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On the parameterization of eddy 
Part I. Theory 

transfer 

by Peter D. Killworth’ 

ABSTRACT 
This is the first of three linked papers which develop an eddy parameterization scheme for mean 

flows which are wide compared with a deformation radius. The scheme is partly based on the 
behavior of potential vorticity and thickness fluxes in linear instability, where the former are 
downgradient (apart from a turning matrix, not present in channel models) and the latter are not 
precisely downgradient, except on anf-plane. The scheme leads to a diffusivity which varies quite 
strongly with depth and is smallest at surface and floor. Intrinsic delta-function fluxes also occur at 
surface and floor, and these are worked out in detail. It is shown that all such parameterization 
schemes (whether linked to linear instability or not) must satisfy a necessary consistency condition, 
in the form of a vertical integral. A uniform diffusivity does not satisfy this requirement unless it is 
defined to vanish at surface and floor. Two methods to compute approximate diffusivities efficiently 
are given, and their results compare well with exact results from instability theory. 

1. Introduction 

The most well-known difficulty in numerical ocean modeling has been present since the 
earliest runs of eddy-permitting models: the inherent conflict between the need for 
simulations of centuries to examine climate issues, and the enormous computer resources 
necessary to undertake such integrations while retaining at least some degree of eddy 
activity in the model. For the foreseeable future, climate models will have to continue to 
include parameterizations of the eddy field from a purely pragmatic perspective. It is also 
frustrating to need a model delineating every eddy in order to understand broader-scale 
climate issues, so that a physically meaningful parameterization is useful for comprehen- 
sion also. 

Until the last five years, oceanographic representations of eddy effects were largely 
crude, save for early work by Welander (1973) and Marshall (1981), and homogeneous 
turbulence studies by, e.g., Haidvogel and Held (1980) and Panetta and Held (1988). The 
representation used simple downgradient diffusion terms for momentum and tracers. With 
the centered differences used in numerical ocean models, such terms were necessary to 
maintain numerical stability, rather than as representations of eddy effects per se. Solomon 
(1971) and Redi (1982) had shown how to rotate the mixing tensor to account for 
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predominantly isopycnic mixing, but horizontal lateral mixing terms remained for stabil- 
ity; Griffies et al. (1997) have shown how to avoid the lateral terms and maintain stability. 

Advances in the meteorological literature (e.g., Plumb and Mahlman, 1987) proceeded 
independently on the two main - and distinct - oceanographic approaches. (Only more 
recently, in discussion of transformed Eulerian means, are the two approaches converging.) 
One approach, by Gent and McWilliams (1990), sought to parameterize the effect on 
tracers by time- and space-varying eddy fields. The other, by Eby and Holloway (1994), 
parameterized the effects on momentum of the presence of a statistical equilibrium field of 
eddies. These two approaches both appear to yield improved large-scale oceanographic 
representations, despite their differing approaches. (Although appealing to different equa- 
tions, terms in a tracer equation can be maneuvred into the momentum equation and vice 
versa; cf. Lee and Leach, 1996, for example.) We shall restrict attention here to conserved 
tracers such as temperature and salinity. 

These tracers are moved both by time- and space-mean flow, but also by eddy transport 
terms which can be thought of as an additional ‘bolus’ advective velocity (the effect has 
many names and a long history; cf. Gent et al, 1995 for a discussion). Attempts stemming 
from Gent and McWilliams’ (1990) work have largely concentrated on prescriptions for the 
bolus velocity. They assume that eddy motions represent a release of mean energy through 
instability mechanisms. Since most parts of the mean ocean circulation have length scales 
large compared with a deformation radius, much of this release is assumed to occur 
through a baroclinic, rather than a barotropic, mechanism, following the early suggestions 
of Green (1970). Underlying these attempts, then, is the concept of reduction of mean 
available potential energy by eddy fluxes, as well as motions preferentially on density 
surfaces (we follow other authors here and do not consider difficulties relating to neutral 
surfaces, etc.; cf. McDougall, 1987 for details). Such concepts cannot, by their nature, deal 
with long-distance advection of tracers within sub-mesoscale coherent vortices like 
Meddies (Armi et al., 1989), or many other aspects of ocean flow: barotropic instability, 
spatial growth and decay, etc. 

Gent et al. (1995) give an excellent summary of the requirements of a parameterization 
based on tracers, and discuss two versions of their parameterization (Eqs. (18) and (22)), 
involving downgradient mixing of isopycnic layer thickness in a manner similar to that in 
use in isopycnic co-ordinate models (Bleck et al., 1992). Treguier et al. (1997) investi- 
gated, inter alia, constraints on such parameterizations caused by horizontal boundaries; 
they also noted that potential vorticity, rather than layer thickness, was the relevant 

conserved quantity, and discussed some of the changes using this quantity would produce. 
Visbeck et al. (1997) examined four potential parameterizations in the light of eddy- 
resolving initial value problems. Lee et al. (1997) have examined how tracers are spread in 
a statistically steady eddy-resolving channel model, also drawing attention to the impor- 
tance of potential vorticity conservation. 

This paper looks at a possible form of parameterization. Taking a suggestion of Treguier 
et al. (1997), it examines the slowly varying (locally vertical) baroclinic instability 
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problem. This is a return to the concepts of Green (1970), together with results of how 
properties could be mixed by eddies (Killworth, 1981). A form for the eddy diffusion of 
layer thickness and potential vorticity is produced (Section 2) which turns out to involve 
intrinsically a vertical variation of diffusivity. Because of the variation of Coriolis 
parameter, pure downgradient diffusion of layer thickness does not occur (but downgradi- 
ent diffusion of potential vorticity - ignoring the contribution from relative vorticity - 
does occur), and an extra term is predicted which is clearly visible in Lee et al’s (1997) 
eddy-resolving runs. The use of a local linear solution is then largely relaxed for the rest of 
the paper, with discussion predominantly about the form of the parameterization. Section 3 
gives a form for the bolus velocity, and Section 4 discusses boundary conditions. It is 
shown in Section 5 that all parameterizations similar to the form developed here must 
satisfy a vertical integral consistency condition related to the implied delta-functions at 
surface and floor. (These delta-functions are responsible for the cross-channel movement 
of light and dense fluid in the Eady problem, for example.) Sections 6 and 7 create two 
different approximate forms for the diffusivity which take this consistency condition into 
account. Calculations of fastest growth rate in simple problems discussed in Section 8 
show that these forms give reasonable answers in such cases. 

Part II of this paper compares the results of this parameterization with those of Gent and 
McWilliams (1990) in an eddy-resolving three-dimensional channel model of a front. Part 
III examines the parameterization of tracers, and also the modifications necessary when 
there is a region of zero vertical density gradient present (because of a surface mixed layer, 
or because of deep convection). 

2. Slowly varying linear theory 

As a preliminary guide to possible eddy effects, we consider linear perturbation theory 
applied to a slowly varying mean flow. Linear theory is not a good descriptor of fully 
developed geostrophic turbulence, particularly for momentum fluxes (e.g., Simmons and 
Hoskins, 1978). Nonetheless, linear theory has the virtue that its motions are solutions of 
the relevant equations, and fluxes of buoyancy-which are better described by linear 
theory - do behave in a physically reasonable way. Green (1970) used a similar approach 
to that described here for parallel shear flow and has deduced forms of many of the results 
of this paper. 

We assume the background (mean) flow is slowly varying, in the sense that its length 
scales are large compared with a deformation radius. For coarse ocean climate models this 
holds automatically on resolution grounds. This slow variation thus precludes barotropic 
instability, and mitigates against areas of the ocean which have smaller length scales, such 
as western boundary layers (which are poorly represented in coarse models anyway). There 
are cases when eddies can remove this convenient scale separation. 

Density co-ordinates are used, to facilitate the expansion. Accordingly density is 
assumed a linear function of temperature and salinity in what follows, and the effects of 
more complicated equations of state (cf. McDougall, 1987) are ignored. The beta effect is 
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included; it can act to stabilize or destabilize the flow. Conservation of momentum, mass, 
and the hydrostatic relation become, if there is no diapycnal mixing, 

zpt + v . (uz,) = 0 (3) 

B, = gz (4) 

where the axes are (x, y) oriented east and north, z is directed upward, with zero at the 
surface, p is the density (p. is a reference density), B represents the linear Bernoulli or 

Montgomery function p + pgz, g is the acceleration due to gravity,fthe Coriolis parameter 
(with northward variation p), and t the time. The gradient and divergences are taken in the 
horizontal directions only. 

From these equations we can derive conservation of potential vorticity q = (f + v, - uy )/zp, 

q,+u.vq=o. (5) 

Small perturbations are taken against a mean background (denoted by an overbar) which 
is in steady (or, more formally, slowly varying) geostrophic and mass balance. The 
expansion procedure will be terminated at the zeroth order, representing a local vertical 
problem. The first use of such a slowly-varying expansion appears to be Simmons (1974) 
for a quasi-geostrophic parallel jet shear flow; Robinson and McWilliams (1974) wrote a 
description in terms of fast and slow space and time variables, but terminated this 

expression at the leading term. Killworth (1980) extended Simmons’ (1974) approach to a 
general quasi-geostrophic parallel shear flow, and recently Killworth et al. (1997) have 

used a similar theory for primitive equation ring instability. 
The perturbations, denoted by primes, satisfy 

B6 v; + uv; + u’Vx + vv; + v’lly +fu’ = - - 
PO 

(7) 

zp; + v. (iizi + u’z,, = 0 (8) 

B; = gz’. (9) 

As in Robinson and McWilliams (1974), we suppose that the mean flow is spatially 
slowly varying, i.e., that its length scale L is much larger than a, where a is the local 
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deformation radius. Here a = (gHAplpO)1’2/f, where H is the depth scale, Ap a density scale, 

so that the velocity scales on gH(AplpO)/JZ. We set 

a 
-FE 
L (10) 

which is assumed to be a small quantity. We also assume the mean flow varies temporally 
on a long time scale T = ~-~f-‘. 

The perturbation quantities vary on more rapid scales: spatially, of order a, and 

temporally of order ~-If-t. Thus 

B = %C K P, T) + B ’ (x> Y, P, t, X K T) (11) 

is assumed, where (X, Y, T) represent the slow variables and (x, y, t) the fast. We now pose 

B’ = Re [B(p)exp ik(x cos 8+ y sin 8 - ct)] (12) 

with similar expressions for (u’, v’, z’), plus smaller ageostrophic terms, where (k, 0) are 
the local wavenumber and direction of the perturbation and are functions of the slow 

variables. The phase velocity c will be complex in general. Choices for k and 8 will be 

made later. 
Substitution into (8) gives, dropping primes, 

-ikcz, + I&V . u + uZ, + vFpy + ik&, = 0 (13) 

to leading order (the remaining term z,V . li, involving gradients of the mean flow is O(E) 

smaller). Here 

u”=Ecos0+~sin8 (14) 

is the projection of the mean flow in direction 8. The momentum equations become 

ik cos 8 
-ikcu + iku”u - fi = - ~ B + small (15) 

PO 

ik sin 8 
-ikcv + iktiv + fu = - B + small (16) 

PO 

where we note that the non-Coriolis terms on the 1.h.s. of (15, 16) are O(E) smaller than the 

geostrophic balance 

ik cos 8 ik sin 0 
v=pB 

Pof ’ 
u=---B 

Pof 
(17) 

but are necessary for the divergence terms in (13) since geostrophy is divergence-free. 
Cross-differentiating (15) and (16) to give V . u’, and substitution into (13) then gives to 
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leading order the purely vertical problem 

(a - +f$ k2Z,,B 
0 

(the latter term is proportional to the gradient of potential vorticity in the direction of the 
wave vector) plus boundary conditions at top and bottom of vanishing vertical velocity 

(ii - c)B, = u”,B, P = Pb? Pr. (19) 

Here 2(x, y, pb) = -H, 2(x, y, p,) = 0 define the bottom (z = -H) and top (z = 0) 
densities pb, p, respectively. The condition (19) holds for a flat bottom only. Since most 

oceanic instability problems are not controlled by floor conditions (cf. Gill et al., 1974) this 
is probably a reasonably good first approximation for a parameterization. 

Eq. (18) is simply the standard quasi-geostrophic problem (e.g., Pedlosky, 1987) cast 

into density co-ordinates; Williams (1974) has used the simplification when the last term in 

(18) vanishes to great advantage in extending the Eady (1949) solutions. 
A full analysis would involve at least the next two orders in the expansion in E. In the 

parallel or radial cases referred to above, the asymptotics become complicated. The main 
feature of note is that a second length scale I = (uL)“~ appears over which the instability 
has an effect on the mean flow; this scale is both long compared with the deformation scale, 

and short compared with the mean flow scale. 
In two horizontal directions, little is known about the higher order terms (Robinson and 

McWilliams, 1974 do not discuss them). For our purposes here we assume as usual that the 
local problem above, at least in an ensemble sense, is the leading order to the linear 

instability problem, and follow the expansion no further. 

We now examine fluxes of perturbed quantities. 

a. Thicknessjuxes 

Perturbation thickness fluxes, averaged over many eddy space scales,2 can be estimated 
in the usual way to give 

I 
IA z; = iRe(uz,*), V'Ziz2 IRe (vz:) 

where an asterisk denotes a complex conjugate. From (18) 

1 k2;i 
ZP=-BPP=-~B+- &pp 

-case f- . 
g .f2Po g 

(20) 

(21) 

2. Recall that these averages are on density surfaces. 
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Substitution into (20), and use of the fact that both u and v are proportional to iB, means 
that the terms involving the first term in (21) vanish, leaving 

and similarly 

(23) 

where ci is the imaginary part of c. The modulus term in (22, 23) is proportional to the 
average of the square of particle movement (Green, 1970; Pedlosky, 1987). 

Thermal wind applied to the geostrophic mean flow implies 

(24) 

= -,[n+,n,]= -KfA+] (25) 

where 

sin2 8 -sin 8 c0s 8 
A= 

-sin 8 cos 8 ~0s~ 8 (26) 

is a non-negative definite matrix (its eigenvalues are 1 and 0), A2 is its second column, and 

kci B 2 
@, Y, P> = - - 

I I 2f ‘pi u” - c (27) 

is a diffusivity, proportional to the mean-square particle excursions, and would normally be 
largest in the interior of the fluid. 

b. Potential vorticityjuxes 

For small perturbations, 

v; - 24; f k2B’ f BP; =-----~_----- 

7, 
-2 ZP 
ZP zp 2;s’ 

(28) 
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After substitution, we proceed as in (22). The relative vorticity term in (28) is uncorrelated 
with u’, because the Laplacian of B is out of phase with the geostrophic velocity, so that 

u’q’= f7 
-,uzp 

ZP 

for linear perturbations (similar to a result by Treguier et al., 1997). The term in p becomes 
part of the mean q gradient, so that 

u’q’ r1 - = -&.Q 
v’q’ (30) 

with no additional terms (because q, and not z,, is a conserved quantity), where both A and 
K are the same as in (25). In other words, through (29), a parameterization of thickness 
fluxes implies one for q, and vice versa. Eq. (30) approximately represents the well-known 
belief that potential vorticity is fluxed downgradient by eddies; see, e.g., McDougall 
(1995). 

c. Discussion 

For the next few sections we will explore parameterizations of fluxes of quantities, 
where the shape of the parameterization is that of (30) or (25), without reference to linear 
perturbation theory. The diffusivity K is permitted to depend on all three spatial coordinates 
(and time) while the matrix A depends only on (x, y, t). Were A the identity matrix, (30) 
would correspond to purely downgradient (Fickian) transfer. Another example would be 
the special case of a channel flow in which there is no mean along-channel gradient 
(al&~ = 0), where the problem would reduce to two dimensions and A would become 
unity; (30) would then be completely downgradient. In a general flow which changes 
direction with height, q is not fluxed exactly downgradient everywhere by linear perturba- 
tions. 

On anf-plane, layer thickness and large-scale potential vorticity are equivalent; the form 
(30) would apply in both cases. On a P-plane, this is not the case: only q is fluxed 
pseudo-downgradient - the ‘pseudo’ indicating the inclusion of the matrix A - while 
thickness has an extra term. For a channel flow, this extra term in (25) is (pl’)~Z,, and is of 
uniform sign; converted to actual layer thickness this yields a northward flux which would 
be present in the absence of mean thickness gradients. Such a flux is clearly visible in Lee 
et al.‘s (1997, Fig. 4b) eddy-resolving channel experiments, where their middle layer is 
essentially of uniform thickness 500 m, and yet there is a uniform northward flux of about 
0.2 m2 s-l. Using the diffusivity they estimate (about 2000 m2 s-l) a flux (plf)Kh of 
0.1 m* ss’, which is clearly of the right order. Put another way, the term is equivalent to an 
advective velocity of pK/f which is typically of order 10m4 m s-i. This is a very small 
velocity; but in the channel case is of uniform direction (northward) and, being persistent, 
can exert a strong influence in the steady state. 
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This p-term raises an apparent difficulty. Lee et aZ.‘s (1997) example demonstrates that 
eddy fluxes of q, rather than z,, lend themselves naturally to parameterization; indeed, 
Treguier et ul. (1997) and Lee et al. (1997) call for such a parameterization. Greatbatch and 
Lamb (1990) also demonstrate that downgradient mixing of z, leads to mixing offlq rather 
than of q itself. However, most numerical models are not posed with q as a prognostic 
variable, so that unless some inversion procedure is undertaken-which would slow 
down the computation of a climate model drastically - knowledge of V . (u’q’) needs to 
be used indirectly. (If we represent the equation for q in the form qt + u . Vq = 0, then 
divergence terms do not naturally enter. If the equation is written in (the equivalent) 
thickness-weighted form (qz,), + V . (uqz,) = 0, which includes a divergence term, then 
this system merely predicts the absolute and not potential vorticity; recall that for linear 
theory the eddy fluxes of absolute vorticity are zero.) 

It would be preferable to use the transformed Eulerian-mean system of momentum 
equations (Lee and Leach, 1996) which are driven directly by potential vorticity eddy flux 
terms, and substitute the parameterization there. This yields (Lee and Leach, 1996, Eq. 
(3.7)), among others, an extra forcing term in the u-momentum equation of form Zpv. If 
this is parameterized by (30), with the matrix A set to the identity matrix (downgradient q 

-- 
transfer), this term becomes - KzpqY. Part of this term is simply - PK, a constant westward 
forcing. This term appears to have been first found by Welander (1973). Attempts to use 
this form of parameterization will be reported elsewhere. 

The matrix A is symmetric, and so corresponds to a diffusion directly (though this can 
appear as an advection in the tracer equations); antisymmetric terms would imply 
advection by other pseudovelocities. The lack of antisymmetric terms comes from the 
slowly varying assumption which gave a local problem; had extra derivatives been 
included (cf. Plumb, 1979) then asymmetries would have appeared. 

We note for future use two facts. First, it is easy to show from linear theory that 

KP = K, = 0, P = Pb> P = Ps (31) 

although this may not hold for more general forms of the parameterization. Second, a 
parameterization of form (30) must satisfy a necessary vertical integral criterion to 
conserve mass, discussed in Section 5 (related to, but not the same as, one suggested by 
Treguier et al. 1997). 

3. The form of the solution 

If we define the ‘bolus’ velocity 

then 

I 
u ZP 

ulql 
u*=-....-~--. u=fi+u* 

2, 4 ’ 
(32) 

(33) z,, + v . (UZ,>= 0 
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so that 

~,,+V.(iiZ,)=v.(~A.v~~)-v. P-+ -v. K~A vf [ KZp ] - ( . r)). (34) 

On anf’plane, since A is positive definite, solutions of (34) conserve integrals of layer 
thickness (and hence density itself), and the r.h.s. acts to decrease layer thickness variance. 
These are desirable properties, as noted by Gent and McWilliams (1990). If p is included, 
the additional effects have no such properties. 

Conversion to (x, y, z) coordinates gives the horizontal part of u* as 

* 
uH (35) 

(The vertical component is obtained from the requirement of zero divergence, to which we 
shall return.) Note that the diffusivity K is outside the derivative in (35), unlike the original 
shape proposed by Gent and McWilliams (1990). Gent et al. (1995) suggested that this 
form, without the p-term, permits a steady solution in which the isopycnals are flat 
(another desirable feature). The addition of the extra term appears to invalidate this; but 
recall that the diffusivity is that for a local instability problem and would vanish for flat 
isotherms. The large-scale density satisfies, in z-coordinates (Gent et al., 1995) 

p,+u.vp=o. (36) 

4. Boundary conditions 

An eddy parameterization must specify boundary conditions on the closed surfaces of 
the ocean domain. Because of the asymmetries in scales, the conditions on vertical and 
horizontal surfaces are not necessarily the same. 

At vertical walls, conservation of density requires that 

(T).n=O (37) 

where n is a unit vector normal to the wall. In a no-slip ocean model, both horizontal 
components of the large-scale flow would vanish on the walls, and so thermal wind would 
normally be small, so that (37) might already be reasonably satisfied by the large-scale 
flow. Thus its imposition is unlikely to cause difficulties in a model. 

The conditions at surface and floor are more subtle. At first sight, the equivalent of (37) 
is needed to provide boundary conditions on the vertical component of the effective 
vertical velocity, w*. Indeed, Gent and McWilliams (1990) and Gent et al. (1995) use 
w* = 0, and derive w* from a vertical integral of the horizontal divergence of u*. They 
note that in general this causes a rapid decrease in the eddy flux terms, from some interior 
value to zero over the last grid point. Treguier et al. (1997) examine this behavior, partly 
because they also discuss the problems raised by surface mixed layers. (The treatment of 
regions which are unstratified in the vertical is discussed in Part III.) Treguier et al. (1997) 
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suggest, as do Gent et al. (1995), a ramping down of the eddy fluxes with some vertical 
structure. They argue that this implies strong horizontal fluxes to balance the divergence 
terms. Visbeck et al. (1997) do not discuss the surface boundary condition beyond that in 
Gent and McWilliams (1990). 

Such a closure is somewhat ad hoc, and it is enlightening to examine what must occur at 
surface and floor in more detail. To begin with, Gent and McWilliams (1990) implicitly 
require 

s 

0 

+u*dz = 0. 

This is sufficient, but not necessary, to ensure w* vanishes at top and bottom. [A sufficient 
condition would be that 

s 

0 

+u*dz = kAV!P 

where ?(x, y) is a streamfunction for the vertically integrated bolus velocity, which is 
therefore nondivergent. It is hard to see how an expression for w could be determined. 
Below we show that for linear theory q would indeed vanish.] 

In density coordinates it is usual to think of outcropping lines as areas where density 
layers are flat and have no thickness (indeed, numerical isopycnic models adopt precisely 
this formulation). Thus the existence of nonzero thickness fluxes immediately adjacent to 
surface and floor implies the existence of delta-function changes, so that we must have 

u*Z, = K[-A . vi,, + PZ,Azlfl - ic(p,)A. v?s(p - p,) + +,)A. v?a(p - pb) (38) 

where the signs are consistent with the downward increase of density, and we have 
assumed an immediate change from nonzero to zero slope in Z. The terms in VZ are 
evaluated just in the fluid interior. (The equivalent formulation for potential vorticity has 
the difftculty that LJ becomes infinite rather than zero; an expression using q-l is very 
similar to (38), without the B-terms, and is not considered further.) Figure 1 shows a 
schematic of the situation at the surface. 

The two delta functions in (38) are responsible for the intrusion at the surface of light 
water into the denser domain, and the intrusion at the bottom of dense water into the lighter 
domain, when baroclinic instability occurs. In the Eady (1949) problem, for example, 
density gradients are uniform across the channel, and there is identically no thickness flux 
in the fluid interior. The entire thickness flux occurs in the two delta functions at top and 
bottom.” Converted into z-coordinates, it is clear that the delta functions have the correct 
physical behavior: 

u*=~&;E)+f+ z pz K(~,)A .F 6(z) + K(P~)A. v,p s(Z + ff). (39) 

3. The original use of delta functions at horizontal boundaries was made by Bretherton (1966) for potential 
vorticity. 
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u* (surface delta-function) 

\ isopycnal surfaces 

Figure 1. A schematic of the delta function structure near the surface as necessitated by a 
parameterization. 

In the Gent and McWilliams (1990) formulation, the diffusivity K was required to vanish at 
top and bottom. Here it becomes important that it not vanish, so that it may permit the 
correct additional fluxes of thickness near the boundaries. (The delta functions at top and 
bottom permit an elegant numerical treatment, discussed in Part II.) 

In turn, however, the existence of the delta functions becomes part of a necessary 
condition which any parameterization of form (30) must satisfy; we now discuss this. 

5. A necessary condition 

Consider a parameterization of form (30). We assume that (38) holds (no net integral of 
the thickness fluxes); we shall return to this from linear theory below. We distinguish 
between surface density pS and an interior value pS+ which is infinitesimally larger. A 
similar distinction occurs between pb and Pb-. Then we must have 

= -[KA . VZ]g+ + s 
P 

,; K$ . VZ dp + - s ” KA& dp 
f Pb 

+ K(P,)A. v& - K(Pb)A+tPb 

where the first two terms on the r.h.s. of (40) involve an integration by parts, and the last 
two terms on the r.h.s. are integrals of the delta functions in (38). All but the second and 
third terms cancel, leaving only 

s P 
,:” K~A . VZ dp = - - 

f s p; K&Z~ dp (41) 
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where the integral is formally only between pb- and ps+, although this does not matter. The 
important point is that any formalism (30) places a constraint on the vertical form of the 
diffusivity through (41).4 The equivalent in depth co-ordinates is 

s 
0 Kz P 0 

-A.Vpdz=- 
-H PI s f -H 

K& dz. 

If A is of full rank, we may separate out the two horizontal components and write 

s P 
” K~(A,,& + A,&) dp + - 

Pb s 
” I&?,, dp = 0 

f 6% 

S P 
“’ K~(&,& + A,,?,) dp + - 

Pb S ” I&Z,, dp = 0. 
.f Pb 

(4W 

(42) 

However, in the linear instability problem above, A is not of full rank, and while there is a 
restriction of the form 

S P 
,r K,(sin 02, - cos E,) dp - - cos 8 

f S p; K?, dp = 0 

there is no information in the orthogonal direction, so that the projection of ~~ on cos t3Z, + 
sin Cl?, is not restricted. 

It is possible to use linear theory to derive the requirement of vanishing integral of the 
bolus velocities. In this case, direct evaluations shows that 

S 
1 

,:-+ G dp = 5 Re S PS -ik sin 0 

Pb Pof 

=iRe 
-iksin0 B*PS 1 

Pof B.$]pb-~Re~~-i~~~eBp-B,*dp 

This can be combined with the first line of (40) to give 

= -[KA . V?]:;? + K(P,)A . V?/p, - K(Pb)A . EI,, = 0 

so that for linear theory there can be no net integral of the bolus velocity. 
By rewriting the bolus velocity in terms of u’q’, it is straightforward to show that (41) is 

the condition that the eddies generate no vertically integrated momentum. A similar 

4. Treguier et al. (1997) produce the quasi-geostrophic version of this condition. 
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condition was employed by Marshall (198 1) in his channel model. Green (1970) found a 
similar, but not identical, expression for the integral requirement of no net zonal accelera- 
tion for a channel flow. 

When A is of full rank, the consistency condition (41) places heavy constraints on the 
form of the diffusivity. Clearly that obtained above from linear instability automatically 
satisfies the (less stringent) constraint, and the above arguments confirm this. In particular, 
the trivial solution with K independent of density (and thus independent of height), is not a 
solution satisfying the consistency condition, unless-as in Gent and McWilliams 
(1990) - the diffusivity is defined to vanish at surface and floor, and is inside the 
derivative in the equivalent of (35). 

Whereas we know little about particle excursions in fully developed geostrophic 
turbulence, it is clear that under most circumstances we would anticipate that particles are 
more active, and thickness flux stronger, at mid-depth than at surface or floor. This can be 
confirmed for linear instability by direct solution of the equations (the Eady problem, as 
noted above, having no interior thickness flux, is not a good example in this respect). We 
would then prefer a diffusivity profile which reflected this belief. 

If the diffusivity satisfies (41), then numerical computation of w* from the horizontal 
divergence of u*, and imposition of the boundary conditions w* = 0, z = -H, 0 will give a 
consistent response, provided that the delta functions are subsumed into additional 
horizontal fluxes in the uppermost and lowest grid points when the integration for w* is 
made. 

6. An approximate form using a small wavenumber expansion 

A profile of diffusivity satisfying (41) is formally straightforward to obtain: one merely 
solves the local instability problem at each horizontal point and each timestep, chooses 
wavenumber and direction to maximize the local growth rate, and substitutes into (25) and 
(30). However, while this might be practical for the channel case (where direction is 
specified), the numerical loading would be too high for any practical use in three 
dimensions, as noted by Treguier et al. (1997). It is thus necessary to seek forms which 
satisfies (41) approximately as well as being physically motivated and rapid to calculate. 
This section and the next derive two such approximations, from a small wavenumber 
expansion and from an iterative procedure. 

We consider first the small wavenumber approach. 
An approximate profile can be created in three steps. First, seek an analytical solution to 

(18) valid for small wavenumber and small p. Second, choose a form for A. Third, use the 
form thus obtained, but with a more accurate estimate for the wavenumber, to produce a 
profile which will approximately satisfy requirement (41). 

a. Small wavenumber expansion 

Approximate solutions to the local vertical problem (18) have been sought in many ways 
in the literature. The approach here was used in the zero l3 limit by Flier1 (1975), and also in 
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an unpublished report by Branscome (1983). Consider a wavenumber which is small, so 

that ka << 1. We shall also suppose that p is small, and so write 

p cos 8 = (ka)2fi 

where fi has the same units as l3. 

Since the quantity required is lB/(u” - c) / 2, it is natural to pose 

+=A 
U-C’ 

(43) 

a definition frequently made for the purpose of bounding instabilities (Pedlosky, 1987). 
The equation satisfied by + is 

[(u” - c)~+,], + E;kZ(B - c)~$ - g’;0;20’p (~2 - c)+ = 0 

+p = 0, P = Pb? Ps- (45) 

Because for the moment we are interested only in the vertical shape of the diffusivity, we 

scale the problem by requiring 4 = 1, p = pb; full scaling will be added later. Pose 

+ = $. + (ka)2+1 + . . . 

c = co + (ka)2c, + . . . 

To leading order, (44) becomes 

[(a - co>2~oplp = 0; $0, = 09 P = Pb, PY (46) 

This has solution 

To next order, 

+()= 1. (47) 

[(a - %>2~1,1p + 
SPZ, 

$-& (ii - co)2 - - - f2P (u - co> = 0. 
0 

(48) 

Integration of this, and use of the boundary conditions, gives immediately 

1 

2 Pb 
~3p(ti-co)2dp=~~~;;rl(~-c,)dp 

1 
i.e., - s” (ii - c,)~ dz = fi fH (6 - co) dz. a2 -H 

(49) 

This has solution 

pa2 
c,=z---+i 

2 (50) 
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1 0 s 1 
2 

-z 

u=jIj -” u” dz; $dz-;2 

are the vertical mean and standard deviation of 6 respectively. In terms of the original p, 

(50) becomes 

(52) 

in which we recognize beta-corrections from the semi-circle theorems (Pedlosky, 1987). 
The solution is complex provided p is sufficiently small. Assuming, as we shall, that k is of 
order a-l, the term under the square root in (52) is positive if (very roughly) the internal 

potential vorticity gradient p - f2(zZZ /N2), has a sign change. Thus the small wavenumber 
approximation gives instability approximately satisfying the internal of the three necessary 

conditions, and ignores the two at surface and floor. In practice, p is not usually large 
enough to prevent instability in (52). 

The form of c$, is needed. Using (48), this implies that C$ has the form 

. 
I 
(ti(p”) - co)2 - F (U(p”) - c,) 

I 
dp” (53) 

which can be written more conveniently in z-notation as 

The value of 1 C$ / 2 is required for the parameterization, and this is simply 

’ I (u”(z”) - CO)~ - y (u”(z”) - co) (55) 

Suppose that A takes the linear instability form (26). Then if j3 is zero, both terms in (55) 
satisfy the integral constraint (41) on K individually. They therefore do so in summation 

even when k is not small. When p is nonzero, the integral constraint remains satisfied to 
leading order provided merely that k is small. In both these cases, the shape (55) gives a 
good approximation to the required behavior. When the wavenumber and p terms are order 
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1 in the balance, however, the integral constraint is only approximately satisfied by this 

ansatz, with the approximation becoming better as the length scale of the flow, and hence 
the importance of l3, decreases. 

Provided p is sufficiently small, the approximation predicts instability at all points (save 
where u is vertically uniform, where K should be set to zero to avoid divisions by zero). In 
the case where p is large, and ci is predicted to vanish, the diffusivity should be set to zero. 

6. Choice of matrix A 

A choice for A must be made. There are two simple choices possible: 

i. Ensemble averaging. An obvious approach is to average over an ensemble of angles 8 to 
obtain a pure downgradient flux 

11 0 
A=- 

l I 20 1’ 

There are difficulties with this choice, apart from the fact that a total ensemble implicitly 

involves some measure of upgradient transfer. One problem is that it is necessary for the 
profile of diffusivity to satisfy both conditions (42). While this could be achieved with a 
uniform diffusivity in the vertical, this, as noted, does not satisfy the consistency condition 

except for zero l3. An alternative approach would be to pose an expression for K which was 
a linear combination of two arbitrary functions of Z, and determine their amplitudes by 
applying (42). A second difficulty is that knowledge of the angle 8 is needed to compute the 

phase speed c - and, indeed, the formulae above explicitly involve ti and B, both of which 

contain 8. There is thus no reason to believe that ensemble averaging would yield 
physically reasonable values (although an approach similar to (d) below could be em- 

ployed). 

ii. Maximal linear growth rate. Choose the angle 0 which maximizes the linear growth 

rate. Again, this cannot be conveniently done for the full instability problem, but can be 
done for small wavenumber. To maximise coi, we note that from (5 l), 

2 p2 cos 8 

co; = - 4k4 + u,’ cos2 8 + 2ru,v, sin 8 cos 8 + v,” sin2 8 (56) 

where us, v, are the (vertical) standard deviations of U and V respectively, and r is their 
vertical correlation 

-2( s_“, ii dzj[Jr: ‘I; dzj]/usv.. 
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Thus 

2 

i 1 
112 

+ r”uzv,” COS (y - 28) (57) 

tan y = 
ru,v, 

+ 24; - vf 
(58) 

The expression for cai is trivially maximized when 

8 = y/2 (59) 

and is 

(60) 

Note that in the channel problem A is replaced by unity and 0 by zero, so that this step is 
not necessary, though co; is still required for the size of the diffusivity. 

c. A more accurate estimate of wavenumber 

The analysis above was for small wavenumber. As indicated, we anticipate inverse 
wavenumbers around the deformation radius in size. Clearly, too large a wavenumber 
would induce difficulties in (55), whose second term can take both positive and negative 
values. A suitable compromise, and one which appears to work well, is to seek an 
approximation for the wavenumber of fastest growth, based on the Eady (1949) model. 

For that model, 

k lmu = 1.606f 
NH (61) 

(Gill, 1982; Pedlosky, 1987), where k,,,, is the wavenumber of maximum growth. To 
extend this to nonuniform stratification, we form an estimate of the internal wave speed by 
a WKBJ approximation to 

N* 
w,+-w=o; 

c* 
w = 0, z = -H,O 

(Gill, 1982) as 

1 0 c i=- 7r s -H N(z) dz. (62) 



19971 Killworth: Parameterization of eddy transfer 1189 

a 

Figure 2. Schematics of the density field between two coarse gridpoints. In case (a), there is a front 
of width the deformation radius; in case (b), there is no front. Estimates of thermal wind will be 
inaccurate in case (b). 

Using the Eady formula (61) then gives an estimate of the fastest growing wavenumber as 

k = 0.51 f 
C’ (63) 

This would be expected to be accurate for mean flows “close” to the Eady problem and 
become progressively less so as the mean flow diverges from that problem. We test this 
formulation below in realistic circumstances and will see that it gives a very accurate 
estimate of the exact linear solution. 

d. A scaling for the parameterization 

We still know little about what controls the amplitude of mixing coefficients. Visbeck et 
al. (1997) produce a rationale which reduces to a diffusivity of order (velocity) X (length 
scale), where (velocity) is some measure of the vertical variability, and (length scale) is 
harder to define. They prefer a judicious mixture of deformation radius and the grid spacing 
(which is usually larger). Another possibility (e.g., Green, 1970) is to find a measure of how 
far the eddies are capable of mixing. Killworth (1981) suggests this distance would be 
(La) ‘j2, where L is a length scale for the large-scale flow. Such a scale is notoriously 
difficult to define in all but the simplest circumstances. 

Here, as a first guess, we follow Visbeck et al. (1997) and choose (length scale) = 
max (C/f, grid spacing).5 Here, C/f is taken as an operant definition of a, the deformation 
radius. In a non-eddy-resolving model, no single choice for a length scale can be adequate. 
Figure 2 demonstrates two extreme cases. The coarse resolution model has the same values 
for density at its gridpoints in both cases. In case (a), the front is of width the deformation 
radius; in case (b), there is no front. In both cases, however, the velocity would be 
estimated from numerical thermal wind as the same (low) value, relevant only for case (b). 

5. Note that Killworth (1981), following Simmons (1974), finds a length scale for the influence of linear 
instability of order the geometric mean of the flow length scale (however defined) and the deformation radius. 



1190 Journal of Marine Research [55,6 

In case (a), one would prefer to choose the grid spacing for a length scale rather than a 
simply to increase the estimated velocity to a correct value; in case (b), the velocity would 
be estimated correctly, and a would be more relevant. If we assume that in real oceanic 
regimes, fronts occur at widths of order a few deformation radii, then the velocity 
evaluated from thermal wind is of order (a/A) times the correct velocity. (Conversely, when 
grid spacings provide adequate resolution, computed velocities will be correct.) The tests 

in Part II are well resolved, so that a is used consistently; no tests have yet been made with 
the factor A. 

For the velocity estimate it is natural to use ci, which is here the standard deviation of the 
flow decomposed at angle 0. With a small grid spacing, the product gives the equivalent of 
a2 . kc; since k is chosen of order a- ‘. (Here a is the deformation radius defined by a = C/f.) 
This product is thus directly a length scale squared times an inverse time scale (the growth 
rate). 

Thus the final scaling is A max (a, A) . Ci, where A is some unknown scaling coefficient 
of order unity, to be tuned by numerical experiment. The above discussion then shows that 
poor resolution will underestimate velocities (and hence ci) by a ratio u/A, so that the 
numerical product Aci becomes approximately the exact product aci as required. 

e. Overall form jbr the parameterization 

Combining the above, we have 

p cos 8 
. (u”(z”) - co)* - ~ - ” k2 (u(z > - co) 

where A is of order unity, a = C/f, C and k are given by (62), (63) respectively, the angle 8, 
and hence the rotated velocity u”, is given by (59), and Ci is given by (60). Finally, the 
implementation takes the form (25), (30), or (36), which are all equivalent, with the matrix 
A given by (26). 

7. An approximate form using an iterative procedure 

Another approach to finding a more accurate shape for K, albeit with more computation, 
is to use an iterative version of the previous method. We use the same approximation (63) 
for wavenumber k of fastest growth. Pose an initial guess for 4 as $,, = 1. The iterative 
procedure now assumes that we know +,, n 2 0. To obtain c,+,, integrate (44) from top to 
bottom. This gives 

8 ,; @,(k*(C - c,+,)* - p cos e(zZ - c,+,)] dp = 0 (65) 
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or, rewriting, a quadratic for c,, i: 

+ $_9, E2+,, dz - y (66) 

The solution cl from (66) is precisely that in (52), of course. The next iterate +,+, is then 
obtained by integrating (44): 

4) n+l = 
1 +;-z N’(z’) dz’ s’ ~, 

-H(lqz’) - cn+,)2 -” 

I 

p cos 0 
. (a(~“> - c,+,j2 - k2 (a(~“) - c,,+,) dz (67) 

which is of form (54) when n = 0. This expression should replace that in curly brackets in 
(64) for the small wavenumber case; other aspects of the approximation remain unchanged. 
Note that the inner integral in (67) can itself be expressed as a quadratic in c,+,, so that the 
integral can be tabulated while the solution of (66) is being prepared, saving computation 
time. 

The small wavenumber solution is thus seen as the first term in the iterative scheme, 
although one would naturally use I+,, 1 2 for the diffusivity and not the linear form (55). None 
of the individual functions 4, satisfy the necessary condition (41) precisely, although when 
the solution is sufficiently converged, (41) will be well satisfied, but with a less than 
optimal wavenumber. In the three-dimensional case, the angle 8 must also be chosen. Since 
8 enters (67) in a nonlinear fashion - the iterates $a depend intrinsically on 8 - it is 
suggested that (59) be used as before as an approximation. This can easily be computed on 
the first pass of the iteration scheme. 

For all cases tested, this iteration scheme converges rapidly (to the exact solution for the 
approximate k). Examples will be given in the next section. Iwe can ensure (41). or (41a), 
is satisfied exactly. Using either the approximate or iterated forms, merely compute the 1.h. 
and r.h.s. of (41a), and subtract a value independent of z from K which ensures (41a) is 
satisfied.] 

8. Some comparisons with linear theory 
The small wavenumber approach can be tested against maximum linear growth rate 

calculations in fairly realistic configurations. We consider the case when the vertical 
density structure and the horizontal velocity (here restricted to east-west only) are both 
exponentials in the vertical, but with differing scales 

p = - Ap exp azJH, u = u. exp WH. 
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Figure 3. Comparison of the diffusivity from the fastest growing linear mode and from the 
approximate analytical form, for mean density and velocity varying exponentially in the vertical. 
The fastest mode diffusivity is the bold line; the small wavenumber form is the dashed line; and 
the three labeled dash-dotted lines are the first three iterated solutions. (a) shows a = 6 = I ; @ = 0; 
(b) shows a = I, 6 = 2, p = 0.5 with westward velocity; (c) shows a = 2, 6 = 1; p = 0.2. The 
depth is nondimensionalized on H, and the diffusivity is normalized in both cases to be unity at the 
floor. 

Here a and 6 measure the nondimensional decay rates of density and velocity with depth, 
and Ap, u,, are amplitudes of density and velocity respectively. A channel problem is chosen 
so that the angle 8 does not enter the problem. Substitution into (44) permits numerical 
solution; that with maximum growth rate kci is chosen. These can be compared with the 
approximate solutions given by (55) or any of the iterates (67). Only the shape of the 
diffusivity in the vertical is examined here, with its value set to unity at the floor. 

Results are presented nondimensionally, using u. as a scale for c, and the natural scales 
of fl(g’H)‘” for k, where g’ = gAplpo, and uof 2/g’H for p. Note that we can take u. of 
either sign when p is nonzero; when it is negative, this corresponds to westward flow. 

Three cases are shown here, although fifteen have been run. In all cases, the diffusivity 
peaks at mid-depth, close to, but not always at, the position of the critical layer which 
would exist if ci were zero. The diffusivity varies by a factor of 2-4 through the depth. The 
shape of this variation is in excellent agreement with values found empirically from 
eddy-resolving models (Treguier, 1997). The surface value of K is larger than the bottom 
value when velocity decays slower than density in the vertical. 
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Figure 3a shows a simple case a = 6 = 1; B = 0. The exact fastest mode has k,,,,, = 2.03, 
c = 0.64 + 0.12i. The approximate wavenumber is almost identical (k = 2.04). The small 
wavenumber approximation yields c = 0.63 + 0.1%. This behavior is typical of the cases 
studied; the real part of the phase speed is well approximated by (52), but the imaginary 
part is overestimated by about 50%. This means that the shape of K in the small 
wavenumber approximation is underestimated near the (approximate) critical layer, since a 
division by (ii - c)~ is involved; this too is clearly visible in all cases studied. 

The iterated solutions converge rapidly to a good approximation of the fastest growing 
mode. The first iterate corresponds to the small wavenumber solution, except that the full 
I+, 1 2 is being computed rather than the approximation (55). The difference between the two 
shows that trn ($,) must be large at the surface. By the second iteration, the solution is very 
close to the fastest growing mode. 

Figure 3b shows the case a = 1, 6 = 2; B = 0.5, a,, < 0. For typical ocean values, the 
value of B is rather high. This case demonstrates a larger variation in K, with a peak near the 
effective critical layer, and is chosen to be one for which the approximate solutions are least 
accurate. The exact solution has k = 2.28, c = -0.54 + 0.16i. The approximate 
wavenumber is 2.04, an error of 10%. The small wavenumber solution for K is now far 
from the exact solution, although the phase speed is -0.49 + 0.23i, again with a good 
estimate of Re (c) but overestimating Im (c). The iterated solutions converge to the exact 
solution for the incorrect k, so that the subsurface peak in K is underestimated. 

Finally, Figure 3c shows the case a = 2, 6 = 1; B = 0.2. This case has the subsurface 
maximum in K below mid-depth, a feature reproduced by many of the approximate 
solutions. The exact solution has k = 1.88, c = 0.59 + 0.12, while the approximate 
wavenumber is 1.79. Both the small wavenumber solution and the second and higher 
iterates of the iterated solution give excellent agreement with the form of K; the small 
wavenumber solution predicts c = 0.60 + O.l8i, again overestimating the imaginary part. 

Other results (not shown) suggest that either the small wavenumber approximation, or 
two iterations of the iterated scheme, give good fits to the fastest growing mode diffusion 
profile. Each method requires only O(n) computations at each kid column containing n 
grid points; every iteration doubles the computational load. However, these are much 
smaller than the O(n3) operations needed to solve the local instability problem numerically 
(and this ignores the effort to select the correct eigenmode from the n returned from such a 
routine, which is nontrivial). Since there is little reason to require an exact fit to what is 
only a linear solution in the first place, it is not recommended that iterations beyond 2 are 
used in practice. 

9. Conclusions 

This paper has set of to achieve two parallel goals: to use linear perturbation theory to 
suggest a structure for a parameterization of baroclinic instability which is, to leading order 
at least, a solution of the equations of motion; and to deduce conditions on parameteriza- 
tions which must be satisfied in general because of potential vorticity conservation. 
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Boundary conditions at surface and floor are considered carefully. This leads to a 
parameterization using either of two approximate forms as representations for the linear 
instability; both satisfy the necessary conditions approximately. 

Although the scheme evaluates thickness mixing, it differs from Gent and McWilliams 
(1990) in many respects. First, the diffusion coefficient is predicted to vary with position, 
including a strong vertical structure to the mixing, similar to that deduced by Treguier 
(1997) from an eddy-resolving model. Second, the diffusion coefficient is outside the 
vertical derivative. Third, the mixing is turned by the matrix A, to align itself along the 
pathways of the mixing of the fastest growing linear normal mode. Fourth, thickness itself 
is not mixed, but potential vorticity is. This does permit steady solutions with level 
isotherms, since the diffusivity is zero in such regions. 

This paper has stressed various aspects of parameterization schemes, including the need 
to conserve potential vorticity rather than layer thickness and the variation of mixing with 
depth. It is not yet clear how important such details are. The northward flux computed by 
Lee et al. (1997) is clear evidence of potential vorticity, rather than thickness, mixing 
occurring in a layered model. The effective velocities computed from these fluxes are very 
weak, but monotonic. The necessary conditions deduced in this paper show that a vertically 
uniform diffusion coefficient cannot in general yield a nondivergent bolus velocity; yet 
under normal circumstances one could make a small correction to a vertically uniform 
coefficient which would satisfy the condition, without needing the strong vertical variation 
obtained, e.g., from linear theory. Stringent tests will be necessary to evaluate the relative 
importance of each of these features. 
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