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On the transition between different dynamical regimes 
of the Antarctic Circumpolar Current 

by V. M. Kamenkovich’ 

ABSTRACT 
Two different dynamical regimes of the Antarctic Circumpolar Current are considered: the 

Sverdrup regime and the frictionally controlled one. In the former the intensity of the current does not 
depend on friction, while in the latter it is inversely proportional to the coefficient of friction. The 
transition between these two regimes is studied. It is shown that the frictionally controlled regime is 
generated not only in the case of closed isolines of ambient potential vorticity q. The regime is 
formed in the case of blocked (or partially blocked) q isolines as well, if the slope of the q isolines in 
the zonal direction is sufficiently small. 

The Antarctic Circumpolar Current (ACC) is the only large-scale current that has no 
apparent meridional barriers in its way. It is well known that a specified external forcing 
can generate in the ACC region two completely different dynamical regimes. Depending 
on the geometry of the isolines of ambient potential vorticity q, the nondimensional 
transport streamfunction JI can be of 0( 1) or 0( l/e) where E is a small nondimensional 
coefficient of friction. In the former the dynamics are controlled by the Sverdrup relation 
which is why the intensity of the current does not depend on friction. In the latter, the 
friction controls the intensity of the current, although the position of the streamlines is 
determined by the position of q isolines. Despite numerous publications on the subject it is 
still not very clear what dynamical regime governs the real ACC (see, for example, Warren 
et al. (1996) and the subsequent discussion in Hughes (1997) and Warren et al. (1997)). 

One usually believes that the Sverdrup regime is formed when all q isolines cross the 
side boundaries of the region (the blocked case) while the frictionally controlled regime is 
formed when all q isolines are closed contours encircling Antarctica (the closed case). It is 
useful to notice that this is not necessarily the case. The frictionally controlled regime can 
exist in the blocked (or partially blocked) case as well, if the slope of the q isolines in the 
zonal direction is sufficiently small. 

To explain the basic arguments in the simplest way, consider the barotropic model in a 
zonal channel D: -L I x 5 L, 0 5 y 5 1 with periodic conditions in the x-direction. All the 
flow characteristics are supposed to be nondimensional. The mathematical formulation of 
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the problem is as follows. The transport streamfunction + is the solution of the vorticity 
equation 

aA+ + J(+, q)= curl, (7/H) (1) 

satisfying the impermeability and periodic boundary conditions 

*=Q at y=o (2) 

*=O at y=l (3) 

N-6 Y> = wJ% Y> (4) 

where Q, the total transport of the ACC, is to be determined. 
Here @lax = vH, &J/ay = -uH; u, v are the zonal and meridional velocities 

respectively; q is the ambient potential vorticity; His the depth of the ocean; 7 = (T,, TV) is 
the wind stress; E is the coefficient of bottom friction, E << 1; other notations are traditional. 

The functions 1, H and q are supposed to be periodic in the x-direction. 
For the barotropic model q = f/H, f is the Coriolis parameter. Eq. (1) holds for the 

equivalent barotropic model as well (with some slight changes in the coefficients at the 

friction term and the right-hand side). In this case q remains a specified function of x and y, 
however, the formula q = f/H should be modified to take into account the vertical structure 

of the currents (for a discussion of the equivalent barotropic model see Krupitsky et al. 

(1996) and the references therein). The purpose of the note is to consider the influence of 

the geometry of q isolines on the Antarctic circulation. 
To formulate an additional constraint, necessary to determine Q, recall that initially we 

have a system of momentum and continuity equations for velocity vector (u, v) and the sea 

surface elevation 5. It is convenient to write the momentum equations as 

(6) 

Let’s assume that rl~ is already known. Then to find 5 from (5) and (6) one solves the 

problem of determining a function from its known first derivatives. A necessary and 
sufficient condition of single-valuedness of 5 in the channel is 

where r is a closed contour encircling Antarctica (Kamenkovich, 1961). If one takes y = 
const as such a contour, then using (5) gives 
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Figure 1. A simple pattern of closed q isolines when aq/ax = O(l), aq/ay = O( 1) (a = 0( 1)). The 
Sverdrup regime is valid outside the boundary layers located in the vicinity of the bold face lines 
(see text). Arrows show the direction of integration of the Sverdmp relation (10). 

This is the sought additional constraint on the transport streamfunction a. 
To determine the transport streamfunction $, two auxiliary functions are usually 

introduced, IJJ,, and $, . The function &, is the solution to (1) with the boundary conditions 
IJJ~(x, 0) = 0, \Ira(x, 1) = 0 and th e periodic condition in the x-direction; the function +i is 
the solution to the homogeneous form of (1) (7 = 0) with the boundary conditions 31,(x, 0) = 
1, ~JJ, (x, 1) = 0 and the periodic condition in the x-direction. After determining Go and ~JJ, 
the function + is represented as 

9 = $0 + Qk. (9) 

Substituting (9) into (8) yields an algebraic equation for calculating the total transport Q of 
the ACC. 

Suppose that all q isolines within the channel are blocked by the side boundaries, and 
dqldx = 0( 1) and aq/dy = 0( 1). In this case the Sverdrup relation 

J(*, q) = curl, (T/H) (10) 

is valid everywhere in the channel except the boundary layers. For a simple configuration 
shown in Figure 1 these boundary layers are the Stommel boundary layers along bold face 
parts of the side boundaries, internal boundary layers along slanted bold face lines, and 
some transitional (or comer) regions in the vicinity of the end points of these lines. Eq. (10) 
gives the variation of the transport streamfunction + along the q isolines caused by the 
wind-stress action. Using (8)-( 10) gives +. = O(l), +i = O(l), Q = 0( 1) and + = 0( 1). 

The general criterion for determining the position of the Stommel boundary layers was 
derived by Pierre Welander (Welander, 1966, 1968). Pierre initiated a series of studies 
dealing with matching together the Sverdrup-relation regions, the Stommel boundary 
layers, and the transitional boundary layers (or comer regions) for different configuration 
of q isolines and the boundary walls (see, for example, Kamenkovich and Mitrofanov, 
197 1; Kamenkovich and Reznik, 1972). Traditionally this approach was applied to the 
mid-latitudes regions. Stommel (1957) assumed the application of the Sverdrup regime to 
the ACC region by incorporating some meridional barriers; his idea was developed in a 
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Figure 2. Three different cases of q isoline patterns for an elongated channel (L > 1): (a) closed q 
isolines; (b) partially blocked q isolines; (c) blocked q isolines. The slope angle (Y of q isolines is 
assumed to be small. 

series of papers (see, for example, Baker, 1982). Recently, Krupitsky and Cane (1994) and 
Wang and Huang (1995) (see also Wang and Huang, 1994) modeled the ACC region as a 
zonal channel and showed that under certain bottom topographies the Sverdrup relation 
remains applicable. 

The specific regime for the case of closed q isolines was considered by Kamenkovich 
(1962). In the case of q = y (Fig. 2a) the asymptotics (the leading behavior) of the transport 
streamfunction + depends only on y, 

4J = WY), (11) 

and satisfies the following equation 

e2* 
E - = curl, 1 

dY2 0 H (12) 
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where the overbar means the averaging along y = const over the length of the channel. In 
contrast to the Sverdrup case, we see that the diffusion of vorticity (or the bottom friction) 
plays a leading role in determining the values of tl~, however the same diffusion does not 
influence the position of the + isolines at all. Using (S), (9), and (12) gives $a = 0(1/e), 
+, = O(l), Q = 0(1/e), and ~JJ = 0(1/e). 

The formulas (lo)-( 12) are asymptotic. Thus, under the same forcing + = 0( 1) for the 

case of blocked q isolines (with dqlax = O(l), dqlay = 0( 1)) while for the case of closed q 
isolines encircling Antarctica JI = 0( l/e). This disparity is due to the different dynamical 
balances for these two regimes: the Sverdrup balance and the balance between vorticity 
diffusion and external source of vorticity caused by the action of wind. 

Assume now that dqldx = O(E) while dq/dy = 0( 1). Then it is not difficult to show (see, 
for example, Krupitsky et aZ., 1996; Appendix A) that for small E the asymptotics of the 
transport streamfunction $ depends only on y and satisfies the following equation 

where 

(13) 

(14) 

is the slope of q isolines in the zonal direction. 
Finally, consider the transition from the frictionally controlled regime to the Sverdrup 

regime by perturbing the q isolines. The simplest type of such a perturbation is shown in 
Figure 2. Starting with the closed q isolines (o = 0) we gradually increase the slope angle 
cx to provide a smooth transition to the case presented in Figure 1 (CL = 0( 1)). Recall that in 
the case of Figure 1 we have the Sverdrup regime. It is evident that the transition can be 
reversed, from the Sverdrup regime to the frictionally controlled one. It is important to 
stress that as long as the slope angle (Y is small, the function $a = 0( l/e), $r = O(l), as is 
seen from (13). Therefore Q = 0(1/e) and the transport streamfunction $ = 0(1/e) or, in 
other words, the regime remains frictionally controlled whether q isolines are blocked, or 
partially blocked, or closed. Figure 2 illustrates this statement for a very elongated channel 
(L >> 1). In Figure 2a all q isolines are closed; in Figure 2b only part of q isolines is closed 
while in Figure 2c all q isolines are blocked. Nevertheless, in all three cases ~JJ = 0(1/e) 

since in all these cases tan OL = O(E). Thus, the dynamical regime in a zonal channel is 
substantially influenced by the slope of q isolines in the zonal direction. Whether the q 
isolines in the channel are blocked or closed, this is of secondary importance. 

Based on the Sverdrup solution it is easy to understand why $a (and therefore $ and Q) 
has large values when (Y is small (as compared to r/r0 for OL = 0( 1)). To find +(A) in the case 
of (Y = 0( 1) one integrates curl, (1/H) along a q isoline from B to A, see Figure 3. For small 
(Y the integration goes also along a q isoline but from D through C to A. For an elongated 
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Figure 3. The comparison of paths BA and DCA of integration of the Sverdrup relation (10) for 
different slope angles of q isolines (Y and 01’ for an elongated channel (L >> 1). The integration in 
different parts of the channel is shown. Arrows give the direction of integration. 

channel the path DCA is clearly longer than the path BA. It seems that it is the Sverdrup 
relation that dictates large values of $,, for small 01. 
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