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Time-dependent motions and the nonlinear 
bottom Ekman layer 

by K. H. Brink’ 

ABSTRACT 
The laminar bottom Ekman layer beneath a flow with finite relative vorticity is studied. First, the 

case with only a steady interior shear flow is reviewed, and then a case with a spatially uniform 
oscillating flow is superimposed. In both cases, the problem can be reduced to solving ordinary 
differential equations. The competition of two effects governs the results. The interior vorticity 
effectively modifies the rotation rate, but advection (especially vertically, due to Ekman pumping) 
tends to counteract the vorticity modification. Vertical advection keeps the time-dependent boundary 
layer well behaved for negative interior vorticities, but a boundary layer singularity can still exist at a 
single superinertial frequency when interior relative vorticity is positive. 

1. Introduction 

Occasionally, nature provides settings where there is both a mean flow with high relative 
vorticity, and relatively uniform (in space) oscillating flow. A well-studied example of this 
is above the summit of Fieberling Guyot, in the eastern North Pacific (Kunze and Toole, 
1997; Brink, 1995). In this case, energetic K, diurnal tides exist above the summit, within a 
radius of about 5 km of the center. These tides, in turn, are an important factor in driving a 
laterally sheared azimuthal mean flow that approximates solid body rotation (uniform 
relative vorticity o) over the summit having a mean relative vorticity of about -0.7 J 
where f is the Coriolis parameter. Fieberling Guyot is unlikely to be an isolated example of 
superimposed oscillations and a strong mean flow. Maas and van Haren (1987) for example 
suggest a similar feature in the North Sea. Indeed, such a combination might be reasonably 
common in situations where tidal rectification (e.g., Loder, 1980) is important. 
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The steady part of the bottom Ekman layer problem with a finite interior relative 
vorticity was treated in a nongeophysical context by Rogers and Lance (1960), and the 
approach to this aspect of the problem here follows their methods closely. The effectively 
steady problem has also been treated in a geophysical context for the limit of small Rossby 
number (weak, but not vanishing relative vorticity) by Benton et al. (1964), Denbo and 
Allen (1983) and Hart (1995). It should be noted that Benton et al. (1964) carried out their 
expansions to fifth order in Rossby number, and that Hart (1995) allowed for time 
dependent, spatially varying interior vorticity. Further, Bennetts and Hocking (1973) 
considered steady flows with a finite Rossby number. The present study treats finite Rossby 
number flows with a spatially uniform, superimposed, oscillating flow. 

2. Formulation 

The problem to be solved is for horizontally unbounded, unstratified, hydrostatic 
conditions. The system is rotating at a constant rate about the vertical z axis and is bounded 
by a bottom at z = 0. A constant eddy viscosity, A, is assumed. In the interior, a uniform, 
geostrophically balanced steady shear flow plus a spatially uniform time-dependent 
component exist such that 

and 

uo = r(t)9 (lb) 

where (uo, vo) is the interior velocity, o,, is the (constant) interior relative vorticity, x is the 
coordinate perpendicular to the shear flow, p is the (constant) density, and p is pressure. All 
variations in the y directions will be ignored, except that a constant (in y) pressure gradient 

will be allowed. 
Under these conditions, the equations of motion are 

1 
ut+uu,+wuz-fv= --p,+Au,,, 

P 
(24 

1 
v,+uv,+wv,+fu= --py+Av,,, 

P 
(2b) 

u, + w, = 0. (2c) 

where u and w are the velocity components in the x and z directions, respectively. 
Subscripts X, z and t represent partial differentiation with respect to horizontal distance, 
vertical distance and time, respectively. The velocity fields can be broken into two 
components as 

u = y(t) + ci(x, z, t), (34 
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v = 00x + g(t)+ P(x, z, t) 

w = 0 + vqx, z), 

and substituted into (2) to obtain 

1 

615 

WI 

(3c) 

1 
~~+g,+~0,+(f+oo+~~)(li+y)=-p171.+A~,,, 

ci, + lcz = 0. 

The boundary conditions are 

u=y+fi=o 

v=D+o@x+g=o 
I 

atz=O 

and 

i&O+0 for z - w 

ti bounded for z 

The system (4) is nondimensionalized as follows 

x=Lx’, 

(u, v) = V(u’, v’), 

Z" 
w  = V-w', 

L 

V 
w 0=-, L 

(Y> 8) = WY’, s’) 

P = w!nP’ 

t = f-It’ 

where primes denote dimensionless quantities. Using (1) and (6), (4) becomes 

t4b) 

(4c) 

(54 

t5b) 

(5c) 

(54 

(se) 

(64 

t6b) 

(6~) 

(64 

(6e) 

t6f) 

t6g) 

(6h) 

a,, + r;, + R[(li’ + r’)a;t + $‘a,,] - (9’ + g’ + x) = -p;, + li:y ON 
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v ;̂, + g;, + RG’O;. + [l + R + RP;,](zZ’ + 7’) = -p;,+ i&, 

a;, + kc;, = 0, 

U’b) 

(7c) 

where the Rossby number 

&!!3 
f (8) 

can be positive or negative depending on the sign of the shear. Henceforth, all primes on 
nondimensional variables will be dropped. In the interior (for large z), the boundary layer 
horizontal flow components (z&9), are expected to vanish, so the far field flows are taken to 
obey 

yt-g-x= -p m (94 

g, + (1 + Rh = -py. (9b) 

This pair of equations is then subtracted from (7a, 7b) to obtain the boundary layer 
equations. 

In order to describe the background, steady flow, time dependence will be temporarily 
dropped: 

px = x, (104 

py=y=g=o. (lob) 

By assuming that 

fi = U(z)x, (114 

0 = V(z)x, (lib) 

I6 = W(z), (llc) 

system (7) can be simplified to a set of coupled, nonlinear ordinary differential equations: 
-- -- 

R(u u + w uz) - < = &, W-4 
-- 

Rwv, + (1 + R + Rv)u = iz, 

u + w, = 0. 

The conditions (5a-c) at z = 0 can be restated as 

U(0) = 0, 

V(0) = -1, 

Wb) 

WC) 

Wa) 

Wb) 

and 

W(0) = 0, (13c) 
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while, anticipating the boundary layer character of the flow, 
-- 
z&v-+0 Z-+” (134 

w bounded z - cc). WeI 

An analogous problem can be formulated in cylindrical coordinates with the far-field 
azimuthal flow in solid body rotation relative to the reference system of the boundary 
(Rogers and Lance, 1960). The solution to (12)-( 13) is presented in Section 3. 

Once the steady sheared solution is obtained, it is then possible to impose a spatially 

uniform, time-dependent flow, thus generalizing the oscillating Ekman layer problem (e.g., 
Sverdrup, 1927). Solutions are sought in the form 

u = ux + y(t) + C(z, t) (14a) 

v = vx + x + g(t) + C(z, t) (14b) 

w = ii, (14c) 

where the notation is as in (7), (9), (11) and where zZ, G are boundary layer flows related to y 
and g. Thus, at z = 0, 

aa 0 = --r(t), (154 

qo, t) = -g(t) Wb) 

and 

i&O+0 as z-m. (15c) 

Upon substitution of (14) into (7) and subtracting (9), the governing equations become 
-- 

xu,+a,+R[xuu+~u+yu+xwu,+w~~]-xv-v”=x~~+~~, (164 

xit + Ft + Rw[(xi, + Q] + Ry; + (1 + R + R;)(xi+ 6) = xGz, + Cz, (16b) 

u + w, = 0. (16~) 

Differentiating (16) with respect to x leads to equations for the sheared flow: 
-- -- 

Since 

u,+R[uu+wu,]-;=u,, 
-- -- 

i, + Rw v, + (1 + R + Rv)u + &,. 

(174 

(17b) 

U(0) = 0, 

V(0) = -1, 

and since (17) is uncoupled from the time-dependent problem, its steady solution will be 
identical to that of (12). The mean flow is thus unaffected by spatially uniform advection of 
the uniform vorticity and vertical momentum. 
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The governing equations for the time-dependent flow are found by subtracting (17) from 
(16) to obtain: 

and 

(184 

IJ + R% Fz + (1 + R + R:) u” - Fz,, = - Ryi. (18b) 

These equations are linear in (u”, G) and show the effect of the steady flow through 
momentum advection and modification of the vorticity field. 

3. The steady background flow 

It is not obvious that (12) has any analytical solutions for R # 0, although Benton et al. 
( 1964) and Denbo and Allen (1983), for example, used perturbation solutions for small R to 
obtain some results. Problem (12-13) was solved here by a Runge-Kutta “shooting” 
technique as follows. First, five equations were developed from (12) in the form 

w,= +7 (1W 

Tz= 5, (19b) 

4% = *3 (19c) 

JI, = i + R(-c$~ + i+), (194 

5, = Rwc - (1 + R + Ri+, . We) 

Note that U is eliminated using (12~). Conditions (13a-c) provide “initial” conditions at 
z = 0, for 4, V and W. Two other conditions, for iz( = 5) and W,,( = - U, = +), representing 
the vector bottom stress, must be found. In practice, the bottom stress magnitude 

c = [u;(o) + ~(o>]“* GOa) 

and direction 

u,(O) (j-tan-‘- I 1 v,(O) (2Ob) 

were searched until a solution was found where u and 7 vanish far from the boundary, 
typically at 15 I z I 75, depending on R. The numerical solutions were obtained using the 
Matlabo adaptive fourth and fifth order Runge-Kutta scheme “ode45” with a nominal 
accuracy of lOpa. Isolating decaying solutions required that c and 0 be found to at least 
seven decimal places accuracy. 

Eqs. (12-13) can be used to derive relations for the Ekman transport: 

u,=[idz= - (1 + R)-’ $0) + 2Rclt;dz (214 
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v, = sx” & = u,(O) - 2Rc ii c dz. @lb) 

The integrals on the right-hand sides of (21) represent the summed effects of horizontal and 
vertical momentum advection. A simpler form for (21a) follows from (12~) and (13): 

77, = --w(a). (22) 

Some insight can be gained by considering solutions far from the boundary (z > 1). In 
the far field, U and V become small, so the uu and Uv terms in (12a) and (12b) respectively 
become negligible. Likewise, from (12c), W is seen to approach a constant Y&,. Under these 
assumptions, (12) can be reduced to a set of linearized equations 

R w,, u, - V = &, GW 
-- 

RwOv,+ (1 + R)u=<,,. (23b) 

Solutions to this pair would have to decay for z > 0 and would have to match with the full 
nonlinear results for some large but finite elevation. 

The linearized system (23) has solutions of the form 

where 

a = q t(tp”2 + Tf)‘“, (24b) 

f3 = -(I + R) (24~) 

and 

(244 

In the linear case, the two complex bounded solutions combine to form the traditional 
Ekman spiral. With nonlinearity and for R > - 1, there are still two roots corresponding to 
oscillating, decaying behavior. The “wavelength” of the resulting spiral is determined, 
from (24b), by the competition of smaller 1 I3 1 making large wavelength, and more negative 
R& compressing the boundary layer thickness. In fact, for R = - 1, the solutions reduce to 

a = 0, Rw, (25) 

where R&, < 0. That is to say that a bounded, nonspiraling solution exists only because of 
the downward advection. 

For strong negative shears, (24b) suggests rather different behavior once pl’* becomes 
purely real. The nonunique solutions in this range found below all have R&, < 0, and i& = 
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0( 1). Thus, three real, negative roots (Y exist, and only one positive root corresponding to 
unbounded growth. The transition from two degrees of freedom to three in the far-field 

behavior is apparently related to the loss of uniqueness. A closer inspection of (24b) 
suggests that no unique, decaying solutions should ever be expected for R < - 1, i.e. for 

B > 0. Specifically, if & = 0, only oscillating, nondecaying solutions exist. If R& < 0, 
there are either three negative real roots and one positive; or 2 complex roots with negative 

real parts, one real negative root, and one real positive root. In either case, for RF0 < 0, 

there are three degrees of freedom. If R& > 0, only one root with a negative real part 
exists: apparently too few degrees of freedom. All told, it seems unlikely that a proper, 

unique boundary layer solution can exist for R < - 1. 
Numerical solutions to (19) were obtained in the range - 1 5 R 5 1. For R > 1, no 

peculiarities appeared to be developing. For R < - 1, however, no unique solutions could 
be found, e.g. for several different choices of 0, a value of c could be found that allowed the 
solution to decay away from the boundary. 

The bottom stress magnitude c and veering angle 8 are shown in Figure 1. Their 

variation with R is nearly linear and acts in the sense to increase the downstream bottom 
stress, and decrease the cross-stream stress, as R increases. The accompanying velocities, 

u and !, are shown as profiles in Figure 2 and are contoured in Figure 3. Note that the 
velocities and transport do not change signs as the lateral shear, R, changes sign because the 

sign is accounted for in the nondimensionalization. As might be expected from the 
changing total vorticity in the interior, the boundary layer becomes thicker as R approaches 
-1 (notice, e.g., the -0.1 contour for u), but the layer thickness does not become 
unbounded. Rather, the transverse Ekman velocity magnitude increases as R - - 1, and 

the transverse transport magnitude (Fig. 4) also increases. [The present results differ from 

those of Rogers and Lance (1960) in that Figure 4 shows a monotonic decrease in 
transverse Ekman transport as R -+ - 1. Their results show the equivalent of a minimum at 
R = -0.9. Their minimum may be due to having the outer bound of numerical integration 

too small.] At the same time, as R approaches - 1, the vertical wavelength of the Ekman 
spiral (Fig. 2 or see zero contours in Fig. 3) increases so that the spiral disappears at R = 

- 1 (Fig. 5). On the other hand, for positive R, the spiral becomes more apparent, while net 
Ekman veering (transverse transport) decreases. 

The results can be compared directly with the first order asymptotic Benton et al. (1964) 

result for transverse Ekman transport (Fig. 4). Their results yield, in the present notation 

(26) 

which compares extremely well with the present, exact, results for IRI 5 0.2. This 

parameter range encompasses many oceanographic flows of interest, suggesting that in 
many cases, the simple result (26) may be adequate. 
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1.2 
Stress Magnitude (solid), y wmp. (dashed), -x component (dotted) 

0.8 -- 

3 
2 
a 0.6- 
0 
:: 
$ 

0.4 - 

0.2 - 

0' 
-1 

I 
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Rossby Number (R) 
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40- 
% 
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2 co 
20 - 

10- 

Rossby Number (R) 

Figure 1. Upper panel: Bottom stress magnitude (solid line) versus Rossby number for the steady 
problem. Also shown are downstream stress (dashed line) and cross-stream stress. Lower panel: 
Bottom stress angle versus Rossby number. 

A naive view of the problem would suggest that changes in the total interior vorticity, 
(f + vOX) dimensionally, would lead to variations in the thickness of the Ekman layer (due 
to effectively changing the rotation rate), and to accompanying changes in the bottom 
stress and transverse Ekman transport. There is some qualitative truth in this concept, in 
that, for example, the Ekman layer becomes thinner as total vorticity increases (Fig. 3). 
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u for R = -1 to 1 by 0.2 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
-1 -0.8 

vforR=-ltolbyO.2 

-0.6 -0.4 -0.2 

Figure 2. Profiles of boundary layer solutions for different values of R. The dashed curve is for R = 
- 1 .O, its nearest neighbor is for R = -0.8, and so forth in increments of 0.2 up to R = 1.0 
(rightmost curve in both cases). (a) Transverse velocity. (b) Alongstream velocity. 

However, the actual changes are far less than would be expected (e.g., the boundary layer 
does not become infinitely thick for R = - 1) for at least two reasons. First, close enough to 
the boundary, all flow components approach zero, so that finite relative vorticity effects 
vanish close to the boundary. Second, this outlook ignores effects associated with 
momentum advection. 
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Rossby Number (R) 

8 

6 

0 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Rosby Number (R) 

Figure 3. Contours of u(z) and $2) as function of Rossby number for the steady problem. Dashed 
lines are used when the contour interval is not 0.2. 

Because there is always a lateral variation in the bottom stress, the implied Ekman 
transport divergence requires downwelling for R < 0 and upwelling for R > 0. Thus, 
downward momentum advection acts to keep the boundary layer from becoming too thick 
for R < 0, and upward advection for R > 0 keeps the Ekman layer from becoming too thin. 
Similarly, the outward advection of low momentum water (Eq. 2a) for R < 0 acts to limit 
the magnitude of the transverse Ekman transport (and, of course, the opposite for R > 0). 
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-0.2 - 

r: g -0.4- 

! 
1 -0.6- 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Rossby Number (R) 

Figure 4. Transverse Ekman transport versus Rossby number for the steady problem. The dashed 
line represents the first order asymptotic results. 

Thus, there are two competing effects introduced by nonlinearity: changed interior 
vorticity and momentum advection. These processes will likely come into play for any 
model of the bottom Ekman layer, regardless of the actual eddy viscosity used. Thus, the 
qualitative results obtained here (moderate changes in transport, bottom stress and layer 
thickness with R) should be rather general. 

Spirals for R = -1 (dashed), R=O (solid), R = 1 (dotted) 
0.2 

-0.2 - 

> -0.4 - 

-0.6 - 

-0.8 - 

u 

Figure 5. Steady Ekman spiral shapes for R = - 1 (dashed), R = 0 (solid) and R = 1 (dotted). 
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4. Results for oscillating flow 

In practice, the problem (18), (15) was solved by first assuming harmonic time 
dependence and pY = 0: 

g = exp (iat), (274 

y = -ia(l + R)-‘exp (iat), (2-j 

~2 = u*(z)exp (iot), (274 

v” = v*(z)exp (iat), (274 

where (27b) follows from (27a) and (9b). Note that, in this case, the interior velocity vector 
rotates clockwise in time. The resulting pair of ordinary differential equations is then 
written in finite difference form and solved numerically subject to (15) and 

u*(x) = v”(X) = 0 (28) 

where A is a large distance from the bottom. For the following calculations, X was taken as 
60 for R = 0.5 and 30 for R = -0.5. 

Examination of the far-field behavior can again be enlightening. For large z, 
-- 
u,v+o (294 

w+wo (29b) 

as before. In this case, the far-field, harmonic limit of (18) becomes 

iou* + RwouT - v* - u*, = -Ryu (304 

and 

iuv* + Rw& + (1 + R)u* - vTz = -Ryi. (3Ob) 
-- 

The right-hand sides are retained, as (u, v) are presumably not decaying faster than (u*, v*). 
The forcing terms on the right-hand side, however, will only tend to impose similar vertical 
scales to those in the steady solutions. In order to discover the natural scales of the 
time-dependent problem, only the homogeneous solutions to (30) will be considered. 
Specifically, if 

u* = a exp ((~2) (314 

v* = b exp (oz), (3lb) 

the exponents are readily found to obey 

a2 - Rw,+ - iu + [-(1 + R)]“* = 0. (32) 

Once again, vertical advection associated with Ekman pumping is seen to affect the 
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boundary layer thickness. Further, whereas linear, R = 0, time-dependent theory (e.g., 

Sverdrup, 1927) predicts an infinitely thick boundary layer (a = 0) solution at the inertial 
frequency, here the critical frequency u, is shifted because of the interior vorticity, i.e. 

or, dimensionally 

a*=l+R c , (334 

However, arrival at a critical frequency, in the nonlinear case, need not require an 
unbounded solution because of the vertical advection. Specifically, when R < 0, the 

vertical velocity is downward and two solutions to (32) with a negative real part can still 
exist. That is, for negative interior vorticity, the critical frequency is shifted to a subinertial 
value, and two of the values of cx for u = u, will be Rw,,(<O) and 0, while two are more 
complicated (for the example below, one of these has a negative real part). On the other 
hand, when interior advection is upward (R > 0) the critical frequency is shifted to a 

superinertial value and one value of (Y for u = uc is Rw@O), another is 0, and two are 
more complicated (for the example below, one of these other roots has a negative real part). 
That is to say that when R > 0, a frequency can exist where the boundary layer is infinitely 

thick. The importance of vertical advection to this problem thus leads to some modification 
of the simple concept (Maas and van Haren, 1987) of equivalance between changes in 
background relative vorticity and changes in Coriolis parameter (or frequency). 

Solutions for the full time-dependent problem (18) were computed for a range of 
frequencies with R = r0.5 and py = 0, so that fluctuating currents turn clockwise with 

time. Only results for u 2 0 are shown, as negative frequencies yielded results that were 
simply complex conjugates of the positive frequencies. All results are presented as total 
time-dependent velocity, i.e. 

v* + 1 

and 

U* - iu(1 + R)-‘. 

This form accounts for the tendency for u” to vary monotonically with frequency in the 
interior. 

For R = -0.5, the interior vorticity is decreased, thus making the critical frequency 

a,(= 2-r’*) subinertial. Indeed, there is a tendency for the boundary layer to thicken 
(Fig. 6) at this frequency, but it does not become ill-behaved. For example, for /G + 1 / 
(Fig. 6b), the 0.9 contour is about three times as far from the bottom as when u = 0. The 
unity contour reaches far from the bottom, but this is a poor indicator, given the very weak 
vertical gradients. The cross-stream flow (Fig. 6a) is less affected by the uc bulge, but does 
show clear Ekman veering and transport (e.g., a maximum at z = 1) for u 5 0.1. The 
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;I i 
i 

i 
i I 

Magnitude of time variable u for R = -0.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Magnitude of time variable v for R = 4.5 

--- 

0 0 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1 

6- 

Frequency 

Figure 6. Contours of the magnitude of time-varying u (upper panel) and v (lower panel) for R = 
-0.5. Dashed lines are used when the contour interval is not 0.2. 

phases for u and v (not shown) both indicate downward phase propagation (at least for 
z 5 12) for u < u, and upward for cr > oc. Choosing appropriate values for px and pY 
allows similar calculations for counterclockwise interior polarization, i.e., in the opposite 
sense of inertial oscillations. Results (not shown) are similar to those in Figure 6, but the 
thickening at o = u, is substantially less pronounced. All considered, the presence of 
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negative interior vorticity decreases the critical frequency and, through downward Ekman 

pumping, allows boundary layer solutions to exist for all frequencies. 

For R = +0.5, the situation differs. In this case, the steady boundary layer (Fig. 3) is a 
good deal thinner than for R = -0.5. This in turn made it computationally difficult to 

obtain solutions for X > 30. This limitation, combined with the tendency for a thick 

boundary layer near u = ucr did not allow uniformly satisfactory solutions. Any results not 

deemed reliable to at least 20.02 have thus been masked out of the plots (Fig. 7). In this 

case, no proper boundary layer solution was found at (T = oC = 1.5’“, a result consistent 

with the existence of only one decaying far-field solution. Away from (T = o. results are 
qualitatively similar to the negative vorticity (R = -0.5) case, except that the boundary 

layer tends to be thinner. Again, counterclockwise interior polarization yields similar, but 
less dramatic results. Phase information is similar to the case for R = -0.5, except that for 

z 2 7, the sense of propagation begins to alternate sign with height. 
The general results of the time-dependent case are similar to those in the steady case 

(Section 3) in that the boundary layer tends to be thinner as R increases. The main new 
effect is the behavior at the critical frequencies. Negative R (decreased total interior 

vorticity) allows a somewhat thicker boundary layer at this frequency relative to neighbor- 
ing frequencies, while positive R allows singular behavior at some superinertial frequency. 

It is useful to note that singular behavior is only to be found with u 2 1, and then only for 
R 2 0. 

It is reasonable to seek perturbation solutions for the time-dependent problem and thus 

determine under what circumstances the tedious numerical solutions of Section 3 (for 
example) can be avoided. If the steady flow is expanded in Rossby number, 

~=i&+R?,+R2;,+... (34) 

then the governing equations for time-dependent flow (18), at lowest order, become 

- 

and 

9, + R [u,,zZ+ w,,u,] - v - u,, = -R+& (354 

fr + REOFz + (1 + R + Ri,,) u” - Fz,, = -RyvO. (35b) 

That is, the background flow is represented in terms of the strictly linear steady Ekman 

layer problem. It is not desirable to expand the time-dependent solution in terms of the 
Rossby number because then the lowest-order solution will be singular at u = f 1, thus 

making the solution radically differ from that obtained above. Nonetheless, it is reasonable 
to solve (35) by the numerical approach above. Results were computed and compared with 

the more exact solutions in terms of the 0( 1) time-dependent boundary layer transports 

s 

30 
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30 
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u”dz, 

0 
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Figure 7. Contours of the magnitude of time-varying u (upper panel) and v (lower panel) for R = 
+0.5. Values not accurate to kO.02 have been masked. Dashed lines are used when the contour 
interval is not 0.2. 
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For R = 0.1, the linearized result works well over the whole frequency range 0 % u 5 2: 
transports differ by less than 0.025, and usually much less. For larger Rossby numbers, the 
linearized result is only accurate for frequencies less than about 0.5 o,. For example, with 
R = +-0.5, this constraint keeps transport errors 5 0.05. Transport errors are largest for 
frequencies near or. In conclusion, the linearization (35) yields reasonable results for 
time-dependent problem at small Rossby numbers and for low frequencies at moderate 
Rossby numbers. 

5. Conclusions 

Nonlinear effects substantially affect bottom Ekman layer behavior. Changes in interior 
vorticity effectively modify the rotation rate, causing a tendency for the steady bottom 
boundary layer to thicken as the Rossby number R approaches - 1. This tendency is 
partially compensated by momentum advection, particularly in the vertical. For example, 
downward advection for R < 0 tends to keep the boundary layer thickness finite, even 
when total interior vorticity vanishes. In the case of R < - 1, the total vorticity, 
1 + R + Ri, changes sign with height above the bottom, and no unique steady solutions 
were found. 

Time dependence is included in the form of superimposed flows that are spatially 
uniform far from the bottom. Nonlinear effects are similar to those in the steady problem, 
particularly with regard to the role of vertical advection, which assures well-behaved 
boundary layer properties even at the critical frequency (effective inertial frequency) as 
long as - 1 I R < 0. For positive interior relative vorticities (R > 0), boundary layer 
singularities are obtained at a critical frequency that is always superinertial. 

The key nonlinear effects in this problem are momentum advection and interior vorticity 
modification. Their existence should be entirely unaffected by the details of the actual eddy 
viscosity profile. That is to say, for example, that a positive relative vorticity immediately 
above the bottom Ekman layer should always lead to upward Ekman pumping. Stratifica- 
tion could have some substantial effects through the inhibition of interior vertical 
velocities, but this effect ought to be negligible as long as the vertical scale of the interior 
flow is larger than the boundary layer thickness. Over a sloping bottom with stratification, 
e.g., Trowbridge and Lentz (1991), the actual nature of the bottom boundary layer changes, 
so that it is unclear how the present results will apply. 
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