of (28a) to (28b), but within the estimated error
bounds 1 6 O( e ) of the asymptotic theory.

Figure 6 gives the spectrum Em on the thermal variance at various times for m $ µ, where

S
N5 0

`

Em (t ) 5 7 (T 8 )2 8 , N 5
m

µ
.

The spectral peak in the time average (Fig. 7) occurring at m 5 15µ 5 (15/40)k0 is almost
three times the � nger wavelength. Although the m 5 0 component, which is numerically
generated and calculated in the Fourier series code, is not shown, its value at t 5 8500 is
only 1�3 the value of Eµ (i.e., for N 5 1).

The c (x, z, 104) plot (Fig. 8), of three adjacent horizontal wavelengths, reveals both
large scale coherence, and the disorder on the smaller (m 5 k0) vertical scale. Thus some c
lines can be traced on a diagonal path over an in� nite distance, while some c lines are
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closed curves, and others are inclined quasi-laminar columns. The great irregularity of the
horizontally averaged temperaure is revealed in Figure 9.

The accuracy and sensitivity of the foregoing calculation is indicated by the three curves
in Figure 10. The dashed one starting at t 5 7050 (and reproducing Fig. 5a) used a time step
D t 5 0.05; the solid curve was initiated with the same data set, but it had a time step of

Figure 5. (a) The heat � ux as a function of time for e 5 0.0714. The initial condition Eq. (27)
consisted of a relatively small amplitude fundamental (µ 5 0.05k0) mode and a � rst harmonic
(m 5 2µ). At the end of the initial phase (0 , t , 1450) a longer fundamental wavelength
(µ 5 0.05/2k0) was introduced (see text) and then the calculationwas continued to t 5 10,000. (b)
The rms horizontal temperature � uctuation as a function of t.
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0.05/2. These two curves are barely distinguishableup to t 5 8500. The dash-dot curve was
obtained by making a very small change in initial conditions (i.e., the data at t 5 7150),
viz., by deleting (only) the extremely small k $ 3k0 Fourier components at this time; then
the calculation was continued with all subsequently generated k allowed. Although the

Figure 6. Vertical spectrum of (T 8)2 for Figure 5 at various times. Em(t ) is the total Fourier energy in
mode m. The sum over all integral values of the abscissa N 5 m/µ 5 m/0.025k0 gives the spatially
averaged value of (T 8)2. Not all the very large m computed with the spectral code are shown. The
m 5 0 value is also not shown here, but its value at t 5 8500 is only 1�3 the value of Em at N 5 1
(m 5 µ).
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resulting curve is not distinguishable from the other two up to t 5 7500, there is a
signi� cant difference from that time to the end (t 5 8000). Thus the detailed time
dependent history is extremely sensitive to small perturbations, but this and other (short)
calculations in which the k $ 3k0 modes were permanently suppressed (by the code)
indicate that the time average heat � ux is rather insensitive to such perturbations.

4. Subharmonic instability

In all preceding calculations the fundamental Fourier component k0 is the wavenumber
(13) which grows the fastest on the undisturbed � eld, whereas all harmonics (2k0, 3k0, . . . )
are damped. The subharmonics (k0/2, k0/3), however, can grow, and we now consider what
happens when such a disturbance of relatively small amplitude is present.

The � nal data (t 5 104) for the run in Figure 5a was therefore augmented by adding the
subharmonic (k0/2) perturbation

T 8 5 0.02 sin (k0x/2 1 µz), µ 5 k0/40 (29)

on the chaotic � eld. The total T 8(x, z, 104) was interpolated on a 16 3 256 grid so that the
cutoff k 5 4k0 was half its previous value (we have reason to believe that the k . 4k0 waves
are unimportant). The continuation of the calculation in Figure 11 shows that although the
maximum disturbance energy (Fig. 11b) shifts from m 5 15 (Fig. 7) to much longer
wavelengths, there is a precipitous drop of both the heat � ux and the rms temperature;

Figure 7. The time averaged Em in Figure 6. The peak wavelength is approximately three times the
(� nger) wavelength of k0. Although the amplitude at m ; 0 is not shown, it is � nite but much less
than at N 5 1 (m 5 µ).
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stable averages are reached with values considerably smaller than occur in the absence of
the subharmonic. This calculation shows that the average properties remain bounded even
as the domain size increases. It also establishes the instability of the solution obtained in
the previous section, and indicates the importance of long (k , k0) waves.Apparently these

Figure 8. The streamlines in three adjacent horizontalwavelengths (k0 5 0.40) and one fundamental
vertical wavelength (µ 5 0.025k0). The plot in the vertical should be stretched by a factor of
approximately � ve to remove the horizontal exaggeration.The contour interval is 0.25.
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reduce the heat transport because they can grow on the mean � eld, thereby contributing
more to the triad or mode interaction term (V · = T 8) than does the very small amplitude 2k0

mode.As previously suggested, the mode interaction term produces a lateral eddy heat � ux
convergence which can diminish the buoyancy of the vertical � ngers.

Figure 9. The horizontally averaged temperature disturbance (u ) over one vertical wavelength, at
one particular time. This fundamental vertical wavelength is four times that in Figure 3.

Figure 10. Accuracy and sensitivity test of Figure 5 (dashed curve). The solid curve is a rerun using
the same initial (t 5 7150) conditionsbut half the time step.The dashed-dotcurve was obtainedby
using slightly altered initial conditions (see text).
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Figure 11. The effect of adding a small amplitude subharmonic(k0/2) perturbation(29) to the state of
Figure 5a at t 5 104. (a) Both the rms temperature � uctuation and heat � ux drop precipitously to
new temporal averages. (b) The total energy in mode m shifts from a previous maximum at N 5 15
to much longer wavelengths.



Similar results were obtained for a run initialized from rest with a subharmonic, so that
the total temperature perturbation was

T 8 (x, z, 0) 5 0.2 sink0x cos2µz 1 0.02 sink0x cosµz

1 0.02 sink0x/2 cos2µz, µ 5 k0/40.
(30)

In this case (not shown) the average energy at t 5 104 had a pronouncedmaximum at N 5 1
or m 5 µ, i.e., at the longest wavelength allowed in the calculation. We note that this fact,
like the similar situation in the Appendix where the longest wave contains all the energy,
poses no problem for our ‘‘unbounded’’ model, which only requires that the energy be
bounded as the maximum allowed wavelength increases, and we have shown that this does
occur. Of course, in a real (bounded) experiment like the one mentioned in the introduction,
the domain is of � nite vertical extent, and boundary layers are required at the top and
bottom. Such regions may be allowed for in our model, and it is reasonable to assume they
will not affect the amplitude in the deep interior.

Figure 12 shows the result of another run in which the minimum wavenumber was

Figure 12. A run starting from rest with a perturbation (31) containing a fundamental horizontal
wavenumber which is 1�3 of the fastest growing one (k0). (a) The � nal average heat � ux and rms
temperature perturbationare slightly less than their averages in Figure 11a. (b) The T 8 isopleths at
t 5 5 3 103 illustrates the chaotic character of the � eld. The grid size is 32 3 256. The contour
interval is 0.3. (c) The horizontally averaged temperature � eld at t 5 4 3 103 in a fundamental x
and z wavelength. This illustrates the variability of the average heat � ux at each z. (d) The total
energy in wave number k where km 5 k0/3 is the smallest subharmonicwavenumber.The numbers
on the curve are the values of t 3 10 2 3. At t 5 5000 there is as much energy in the long waves
(k/km , 3) as in the short waves. Both are essential for the statistically state (t . 1500 in Fig. 12a).

a.
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decreased from k0/2 to k0/3, using the initial perturbation:

T 8 (x, z, 0) 5 0.2(sink0x) cos2µz 1 0.02(sink0x) cosµz

1 0.02(sin k0x/3) cos 2µz, µ 5 k0/40.
(31)

The resulting heat � ux and rms temperature (Fig. 12a) now levels off at values slightly less
than occurred previously, and most of the energy is again in the longest permitted wave.
The chaotic character of the detailed (x, z, t ) � eld in three pairs of � ngers is revealed by
Figure 12b (for T 8) and by Figure 12c for the mean temperature disturbance ( u ). Figure 12d
indicates that the two subharmonics have as much energy as the fastest growing horizontal
wavelength.

Figure 12. (Continued)

b.
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5. Extension to smaller R

Since the experimentally realized values of R are much smaller than the previous one,
we now proceed to decrease R. But when R in the subharmonic run of Section 4 was
decreased below 2.65 a numerical instability led to a crash, the cause of which is � rst
investigated.

Figure 12. (Continued)

c.

d.
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a. Accuracy of the spectral approximation of spatial derivatives

The crash was not alleviated by decreasing the time step, which indicated that the source
of such an instability was not related to the well-known Courant-Friedrichs-Lewy (CFL)
limitation on the D t in the explicit schemes. The numerical instability was attributed to the
so-called aliasing effect, which is associated with the discrete Fourier images (instead of
the exact ones) used in the code.Aliasing results in the arti� cial � ux of energy to the longer
vertical wavelengths, and their subsequent linear ampli� cation over time might lead to the
crash. In contrast to CFL instability, aliasing obviously becomes more signi� cant with
increasing spatial separation of the grid-points, and therefore most of the calculations
presented below employed a dealiasing ‘‘zero-padding’’ routine (Canuto et al., 1987)
which is effective for the integration of the differential equations with quadratic nonlineari-
ties; dealiasing in z (only) proved sufficient to stabilize the code. In that which follows we
will examine how the behavior of the salt � ngers depends on the spatial resolution in both
aliased and dealiased codes, and this will indirectly indicate the range of scales of the
eddies that affect the statistically averaged characteristics of the � ow.

The � nal data for the run in Figure 11a,b have been used to initiate a dealiased code, with
128 nontrivial Fourier harmonics (compared to 256 used previously). The calculations,
extended to t 5 20,000, are presented in Figure 13, which presents heat � ux plotted as a
function of time for calculations made with a dealiased code (solid line) and with the
previously employed aliased one (dashed line). We can see that while the detailed behavior

Figure 13. The heat � ux as a function of time for e 5 0.0714. The dotted line presents the
continuation of the calculations in Figure 11a) (using the same code with 256 harmonics). The
solid line presents the calculations also initiated by the � nal (t 5 15,000) data of the run in Figure
11a but continued with the use of a dealiased code (using 128 harmonics).While the details of the
variation of the heat � ux in time are signi� cantly different in these two cases, the statistical
averages suggested by the codes are fairly consistent.
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is different in the two cases, the statistically averaged values of heat � ux, for the two codes
tend to approximately the same value. Similar behaviors were obtained for the temperature
variance (not shown).

The calculation in Figure 13 has also been made with lesser resolutions of 64, and then
32 nontrivial harmonics; and with the better resolution of 256 harmonics. The results
presented in Table 1 demonstrate that the eddies with a vertical scale comparable to the
horizontal wavelength of the fastest growing normal mode can substantially contribute to
the integral properties of the salt � ngers. Note that the attempts to decrease the resolution
of the aliased calculations below the level provided by 256 harmonics ( l min 5 5) resulted
in the numerical instability of the aliased code. This discussion indicates that some of our
previous runs are ‘‘marginally resolved’’ numerically; the properly resolved runs yield
consistent results for both the aliased and dealiased calculations, while under-resolved runs
resulted in the numerical destabilization of the former and in the inaccurate results of the
latter code. From Table 1 we can see that it is absolutely necessary to resolve (we used four
grid points) vertical scales which are at least l min 5 10, a vertical wavelength which is
comparable with the horizontal wavelength of the salt � ngers (16 units). This might seem
somewhat hard to understand, since the amplitude of the high (in z) modes is quite small as
was indicated in the previous sections, and therefore we give another, even more dramatic,
example of the numerical effects that might occur because of neglecting the (small
amplitude) high z modes.

We reproduced our earlier calculation in Figure 5a, which was made without introducing
the subharmonics, using a dealiased code with a lesser resolution of 64 nontrivial modes
(for t , 1450) [instead of 128 modes employed in the old (aliased) calculation], and for t .
1450 we used 128 modes [instead of the 256 modes used before]. All the other parameters
and procedures, such as the use of Eq. (27a) to initiate the run, have not been changed. The
time variation of the heat � ux of this (under-resolved) dealiased calculation is shown in
Figure 14, and the spectrum Em of the thermal variance at t 5 10,000 is presented in
Figure 15. The fundamental differences between this and the old calculation (see Fig. 5a)
become quite apparent from both of the � gures (cf. Figs. 14, 15) presented. The absence of
the oscillations of the heat � ux at the large times (t . 5000) indicates that it is the
small-scale eddies that are responsible for the temporal variability of the integral proper-
ties. Note also that (after a period of adjustment) heat � ux settles down to a value (2 0.12)
which is less than half of the statistical average suggested by our old calculation in Figure

Table 1. The heat � ux averaged over the period of time 15000 , t , 17500 as a function of
resolution in the aliased and dealiased codes; l min denotes the shortest (in z) wavelength properly
resolved by the code. For comparison, the horizontal wavelength for the fastest growing mode is
16 of the above units.

l min 5 40 l min 5 20 l min 5 10 l min 5 5

dealiased 2 0.84 2 0.20 2 0.12 2 0.11
aliased unstable unstable unstable 2 0.12
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Figure 14. The under-resolved dealiased calculation initiated exactly as the run in Figure 5a. The
shortest z-wavelength resolved by the code is 10.0 (compared to the 5.0 for the run in Fig. 5a). The
decrease in the resolution resulted in the complete disappearanceof the chaotic oscillations of the
heat � ux at the late stage of the experiment.The arrow is at t 5 1450 (see text).

Figure 15. Vertical spectrum of 7 T 82 8 at t 5 10,000 in the under-resolved run. Failure of the code to
resolve the small-scale eddies resulted in the signi� cant modi� cations of the spectrum (compare to
Figs. 6, 7).
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5a. However, when the proper resolution is used in the dealiased code [see Fig. 16 at
t # 10,000] the result is consistent with that in Figure 5a. The spectrum Em (see Fig. 15) of
the under-resolved run is characterized by the two local maxima, the second of which
occurs in the vicinity of the N 5 32 harmonic. Thus the distribution of thermal variance Em

is also quite different from the spectrum of the corresponding (properly resolved) old run in
Figure 7. The pattern of spectrum as presented in Figure 15 proved to be fairly persistent
and did not change essentially in the late stage of the experiment (2,000 , t , 10,000),
even when the described experiment was modi� ed by deleting (numerically) at t 5 2,000
all of the N . 25 z-modes; the local maximum in the vicinity of N 5 32 reappears at the
later times.

This discussion demonstrates the importance of the small-scale eddies for the dynamics
of long � ngers at � nite e . The similary theory (e ® 0) of Section 2, pertaining to vertical
scales larger than the � ngers, should therefore not be extrapolated to the � nite e

calculations herein.
In order to examine the accuracy of the time-stepping scheme (beyond that which was

done in Section 3b where D t was decreased by a factor of two) we have used an alternative
method of integration, characterized by the use of the so-called integrating factors
technique (Canuto et al., 1987). This method can be conveniently used for the systems of

Figure 16. The heat � ux as a function of time for e 5 0.0714 (R 5 2.8). In this calculation a ‘‘zero
padding’’ method was employed to remove the aliasing error associated with the z-modes. The
initial conditions (32) consisted of a relatively small amplitude fundamental (µ 5 0.05k0) mode
and a second harmonic (m 5 2µ). At the end of the initial phase (0 , t , 10,000) the size of the
computational domain in x was doubled, and the (small amplitude) subharmonic k 5 0.5k0 was
included, and the calculation was extended to t . 10,000. Note that the time averages of the heat
� ux obtained are quite consistent with those suggested by our previous experiments in Figure 5a,
11a for both phases of the experiment.
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differential equations with nonlinear advective and linear diffusive terms, such as was
done, for example, in the aforementioned work by White� eld et al. (1989). An exception-
ally good agreement between the results provided by this method and the one described
and employed previously allowed us to conclude that the accuracy of the time-stepping is
more than sufficient. However, the use of the integrating factors did not allow us to relax
the limitation on the time step, and for that reason all of the following calculations have
been made with the ‘‘old’’ straightforward fourth-order Runge-Kutta integrating scheme.

b. Calculations for the low R

All of the lower R runs were made using the dealiased code, and since some of our
calculations (not presented) indicated that the statistically averaged characteristics of the
system do not change as µ/k0 is decreased below 0.05, the following calculations are
restricted to µ/k0 5 0.05. To initiate the run of the dealiased code we used

T 8 (x, z, 0) 5 0.2[0.9 sink0x cos 2µz 1 0.1 sin (k0x 1 µz)], (32)

where k0 is the x-wavenumber of the fastest growing mode, µ is the fundamental
wavenumber in z, and 128 nontrivial harmonics in z were used with 16 in x. In all the
calculations t 5 1�3, and we again start with R 5 2.80, and D t 5 0.1.

To expedite the calculations over the range of t and R the following procedure was
adopted. For t , 10,000 the calculation in Figure 16 contains no subharmonic. At t 5
10,000 we increased the size of the computational domain (in x), so that the fundamental
wavelength in x became twice that of the fastest growing mode, and this allowed us to
introduce (at t 5 10,000) the small amplitude subharmonic perturbation

S 8 5 T 8 5 0.02 sin (k0x/2 1 µz)

to the (T, S ) � eld. The ratio of the computational domain was kept 1:10 in all calculations
for t . 10,000. As can be seen from Figure 16, the average value of the heat � ux is quite
consistent with our earlier estimates (see Sections 3 and 4) in both regimes (i.e., with and
without the subharmonic).

At t 5 20,000 the value of R was decreased to R 5 1/0.36 5 2.78.Although the values of
(T, S ) at the grid-points were not changed, the spatial separation between the grid-points
was decreased to re� ect the small modi� cation of the x-wavelength of the fastest growing
normal mode (which occurs due to the decrease of R). The calculations were then carried
on for an additional 2,500 time units, which was sufficient to approximate the statistically
steady values of the heat � ux and the temperature variation for that R. Subsequently R was
decreased several times in a similar manner, and the integral characteristics were com-
puted, as, summarized in Table 2. As the separation of the grid points was decreased the
time step was decreased.

The detailed time variation of the heat � ux and � ux ratio shown in Figure 17, reveals
both the dependence of the statistical averages on the value of R, and the presence of
temporal oscillations of the spatial integrals. Other features of the (T, S ) � eld observed in
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the e 5 0.0714 calculations (see Section 4), such as the large-scale coherence and the
disorder on the smaller scales, also occur at low R as can be seen (Fig. 18) from the
isopleths of the temperature T(x, y, 60,000) for e 5 0.35.

The distribution of the thermal variance in the vertical harmonics is presented in
Figure 19 for e 5 0.35 (t 5 60,000), and is qualitatively similar to the Em in Figure 11b for
R 5 2.8 ( e 5 0.07). The spectra of the energy Ek in the horizontal wavenumber k (not
shown) has the maximum of energy shifting between the fundamental and the fastest
growing modes. It is suggested that the even longer horizontal waves might become
important as e increases, but we will not pursue this point here; instead the heat � ux and
thermal variance as a function of e is discussed.

Let us tentatively assume simple power laws for the heat � ux and the temperature
variance of the form

2 av 7 WT8 8 5 Ae a , av 7 T 8 2 8 5 Be b , (33)

or

ln ( 2 av 7 WT8 8 ) 5 a ln(e ) 1 ln(A ), ln (av 7 T 8 2 8 ) 5 b ln ( e ) 1 ln(B). (34)

These are plotted (Figs. 20, 21) from the data of Table 2 as a function of ln(e ), and the
nearly straight line curves con� rm the (assumed) relationship (33). The slope and
intercepts of the lines in Figure 20, 21 provide a good estimate of the parameters in (34):

a < 2.5, b < 2.1, A < 70, and B < 188.

It is obviously unjusti� ed to extrapolate the logarithmic curves in Figures 20–21 to

Table 2. Statistically steady values of the heat � ux and of the thermal variance as a function of R.

Period of time 1/ R 2 av 7 WT8 8 av7 T 82 8

20,000–22,500 0.36 0.13 0.80
22,500–25,000 0.37 0.27 1.49
25,000–27,500 0.38 0.55 2.69
27,500–32,500 0.39 0.87 4.01
32,500–37,500 0.40 1.84 7.96
37,500–42,500 0.41 2.78 11.46
42,500–50,000 0.42 3.77 15.89
50,000–52,500 0.43 5.48 22.11
52,500–57,500 0.44 6.96 25.66
57,500–60,000 0.45 7.41 28.45
60,000–62,500 0.46 9.22 34.71
62,500–65,000 0.47 10.9 38.8
65,000–67,500 0.49 14.9 50.7
67,500–70,000 0.52 21.8 74.3
70,000–72,500 0.55 29.8 92.8
72,500–75,000 0.60 43.5 130.8
75,000–76,250 0.63 51.9 146.0
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R ® 1, where a much enhanced convective regime is expected because the overall density
strati� cation is near neutral.

If these power laws were extrapolated to e ½ 0.07 they would imply heat � uxes very
much less than the similarity law (Section 2) for long thin � ngers, but such extrapolation is
also empirically unjusti� ed.

6. Conclusions and suggestions

We have discussed the behavior of salt � ngers in an unbounded � uid with high Prandtl
number and with given uniform ‘‘overall’’ average vertical gradients (Tz and Sz), concen-
trating on the nearly marginally unstable initial state with t 5 O(1), R 5 O(1), and small
� nite e . An important qualitative question is whether the � uxes for the vertically
unbounded model calculation would be bounded when the fundamental vertical wave-
length 2 p /µ becomes in� nite, and this was answered affirmatively.

When µ 2 1 is taken to be only a small multiple of the horizontal wavelength (k 0
2 1) of

maximum growth rate, the normal mode in the numerical calculation evolves to a steady
� nite amplitude by modifying the horizontally averaged T 2 S gradients on the scale of this
mode; as is satisfactorily explained by a single mode truncation theory. But even for very
small Reynoldsnumber this theory fails qualitativelyas µ 2 1 is increased, since many m . µ
harmonics can grow; moreover, all of these modes contribute to amplitude equilibrationvia
classical triad interaction effects.

The spatially averaged (nondimensional) convectiveheat � ux Nu ; 2 7 wT 8 8 and the rms
horizontal temperature � uctuation T̃ 8 5 7 (T 8 )2 8 1/2 exhibit large variations on a long time
scale, and although the detailed variation is extremely sensitive to small changes in initial
values the long time numerical integration of the high Prandtl number equations for t 5 1�3
and a small e 5 0.0714 yields (convincingly) statistically steady average values. However,
this solution (for k0) was shown to be subharmonically unstable, with resulting average
Nusselt number and rms temperature � uctuation (Fig. 12a) given respectively by N 5 0.08,
T̃ 8 5 0.55. These subharmonic instabilities are different from those discussed by Holyer
(1984), wherein the subharmonic energy comes from the equilibrium � nger � eld rather
than from the Sz � eld in our model.

The asymptotic ( e ® 0) equations of Section 2 are qualitatively useful in indicating the
importance of many long vertical wave numbers (m) and their (triad) interaction no matter
how small e is. These equations are limited, however, because they are not uniformly valid
(viz., over long time and large m); they do not, therefore, describe the evolutionof the � nite
e . 0.07 calculations made herein. The question is open, however, as to whether they
describe the solution of the high Prandtl number equations for e ½ 0.07, since the
numerical calculations cannot easily attain the asymptotic limit because of the low growth
rate.

For larger e or 1.6 , R , 2.7 the Nusselt number and thermal variance are given in
Table 2, and Figures 20, 21; the variation of the � ux ratio with R is given in Figure 17b.An
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Figure 17
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Figure 18. The isopleths of the total temperature T(x, z, 60,000) for the run in Figure 17 at e 5 0.35. The
horizontalscale is geometricallyexaggeratedby the factorof 10.Althoughthe structureof the temperature
� eld is similar to what was observedat the lower e (see Fig. 8), the amplitudeis much larger.

¬
Figure 17. Calculation in Figure 16 was extended in time as R was decreased several times as

indicated in Table 2. (a) The evolution in time is characterizedby the fast chaotic oscillationsof the
heat � ux. However, the statistically averaged value of the heat � ux (for each R) is extremely
sensitive to the values of R employed. (b) The � ux ratio g 5 7 W T 8 8 /7WS88as a function of time for
the run in Figure 17a. g signi� cantly decreases as we decrease R. The rough ‘‘order of magnitude’’
estimate suggests that (1 2 g ) is proportional to e, which is consistent with the empirical power
laws obtained later in Figures 20–21. Note also signi� cant oscillations of the � ux ratio in time.
There is no availabledata for the periods25,000 , t , 30,500 and 45,000 , t , 55,500; otherwise
calculationsof the � ux ratio have been performed each 500 units.
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Figure 19. Vertical spectrum of (T 8)2 for t 5 60,000 (see Fig. 18). This spectrum looks fairly similar
to the distribution of energy which was observed in the subharmonic calculations for the lower e

(Fig. 11b), except for the tendency of the energy spectrum to shift to the longer wavelengths when
e is increased.

Figure 20. The statistically averaged (for each R ) value of the heat � ux plotted as a function of e in
the logarithmic coordinates (see text). The plot is almost a straight line which con� rms the
(assumed) relationship (34). The slope of this line is conveniently used to estimate the scaling of
the heat � ux in terms of e .
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approximate formula for the heat � ux is

Nusselt number > 70e 2.5, (0.07 , e , 0.8).

It is important to note that at R 5 1.6 this number already is much greater than unity, and
that R 5 1.6 is actually very ‘‘far’’ from the near neutral R ® 1 at which a more intense
convection is expected leading to the formation of sheets and (convecting) layers (Stern
and Turner, 1969). In order to realize R ® 1 numerically it will be necessary to include
much longer horizontal wavelengths. It is also suggested that a three dimensional
perturbation be introduced, in order to explain the observed horizontal planform of the
� ngers.

Finally, we remark that our extraordinarily low Reynolds number (when e ® 0 and
k T/n ® 0) calculationsexhibit many features found in classical turbulence problems (shear
� ow at large Reynolds number, and thermal convection at very large Rayleigh number),
such as the stochastic behavior of many modes interacting through their mean � eld
modi� cation [cf. b T, b S in (17)] and through the triad terms (Â). It might therefore be
possible to address some fundamental statistical issues in ‘‘turbulence’’ (e.g., the ergodic
hypothesis) in the more accessible k T/ n ® 0, e ® 0 parametric regime of the salt � nger
problem.

Acknowledgment.This work was begun at the Geophysical Fluid Dynamics Summer Program at the
Woods Hole Oceanographic Institutionand supportedby the National Science Foundation.

Figure 21. The same diagnostic as in Figure 21 is performed for the temperature variance av 7 T 82 8 .
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APPENDIX

Steady state, two-dimensional amplitude approximation for e ½ 1

To complete the steady state � nite amplitude calculation mentioned at the end of Section
2a, we substitute the steady versions of Eq. (4), viz.,

­ u / ­ z 5 wT8 2 7 WT 8 8 , (A1)

­ s / ­ z 5 t 2 1WS 8 2 t 2 1 7 WS 8 8 , (A2)

into Eq. (8), along with the steady operators D 5 D t 5 = 2, L 5 L(0, ­ / ­ x, ­ / ­ z). For small
e and l m (Eq. (11)), the latter operator may be expanded as

L(0, . . . ) 5 L ( l m, . . . ) 2 l m­ L(0, . . . )/ ­ l m 1 . . . ,

where

­ L(0, . . . )/ ­ l m 5 2 (1 1 t 2 1 ) = 6 2 ( t 2 1 2 1)= 2
2. (A3)

And Eq. (8) may then be written as

L 1 l m,
­

­ x
, 0,

­

­ z 2 w 5 l m

­ L

­ l m
(w) 1 Q 1 N 1 . . . (A4a)

L 1 l m,
­

­ x
, 0,

­

­ z 2 w 5 l m

­ L

­ l m
(w) 1 t 2 2( = 2

2= 2w)[wS 8 2 7 wS 8 8 ]

2 = 2
2 = 2w[wT8 2 7 wT8 8 ] 1 N 1 . . . . (A4b)

The total velocity w is the sum of the normal mode with amplitude A and all other Fourier
modes w2, i.e.,

w 5 Awm 1 w2. (A5)

An approximation to A can be obtained from the solubility condition for the inhomoge-
neous differential equation (A4b); to get this, Eq. (A4a) (or (A4b)) is multiplied by wm and
then integrated. Since the self adjoint linear operator satis� es L( l m, . . . )wm 5 0 we get

7 wmLw 8 5 0 for the left-hand side of A4a (A4b), and thus the solvability condition is

7 wm

­ L

­ l m
(0, . . . )wm 8 1 7 wmQ 8 1 7 wmN 8 5 0. (A6)

Since w must vanish as e ® 0, we tentatively assume that the temporal evolution of the
initial disturbance consisting of the normal mode (wm) leads to a steady state in which the
nonlinearly generated w2 harmonics in (A5) have relatively small value, i.e., w2 ¾ Awm;
this is equivalent to a single mode (Galerkin) truncation. When w is replaced by Awm in
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(A6) it is easily shown that N ; 0 (Malkus and Veronis, 1958). In the remaining equation

7 wm

­ L

­ l m
(Awm ) 8 1 7 wmQ 8 5 0

the T 8, S 8 terms in Q (Eq. (A4b)) are replaced by 2 (k 0
2 1 m 2 ) 2 1Awm, according to the e ®

0 approximation (12) for the normal mode. We then get an algebraic equation for A whose
coefficients contain the wave-numbers, or their rescaled values as given by Eqs. (10b,c).
After some trigonometric and algebraic manipulationwe obtain the result

A 2 5
8 e 3/2

(t 2 2 2 1)

k̂ 2 1 m̂ 2

k̂2
[k̂2 2 (k̂ 2 1 m̂ 2 )3 ], (A7)

and for long � ngers m̂2/k̂2 ½ 1, k̂2 5 1/Î 3 this becomes

A 2 5
16

3 Î 3 3
1

Rt
2 1 4

3/2

( t 2 2 2 1)2 1. (A8)

Eq. (A8) is notable because it contains no adjustable parameters, and because it is quite
� nite, (unlike the solution for the ­ / ­ z ; 0 mode mentioned in Section 1). Unfortunately
this result (A8) is not asymptotic for e ® 0, the reason being that the order of magnitude of
the linear operator (9a) is small (in e ), so that the iterative procedure (not shown here)
yields a value w2 which is of the same order (in e ) as Awm (see Eq. A5). Nevertheless,
Section 3a shows that the mode truncation approximation (A7) is quite useful for
explaining the amplitude for moderate m̂/k̂ 5 O(1), where the higher harmonics (e.g., 3m̂)
are numerically smaller.
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