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Eigenanalysis of the two-dimensional wind-driven 
ocean circulation problem 

by V. A. Sheremet’**, G. R. Ierley’ and V. M. Kamenkovich2,3 

ABSTRACT 
A barotropic model of the wind-driven circulation in the subtropical region of the ocean is 

considered. A no-slip condition is specified at the coasts and slip at the fluid boundaries. Solutions are 
governed by two parameters: inertial boundary-layer width; and viscous boundary-layer width. 
Numerical computations indicate the existence of a wedge-shaped region in this two-dimensional 
parameter space, where three steady solutions coexist. The structure of the steady solution can be of 
three types: boundary-layer, recirculation and basin-filling-gyre. Compared to the case with slip 
conditions (Ierley and Sheremet, 1995) in the no-slip case the wedge-shaped region is displaced to 
higher Reynolds numbers. 

Linear stability analysis of solutions reveals several classes of perturbations: basin modes of 
Rossby waves, modes associated with the recirculation gyre, wall-trapped modes and a “resonant” 
mode. For a standard subtropical gyre wind forcing, as the Reynolds number increases, the 
wall-trapped mode is the first one destabilized. The resonant mode associated with disturbances on 
the southern side of the recirculation gyre is amplified only at larger Reynolds number, nonetheless 
this mode ultimately provides a stronger coupling between the mean circulation and Rossby basin 
modes than do the wall-trapped modes. 

1. Introduction 

In the present paper we consider the barotropic vorticity equation 

$ V** + SfJ(*, V**) + 2 = SiV”+ - sin ry 

in a square region 0 5 x 5 1; 0 5 y I 1 with the following boundary conditions 

*co; $EO atx = 0 andx = 1 

*=o; $zo aty=Oandy= 1. 

(1.1) 

(1.2b) 

1. Scripps Institution of Oceanography, La Jolla, California, 92093-0230, U.S.A. 
2. On leave from: P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, 23 Krasikova St., 

Moscow 117218, Russia. 
3. Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, 10964, U.S.A. 

57 



58 Journal of Marine Research [55, 1 

Eq. (1.1) is written in a nondimensional form; + is the stream function; the axis x is 
directed to the east; the axis y is directed to the north; t is time; J(a, b) is the Jacobian of the 
functions a and b with respect to x and y, V* is the Laplacian operator on the (x, y) plane; 
the square 0 zz x 5 1; 0 5 y 5 1 models a region of the subtropical gyre formation. One 
assumes that the curl of the wind stress in the region can be approximated by -sin my; a1 
and &., are nondimensional parameters characterizing the widths of inertial and viscous 
boundary layers respectively; a1 = (@@)IL, Su = (m)IL, where AL is the coefficient 
of lateral turbulent friction; U is a scale of the velocity in the open ocean governed by the 
Sverdrup relation; B is the latitudinal variation of the Coriolis parameter, L is the scale of 
the basin. We use impermeability and no-slip conditions (1.2a) at the coasts and imperme- 
ability and slip conditions (1.2b) at the fluid boundaries. For the initial value problem the 
stream function + should be specified at t = 0. 

Geophysically meaningful values of the parameters S,, Su lie in the domain 0 I 6, I 0.1; 
0 5 S,,, I 0.1. It is convenient to introduce the Reynolds number for the boundary layer 

(1.3) 

The problem (1. l), (1.2) has been extensively studied for many years in connection with 
the Gulf Stream and the subtropical gyre dynamics. To a certain degree this paper is a 
continuation of Ierley and Sheremet (1995), Kamenkovich et al. (1995) and Sheremet et al. 
(1995) (hereafter IS, KSPB, and SKP, respectively). These papers give an extensive list of 
relevant references. 

As is well known, one of the most interesting features of the Gulf Stream system is the 
existence of a recirculation gyre following separation of the boundary current from the 
coast. According to observation (Halkin and Rossby, 1985; Hall, 1986) the transport of the 
gyre is about three times bigger than the transport of the Gulf Stream proper. Numerical 
evidence suggests that a noticeable gyre forms at R > Rc where Rc is a critical value; for 
such values of R the steady boundary-layer type solution of the problem (l.l), (1.2) 
becomes unstable (Bryan, 1963; KSPB, SKP). In what sense should we understand the 
persistence of the recirculation gyre? Is it the primary circulation characteristic of the 
steady flow; or is it a secondary circulation driven by eddies? What is the basic physical 
mechanism responsible for the maintenance of the recirculation gyre: the effect of bottom 
topography, local wind forcing or advection of potential (absolute) vorticity in the western 
boundary current? An analysis of the time-dependent solutions of the problem (1. l), (1.2) 
indicates the existence of a quasi-stationary regime when the total kinetic energy oscillates 
(regularly or irregularly) around some constant value. Does such a behavior persist for the 
whole range of geophysically relevant parameters S,, Sv? If yes, we can define a “steady” 
solution by the time-mean quasi-stationary regime? These questions drive us to the more 
general question of the dependence of the solution of the problem on the value of the 
coefficient of the lateral turbulent friction Ak The smaller is the coefficient AL, the richer is 
the instability of the physical system. Is it possible to have a saturated state, i.e., one in 
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which the solution is almost independent of the variation of AL? Are the characteristics of 
such a solution geophysically relevant? 

Not all of these questions are addressed to an equal extent in the present paper. Our main 
purpose is to analyze steady solutions of the problem (l.l), (1.2) in the geophysically 
reasonable range of parameters &, I&: their existence, their structure and their stability. It 
will be demonstrated that such a study significantly clarifies the behavior of the time- 
dependent solutions of the problem. 

Veronis (1963) was the first to argue for the possible existence of multiple steady states 
of the two-dimensional vorticity equation with bottom friction using a method of 
low-mode approximation. Il’in and Kamenkovich (1964) found that the steady one- 
dimensional boundary-layer type solution of the problem stemming from (1. l), (1.2) 
ceases to exist when the Reynolds number exceeds a critical value (see also Kamenkovich, 
1966). To explain their arguments consider a particular solution to (1.1) of the form 

* = (by + cm4 (1.4) 

where b and c are constants. Relation (1.4) represents the first term in the expansion of a 
solution of (1. l), (1.2) with respect to y near boundaries of the region y = 0 and y = 1. 
Substituting (1.4) into (1. l), approximating sin ry by 7~y near y = 0 and by --7~(y - 1) 
near y = 1 and assuming that a steady boundary-layer type solution exists gives the 
equation for the boundary layer at the western coast (X = 0). 

b(Ft2 - FF”) + F - 1 = ; F”‘. (1.5) 

The boundary conditions follow from (1.2a) 

F(0) = 0; F’(0) = 0; F(m) = 1 (1.6) 

where primes denote differentiation with respect to 5 = x/E$, b = n at the southern limit of 
the basin and b = -7~ at the northern limit of the basin. Il’in and Kamenkovich (1964) 
showed numerically that in the case of b < 0 (northern part of the basin) there is a critical 
value of the Reynolds number R,, such that the problem (1 S), (1.6) has two solutions for 
R < R,, that coalesce for R = R,, (R,, = 0.13). Based on this evidence Il’in and 
Kamenkovich argued that for R > R,, the problem (1 S), (1.6) has no solution at all. They 
also suggested the same result is true of the full two-dimensional problem. The subsequent 
extensive analysis of (1.5) both for no-slip conditions (F(0) = 0; F’(0) = 0) and slip 
conditions (F(0) = 0; F’(0) = 0), incorporating the investigation of the stability of 
solutions, was given by Ierley and Ruehr (1986). Ierley (1987) suggested that the existence 
of a critical value of the Reynolds number R,, is connected with the onset of recirculation in 
the northwest comer of the region for R > R,,. It is thus evident that the appearance of a 
recirculation gyre destroys the boundary-layer character of the steady solution of (1.1). 

There is another argument in favor of the nonexistence of steady solutions of (1. l), (1.2) 
of the boundary-layer type for large values of R (Kamenkovich, 1966). It is possible to 
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show that the solution of the inertial boundary layer equation has a singularity at a finite 
value of 5 = co (5 = x/S,) when y - (l/2)-, or more precisely 

where U, v are the components of the velocity. Since for the large values of R and y < l/2 
the influence of friction is confined to a very narrow coastal region of the width of 
0( l/@) relations (1.7) are to be valid for the solution of the inertial-viscous boundary 
layer equation also. Therefore the friction terms V*u and V*v for such a solution would 
have a singularity at a finite value of F, for large R which is impossible. 

Is there a steady solution to (l.l), (1.2) not of boundary-layer type? Studying the 
problem with slip boundary conditions, Briggs (1980) found a new class of steady 
solutions of a basin-filling-gyre type. Strictly speaking such solutions were not found for 
geophysically relevant values of S1 and SM. . Briggs’ values lie at the margin or even outside 
of geophysically meaningful range of the parameters. But Briggs’ numerical experiments 
gave strong evidence that such solutions exist also for sufficiently small values of S1 and Sv 
such that R = 1. 

For the geophysically meaningful range of S,, SW the steady solutions of the basin-filling- 
gyre type for the slip problem were constructed in IS. It was found that for every S,, Su 
from this range there is at least one steady solution. The structure of the steady solution can 
be of three types: boundary-layer, recirculation and basin-filling-gyre types. However, for a 
certain subdomain of the parameters S1, S,,, the problem (1.1) with the slip boundary 
conditions has three steady solutions of indicated types simultaneously. The same result 
will be found here but for the no-slip case. 

2. Steady solutions 

It is natural to start with the analysis of steady solutions of the problem. We find the 
steady solution ~JJ,, of the problem (1. l), (1.2) using an expansion of the stream function in 
Chebyshev polynomials and applying Newton’s method for solving the resulting set of 
algebraic equations (the same method was used and discussed in IS; complete details of the 
Chebyshev method can be found in Boyd (1989)). In this way we can obtain steady 
solutions even when they are unstable. 

The problem in nondimensional form has two parameters S1 and Su characterizing 
intensity of wind forcing and viscous dissipation, respectively. But, the structure of a 
steady solution depends mainly on their ratio or basically the Reynolds number R. From the 
physical point of view, holding S1 fixed and varying SM or R would be more appropriate 
since the lateral diffusivity is known very poorly while the wind forcing is relatively well 
determined. However, in order to illustrate the variation of steady solution in the parameter 
space it is more convenient to start with the case of fixed Sy and varying 6, or R since this 
case has two limiting solutions independent of R for small and large R. We note that the 
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psi-max=l.O3 

a) Fk0.1, Low branch 

psi-max=13.06 

psi-max=l.81 

I 

b) kl.2, Low branch 

psi-max=5.36 

I 

c) R-1.8785. Low nose 

psi-maxi24.71 psi-max=92.10 

cl) R=l S, Middle branch e) R=l .I 84, High nose f) R=lO. High branch 

Figure 1. A sequence of the stream function patterns illustrating the transition from the linear Munk 
solution (R << 1) to the highly nonlinear basin-filling-gyre solution (R x=- 1) for fixed viscosity, 
SW = 0.02, and varying Reynolds number, R. The no-slip boundary condition is applied at the 
coasts. The contour interval is CZ = 0.1 max JI. The transition is multivalued; between the low 
nose and high nose points the Reynolds number is decreasing. 

numerical experiments with fixed ?iM usually require constant resolution dictated by the 
necessity to resolve thin viscous boundary layers. 

In Figure 1 we present a sequence of stream function patterns corresponding to steady 
solutions with fixed By = 0.02 and varying R. In the linear case for small R the steady 
solution (Fig. 1, R = 0.1) is close to the Munk solution (Munk, 1950) 

*&x,y)=((l-x)-emu2( 

where .$ = x/6,,,, is the stretched variable. Due to the beta-effect this solution has a boundary 
layer character and consists of a southward Sverdrup flow (Sverdrup, 1947) in the interior 
of the basin (v - 0( 1)) and an intense northward current (v - 0( l/SW)) along the western 
boundary which closes the pattern of circulation. The Munk solution has a maximum value 
of the stream function, Q = 1 + exp (-(;,,) + O(6,) = 1.16 + 0(6,), at x = &-8M, 
&,, = 27~13, and y = l/2 (the midpoint of the western boundary current). 
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In the highly nonlinear case for large R the steady solution J, assumes the form of a 
single rapidly rotating gyre filling the whole basin (Fig. 1, R = 10). This solution was 
considered by Briggs (1980) for the problem with slip conditions at all boundaries. 
Common to both boundary conditions (slip and no-slip) the solution ~JJ approximately 
satisfies the defining relation 

J(+, S;V2$) = 0 (2.2) 

in the basin interior, which means that advection of relative vorticity dominates the 
dynamics or in other words the beta-effect becomes negligible. Scaling arguments and 
numerical experiments show that the maximum value of stream function, Q, asymptotes to 
a constant value 0( l/S~) independent of S1 for large R. 

As the Reynolds number varies the most significant structural change in the solution 
happens around R = 0( 1) when an intense recirculation gyre forms in the northwest comer 
of the basin (Fig. lb, c, d). 

The maximum value of stream function, Q, providing a useful characterization of the 
solution, is plotted in Figure 2 as a function of R for several fixed values of aM. To make this 
plot we traced steady solutions by starting from the Munk solution (2.1) and varying R. As 
one can see, in a viscous regime (6 M = 0.06,0.08) the function Q(R) is single-valued, but 

for sufficiently small values of viscosity parameter, SW -=c 6iu,c,,, becomes multivalued. 
This is seen in the S-shaped curves of Figure 2 for 6 ,,, = 0.02, 0.03, 0.04. In other words, 
there exist three different steady solutions within a certain range of R. According to the 
maximum value of the stream function Q we term the corresponding branches: low, 
middle, and high. The points where the branches meet each other we call low and high nose 
points; corresponding values of the Reynolds number will be called RL and Rw 

In a three-dimensional space a surface given by Q = Q(S,, R) (or Q(&, 6,)) forms the so 
called Whitney tuck4 (Whitney, 1955). If the points on this surface are projected onto the 
plane (6,,,, R) the region where three steady solutions coexist coincides with the wedge- 
shaped area shown by solid lines in Figure 3. The sides of the wedge are the projections of 
the folds of the tuck. The tip of the wedge is located at &,.,NcUsP = 0.04223, 6,N,sP = 0.05637 

Or RNCLLS~ = 2.378. At this point all three solutions coalesce in a cusp singularity. This 
situation is a typical example of the cusp catastrophe (Amol’d, 1984, Ch. 2). The maximum 
value of the stream function at this point Q,vcUsP = 2.90. The solution at the cusp is similar 
to one given in Figure 6 of IS but with increased values of relative vorticity present within 
viscous sublayers near the western and eastern boundaries. 

Thus it turns out that the character of steady solutions in the problems with no-slip and 
slip boundary conditions at the east and west coasts is very similar. The reader is referred to 
IS where the problem with the slip conditions is thoroughly examined. Figure 1 from IS 
can serve as a schematic illustration of the Whitney tuck. Almost everything said in Section 
3 of IS about steady solutions of the problem with slip conditions can be reiterated for the 

4. “Tuck” is a word meaning a fold or a series of folds. It was borrowed from fabric design by mathematicians 
trying to distinguish the particular case of two merging folds from other possible arrangements of folds. 
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Figure 2. The dependence of the maximum of the stream function, Q, on the Reynolds number R for 
several values of viscosity, SM. For S,+., < 6,+,,,,, = 0.04223 the function Q(R) is multivalued 
corresponding to the ‘S’-shaped transition from the linear to the highly nonlinear case. The curves 
are produced by connecting the calculated points by straight lines, without fitting or smoothing. 

problem with no-slip conditions. This indicates the robustness of the cusp catastrophe of 
steady solutions of the problem with respect to boundary conditions. 

Let us stress only differences between the problems with no-slip and slip conditions. For 
comparison the wedge-shaped area of multiple solutions in the problem with the slip 
conditions is shown by a dashed line in Figure 3. The cusp in the slip case is located at 

%CWJ = 0.555, Slscusp = 0.6207 (RscUsp = 1.3987) with the maximum of the stream 
function QS,-,, = 3.46. We see that the wedge in the no-slip case is displaced to larger 
Reynolds numbers as compared to the slip case. This is closely related to the growth of the 
recirculation gyre in the northwest corner of the basin. In the no-slip case the viscous forces 
are more efficient in decelerating western boundary current. Therefore a smaller recircula- 
tion gyre forms for the same R and the low branch solutions persist for larger R as 
compared to the slip case. 

We also note that in the no-slip case the amplitude of the Briggs basin-filling-gyre (high 
branch) type solution is considerably smaller, by a factor of approximately 4.3. For 



64 Journal of Marine Research w, 1 

a u 0.01 0.02 0.03 0.04 0.05 0.06 
delta-M 

Figure 3. The locations of the region in the (6,, R)-plane where three solutions coexist for several 
cases. The wedge-shaped area shown by the solid line and indicated by the symbol N corresponds 
to the standard case with the no-slip conditions at the coasts and the aspect ratio (Y = 1. The case 
with the slip conditions at all boundaries (01 = 1) is shown by the dashed line and the symbol S. 
The case with the no-slip conditions and the aspect ratio (Y = l/2 is shown by the dashed-dotted 
line and the symbol Ncx = l/2. The tentative location of the cusp of the wedge in the no-slip case 
with (Y = 2 is marked by the asterisk. The small circles indicate the solutions at the low and high 
nose points in some experiments. The dotted lines correspond to S1 = coltst. 

example for sufficiently large R = 10, the ratio Q,,,iP/Q ,GNO-sliP = 14.6/3.69 = 3.97 for SW = 

0.06; Q,c,,/Q IG,,,+, = 5O.OA1.4 = 4.39 for SM = 0.04; Q+,dQ IGNO-s,iP = 400192.1 = 4.34 
for SW = 0.02 and it varies only slightly with S,,+ We see that in both cases for R >> 1 the 
maximum value of the stream function indeed asymptotically scales as Q = C/S&, where in 
the no-slip case the constant C = C, = 0.74 . 10e3 while in the slip case C = C, = 
3.2 . 10e3. For high branch solutions the difference in amplitude is again due to the viscous 
forces which bring the velocity to zero at the coasts and produce stress tangential to the 
boundary. 

It is helpful to recall that in the slip case the net torque applied by the wind on the fluid is 
balanced by the torque of pressure forces (normal to the boundary) since tangential stress 
of viscous forces at the boundary is zero by definition. In the no-slip case the torque of the 
viscous stress tangential to the boundary is added to the balance (see Morgan, 1956). In a 
problem with a circular basin and slip boundary conditions the amplitude of the high 
branch solution becomes infinite as R - a for fixed S,,, since the net torque of pressure 
forces tends to zero as the beta-effect becomes less and less important and the stream lines 
become more and more circular. (Note that when boundary is not straight zero stress does 
not imply zero vorticity.) On the other hand in the no-slip case with circular geometry, the 
high branch solution exists, with an amplitude that approaches a limiting value of 
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0(1/6$. This reflects the balance between the wind forcing and lateral diffusion of 
vorticity while the torque of the boundary pressure forces goes to zero. 

There is one reservation about the character of steady solutions in the no-slip case for 
large 6, and small 6,; the behavior is much richer than in the slip case. Careful 
computations reveal the existence of another fold near a1 = 1 associated with the existence 
of a gyre-type solution other than the Briggs result. There may be yet other singularities 
beyond the available model resolution. But we won’t dwell upon the peculiarities of the 
solution in that part of the parameter space since our main interest lies within geophysically 
meaningful range 0 5 I&, a1 5 0.1. The statement is that in the vicinity (say for R -=c 50) of 
the main Whitney tuck described above, the character of the steady solutions of the 
problem with no-slip and slip boundary conditions is the same. 

We temporarily consider a more general problem with one more nondimensional 
parameter: aspect ratio CL To do this we replace the last term in (1.1) by -asin 7~y and 
consider a rectangular domain 0 5 x I l/o, 0 I y 5 1. Such introduction of the aspect 
ratio in the nondimensional problem is useful since the Sverdrup transport near the western 
coast and the balance of terms in the western boundary current remain independent of 0~. 
We argue that the formation of the recirculation gyre depends mainly on the dynamical 
balance of terms in the western boundary current. Figure 4 shows three steady solutions for 
the same 8,,, = 0.02, R = 1 but different cx = 0.5, 1, 2. These solutions belong to the low 
branch. We see that these solutions have the recirculation gyres of approximately the same 
size. It is obvious that the high branch solutions are more sensitive to the geometry of the 
basin. Numerical calculations show that for 01 = 0.5 as Q increases the growing 
recirculation gyre extends all the way to the eastern coast and then extends south to occupy 
the whole basin similar to the scenario for (Y = 1. For OL = 2, however, the recirculation 
gyre upon extending to the eastern coast remains concentrated near the northern boundary 
as its amplitude increases. (We traced solutions for R up to 500.) 

The location of the wedge-shaped area of multiple solutions of the problem with no-slip 
conditions for (Y = 0.5 is shown in Figure 3 by a dash-dotted line. We were unable to 
accurately trace the wedge for o = 2 because of increased resolution required, but we 
found clear evidence that multiple solutions exist for CY = 2 as well. The maximum slope of 
Q as a function of R for fixed 6, increases as we decrease the viscosity parameter &,. For 
illustrative purpose the location of the cusp itself can be found sufficiently accurately by 
extrapolating dR/dQ(& R) in the parameter space. In Figure 3 the tentative location of the 
cusp for (Y = 2 is marked by an asterisk. Thus we can conclude that the cusp catastrophe is 
a quite robust feature of the barotropic vorticity equation surviving the variation of 
boundary conditions and basin geometry. We now return to our standard case with the 
aspect ratio (Y = 1. 

Crossing the tuck in direction of fixed 6, also results in transition from low branch 
solutions to middle branch solutions and finally to high branch solutions. For the reader’s 
convenience we show lines s1 = const on Figure 3. We do not present plots of Q(R) for 
fixed 6, for the no-slip case because they look similar to the curves for the slip case in 
Figure 3 of IS. 
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Figure 4. The steady solutions (belonging to the low branch) for the same parameters 6, = 0.02, 
&, = 0.02, R = 1, no-slip but for three different values of the aspect ratio (Y = 1,2, l/2. 

Let us consider a case with 6, = 0.01 (no-slip conditions) which corresponds to the wind 
forcing typical for the North Atlantic subtropical gyre. A sequence of steady solutions 
belonging to the low branch for increasing values of Reynolds number R (thus decreasing 
viscosity) is shown in Figure 5. The most dramatic feature of this sequence is the formation 
of tight recirculation gyre in the northwest corner of the basin. 

For small R the solution is essentially linear, dominated by viscosity, and close to the 
Munk solution (2.1). As the Reynolds number increases a separate gyre of the same size as 
the boundary layer thickness, O(S,), commences in the northwest comer for R about 0.4 
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4 Fk0.4 b) Fk0.0 
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0.6 

0’ 
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L1.2 4 q,R=1.2 
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0- 
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Figure 5. A sequence of the stream function patterns (a, b, c) illustrating the variation of steady (low 
branch) solution for the fixed 6, = 0.01 and increasing Reynolds number, R = 0.4, 0.8, 1.2. The 
contour interval is CI = 0.1 for R = 0.4,0.8; CZ = 0.2 for R = 1.2. The plot (d) shows the potential 
vorticity field q = y + S:V2+ for R = 1.2. 

(Fig. 5a). As R increases further (Fig. 5b, c) the recirculation develops into a strong gyre of 
considerable size and intensity. For R = 1.2, for example, the maximum transport of the 
recirculation gyre Q = 3.02. This particular steady solution of the barotropic model would 
be the most relevant for comparison with the real Gulf Stream system since according to 
observations the maximum transport of the Gulf Stream is approximately three times 
bigger than the Sverdrup transport (Halkin and Rossby, 1985; Hall, 1986). In the model the 
maximum eastward velocity in the recirculation gyre u = 80 is found at the northern 
boundary. On the southern side of the recirculation gyre the maximum westward velocity is 
u = -35. The maximum northward velocity within the western boundary current v = 50 at 
x = 0.0125, y = 0.727. To obtain dimensional velocities one has to multiply the above 
values by the velocity scale U, typically 3 cm s-i. 

The potential vorticity field q = y + ti1V2+ for R = 1.2 is given in Figure 5d. One can see 
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that within the recirculation gyre q is more uniform than elsewhere in the basin and that the 
isolines of q and + nearly coincide, which indicates an inertial type of flow. Also, q slightly 
decreases centerward, apparently due to the negative input of the wind curl in this region 
(see IS). The interior of the recirculation gyre is surrounded by a layer of increased 
gradients of q, especially near the western and northern boundaries. The nondimensional 
variation of q from the center of the recirculation gyre to the northern boundary is about 
0.17. Applied to the ocean such variation can be considered small and therefore the 
quasigeostrophic approximation, which is used in deriving the barotropic vorticity equa- 
tion (1 . 1 ), is valid. It is also worth mentioning that the relative vorticity SFV’IJ is important 
only within western boundary layer and in the region around the recirculation gyre, and 
negligible in the interior of the basin where isolines of q are straight lines. 

Following the low branch of steady solutions, the recirculation gyre keeps growing with 
increasing R until the low nose point is reached which for a1 = 0.01 is located at RL = 1.6. 
For R > RL steady solutions of the boundary-layer type (dominated by the beta-effect) 
cease to exist. The only steady solution available is on the high branch, but it has much 
larger amplitude of both the stream function and energy. Therefore, for R > RL the solution 
of the initial value problem (1. l), (1.2) is likely not to stabilize with time. Whether or not a 
time- dependent solution will tend to the high branch or stay in the neighborhood of the low 
branch depends on many factors, for example, stability of the respective branches of steady 
solutions, which will be considered in the next section. It turns out that the steady solutions 
on the low branch become unstable for Reynolds number substantially smaller than RL. 

Before proceeding to the next section we have to note once more that the high branch 
solutions give unrealistically high velocities (0( 10 m sP l for the North Atlantic) through- 
out the gyre. But high branch solutions cannot be simply ignored; they are perfectly valid 
members of the continuous family of solutions of the barotropic vorticity equation. As we 
have seen the position of the cusp and the folds of the Whitney tuck strongly depend on the 
structure and amplitude of the high branch solutions. In the following sections, however, 
we will devote most of our attention to stability analysis of the lower branch solutions 
because they are more geophysically meaningful. 

3. Stability of steady solutions and the structure of eigenmodes 

The second logical step is to investigate the stability of steady solutions. We restrict 
ourselves to linear analysis assuming that the amplitude of perturbation is small. 

Linearizing (1.1) about the steady solution $,, or, in other words, taking a functional 
derivative of (1.1) with respect to +, and representing the perturbation +’ as 
cp(x, y) exp (-id) we obtain a spectral problem for the perturbation amplitude cp 

-iaV’q + i$[J($,, V2~) + J(cp, V2&)] + cpX = 8LV4q (3.1) 

Cp’O atx=O, x=1, y=O, y=l (3.la) 

acp a29 -0 z- atx=O, x=1 and -=0 
a9 

aty=O, y= 1. (3.lb) 
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Upon solving this spectral problem we obtain a set of eigenfrequencies uk and correspond- 
ing eigenfunctions (Pi. Numerically the eigenproblem is also solved (as in IS) using 
Chebyshev expansions of cp and JTO: in terms of the amplitudes of such an expansion cp’, 
(3.1), (3.la, b) reduces to a generalized eigenproblem AT = -iaBq’ in matrix form. 
Usually, the eigenfrequencies uk are complex since, in the presence of viscosity, the 
problem is not self-adjoint. The imaginary part of the frequency gives the rate of growth (or 

decay) of the perturbation. 
As the parameters Su, 6, vary, so does the steady solution $, as well as the eigenspectrum 

and the patterns of corresponding eigenfunctions. It is interesting to trace the changes 
following the low branch of steady solutions with fixed Zi, for increasing R. The steady 
solution lcIO for 6, = 0.01, R = 0.4 and R = 0.8 with no-slip conditions at the coasts is given 
in Figure Sa,b. These are typical solutions belonging to the low branch; we give their 
eigenspectra in Figure 6. From (3.1) it is clear that the eigenvalues -iak come in complex 
conjugate pairs and the corresponding eigenfunctions are also complex conjugates. There- 
fore it is sufficient to plot eigenfrequencies with Re(u& 2 0 only (Fig. 6). If Re(a& > 0 
then the eigenmode is oscillatory and its eigenfunction is complex. One can interpret the 
real part as the flow pattern at time zero and the imaginary part as the flow pattern a quarter 
of a period later. Thus comparing the real and imaginary parts one can determine the 
direction of propagation of the phase. For small Reynolds numbers the steady solution is 
stable, all eigenfrequencies have negative imaginary part Zm(uJ < 0. For R = 0.4 there are 
two weakly growing eigenmodes (Fig. 6a). As the Reynolds number increases the 
eigenfrequencies of these growing modes shift further to the right while new eigenfrequen- 
ties cross the vertical axis Zm(u) = 0 and the corresponding eigenmodes start to grow too. 
In Figure 6b for R = 0.8 there are already four growing modes. 

a. Basin modes of Rossby waves. Many of the eigenmodes corresponding to the eigenspec- 
trum (Fig. 6) are easily identified with the basin modes of Rossby (planetary) waves. 

First, recall that the idealized Rossby basin modes in a square region are the solutions of 
the inviscid (6; = 0) eigenproblem (3.1) with zero mean flow (8,” = 0) and with boundary 
condition (3.la) (Pedlosky, 1987). 

cpiyW(x, y, t) = _ 1/qeikz(x-l/2) _ eikl(x-1/2))(eiIy _ e-ilyje-ic& 

(x - l/2) 
= exp -i 

242 
- iuk;t 

I 
sin (nnx) sin (mmy), (3.2) 

where 

1 
k1.2 = - - + n7r 2&N - ’ = (n2 + m2)n2 

nm 
(3.3) 

n, m = 1,2,3, . . . denote harmonics in x and y, respectively. 
Both viscosity and the mean flow e. (advection and nonuniform distribution of vorticity) 

modify the basin modes of Rossby waves. However, we should recall that in the ocean 
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Figure 6. (a) The eigenspectrum corresponding to the steady solution for 6, = 0.01, R = 0.4 (see 
Fig. 5a). The crosses indicate eigenfrequencies. The eigenfrequencies corresponding to some 
lowest basin modes of Rossby waves are marked by indices (n, m). The circles indicate 
eigenfrequencies of nine (n, m = 1,2,3) lowest basin modes as predicted by the perturbation 
theory without the mean flow. Two eigenfrequencies corresponding to the growing wall-trapped 
modes are marked by Wl, WZZ Ret points to the eigenfrequency with Re(a) = 0 corresponding 
to the recirculation gyre mode. (b) The eigenspectrum corresponding to the steady solution for 
6, = 0.01, R = 0.8 (see Fig. 5b). The crosses indicate eigenfrequencies. Four modes are growing: 
the wall-trapped modes WI?, WT2, wT3 and the resonant mode Res. The variation of the 
eigenfrequencies of these modes for R = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 is shown by circles 
connected by dotted lines. Thus for R = 0.8 their eigenfrequencies are shown by a cross within 
circle. Ret marks the recirculation gyre mode; Rec2 marks the next harmonic. RZ indicates the 
recirculation zone mode. 
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away from the narrow western boundary currents, the group velocity of barotropic Rossby 
waves is significantly higher than the velocity of the mean circulation and therefore the 
dynamics of the Rossby waves in the interior of the ocean basin is almost linear and 
inviscid. Thus perturbation theory can be used to study the influence of viscosity and mean 
flow on the basin modes. We will use the term “idealized” to designate the unperturbed 
modes (3.2), (3.3). 

The effect of viscosity alone can easily be addressed since in this case the partial 
differential equation (3.1) has constant coefficients. To a first approximation the perturbed 
eigenfunction is the sum of an interior part which is close to the idealized eigenfunction 
(3.2) and a boundary layer correction required to satisfy the dynamical boundary condi- 
tions (3.lb). If Sv < a:: (in nondimensional form), then the beta-effect within the 
boundary layer can be neglected and the boundary layer correction will be an oscillatory 
Stokes boundary layer of thickness 

s,= g 
J nm 

(3.4) 

(see, for example, Batchelor, 1967). We note that in the slip case this boundary layer 
correction of the same width S, also exists, but its effect is smaller since it is the relative 
vorticity that becomes zero at a (straight) boundary in the slip case rather than velocity in 
the no-slip. 

Upon solving for the boundary layer correction we get a modified kinematic boundary 

condition for the interior part of the eigenfunction since it is the sum of the interior part and 
boundary layer correction that satisfies (3.la). Also taking into account the dispersion 
relation for the Rossby waves modified by the viscous term in (3.1) we finally arrive at the 
formula for the shift of eigenfrequencies due to viscosity in the no-slip case 

Au,,,,, = u,, - a;: = a;: 
(n2 zrn2, @ + Q (3.5) 

B=S,(-1 -i) 
SL 2n2 + m2 

V= -i----- 
&03 &2 ’ 

nm 

where u(O) is the unperturbed frequency of the idealized basin mode (3.3). Note that the 
Stokes boundary layer thickness S, depends on frequency and therefore is different for 
different basin modes. We see that there are two parts: a contribution from the boundary 
layer B and volume perturbations Vfrom the interior. The boundary layer shifts not only the 
imaginary part of u due to energy dissipation, but also the real part of u since the length of 
the basin is effectively decreased by the thickness of the boundary layer S, (in analogy with 
the displacement thickness in the theory of F’randtl boundary layer). 

In the no-slip case the boundary layer contribution is dominant Au = O(Sz2), the 
dissipation in the interior gives only Au = O(S$. To obtain a formula for Au in the slip 
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Figure 7. The Rossby eigenmode cp,,(x, y), real and imaginary parts, corresponding to the steady 
solution IclO. 6, = 0.01, R = 0.8, no-slip. The contour interval CI = 0.1 max (( cpl I I). The negative 
isolines are dashed. Overlapped is the velocity profile V(X) = &p,,l& for y = l/2 (solid line) with 
zero V(X) = 0 shown by the dotted line. 

case we simply cancel the boundary layer contribution and then the dissipation in the 

interior becomes dominant. 
We compared the prediction from formula (3.5) with the decay rates of the basin modes 

obtained numerically for the eigenproblem without mean flow. The agreement is especially 

good for low basin modes for which the condition ZM < a:; holds very well. In Figure 6a 

the locations of nine lowest eigenmodes of Rossby waves as predicted by the perturbation 

theory for the corresponding SW are indicated by circles. 
Thus perturbation theory can satisfactorily explain the negative shift of the imaginary 

part of eigenfrequency of Rossby basin modes. As the viscosity decreases the eigenfrequen- 

ties get closer and closer to the axis Zm(a) = 0, but in the problem without mean flow the 
viscosity alone can never make the imaginary part of the eigenfrequency positive. 

The effect of the mean flow can in principle also be addressed by the perturbation theory 

for EM << 1 and R < 1, but the analysis is much more complicated since the steady state 
itself changes with R. 

We present in Figure 7 the basin mode (ptt. We see that a slight alteration takes place in 

the northwest corner because of interaction with the recirculation gyre. Note that viscous 

Stokes sublayers form along the western and eastern boundaries, but they are not so 
conspicuous. To reveal these sublayers we plotted in Figure 7 the velocity profile v(x) = 

&p,,l8x for y = l/2. For 6, = 0.01, R = 0.8 and u$) = 0.1125, as in this case, 8, = 
4.71 . 10m3 according to (3.4). We note that the Chebyshev expansion with N, = 51 
polynomials in x direction resolves such a thin boundary layer very well. The first 
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Figure 8. (a) The degenerate pair of Rossby eigenmodes Q,(x, y) and (P&X. y). Cl = 0.1 max ( Iqn,,, 1). 
The negative isolines are dashed. 6, = 0.01, R = 0.8, no-slip. 

collocation point of the Gauss-Lobatto grid has coordinate 

x, 41 -cos(&))=o.986.10-3. 

However, the gross features of the mode cpll are very similar to the idealized basin mode 
(3.2) (see Pedlosky, 1987). 

The most sensitive to perturbations are the spatial patterns of degenerate modes, (n, m), 
(m, n) corresponding to the multiple eigenvalue in the spectrum (they have the same 
eigenfrequencies (3.3)). Both viscosity and mean flow shift the eigenfrequencies and 
remove the degeneracy; however, it is the presence of the mean flow that has a crucial 
effect in shaping the pattern of basin modes. Recall that the advection term in (1.1) breaks 
symmetry of a steady solution; the corresponding term in (3.1) also breaks the symmetry of 
eigenfunctions. In Figure 8a we give a dramatic example of such alteration by presenting 
the eigenfunctions (p21 and (p12. At the first glance there is no resemblance at all to the 
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Figure 8. (b) The linear combination of the idealized Rossby basin modes cp$:)(x, y) and cpg(x, y), 
which according to (3.7) represents the perturbed degenerate pair (p2,(x, y) and (pi& y) shown in 
Figure 8a. 

patterns of the corresponding idealized basin modes given by (3.2). However, according to 
perturbation theory (to a first approximation) the perturbed eigenfunction is just a linear 
combination of the eigenfunctions corresponding to the unperturbed degenerate pair cpg), 
cp{y given by (3.2) 

In particular the patterns very close to those shown in Figure Sa can be produced if we put 
A = 0.8073 exp (in1.2110), B = 0.6471 exp (iT1.4871), C = 0.7878 exp (ixO.O692), D = 
0.9360 exp (inl.5040). The result of such a combination is shown in Figure 8b. The given 
values of A, B, C and D were obtained by projecting (3.7) onto idealized basin modes and 
using max (1 cp 1) = 1 normalization of eigenfunctions. Note that (3.7) captures only the 
interior part of the eigenfunctions since the idealized eigenfunctions do not satisfy the 
dynamical boundary conditions (3.lb). 
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Strictly speaking, it is somewhat ambiguous to term perturbed degenerate basin modes 

as vnrn or qrnn because they are in fact some combination of the both. But since in the case 

with viscosity only the mode with larger x index, n > m, is damped more strongly and has 
lower frequency @e(a)) (see (3.5), (3.6)) this tendency usually remains even in the case 

with the mean flow present. Therefore, such a terminology makes sense. 
When the basin is not a square, but a rectangle, the basin modes (n, m) and (m, n) are not 

degenerate. However, perturbations may result in incidental degeneracy, that is the 
eigenfrequencies of some modes may come close, then the eigenfunctions of these modes 

will be mixed. 
Unlike the case with viscosity only, the interaction of a basin mode with the mean flow 

may result in either a negative or a positive shift of the imaginary part of the eigenfre- 
quency. If the positive shift is sufficiently large, larger than the viscous damping, then the 

corresponding basin mode will grow. Such a resonant excitation of basin modes usually has 
quite an irregular character indicated in Figure 9, which shows the variation of selected 

eigenfrequencies for increasing Reynolds number. We observe that, as the recirculation 
gyre grows with the Reynolds number, some basin modes selectively happen to come in 

resonance with the recirculation gyre but only for a narrow range of R. For example, in 

Figure 9a we can see that the eigenfrequencies of the modes (4,2), (2,4) and (2, 2) shift 
very rapidly for 0.7 < R < 0.9. 

b. Resonant mode. It is the existence of a resonant mode, (p&, that causes the resonance 

between the recirculation gyre and the Rossby basin modes. The eigenfrequency of this 
mode oRes is distinct in the spectrum for R = 0.8 (Fig. 6b). The spatial pattern of (p&s is 
shown in Figure 10a. Looking carefully one can distinguish a perturbation localized on the 
southern side of the recirculation gyre and some combination of Rossby basin modes in the 

basin interior. In fact, if we project (P& onto the idealized basin modes (3.2) 

(3.8) 

(it suffices to take M = 5), we find that the dominant amplitudes are Ad2 = 0.1802 
exp (irrO.2571), Ad3 = 0.1671 exp (in1.3679), A33 = 0.1571 exp (in1.0237), A34 = 0.1477 
exp (imO.2095), AZ4 = 0.1134 exp (inl.8632), with the largest contribution from the mode 
(p$oz). The amplitudes of the other components are smaller by at least a factor of 3. 

However, (PR~~B.M represents only the interior part. The difference, qRes - qResBM shown in 
Figure lob reveals the structure of the perturbation in the recirculation gyre region, which 

is otherwise masked. We now clearly see a chain of positive and negative eddies travelling 
along the southern side of the recirculation gyre westward. (The direction of the movement 
can be determined by comparing the real and imaginary parts of the eigenfunction.) To 
mark the flank of the recirculation gyre we superimposed on Figure lob the contour (dotted 
line) of potential vorticity, 9 = 0.9, of the steady solution $,. It is hard to say definitely 
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Figure 9. (a) The variation of the eigenfrequencies of some lowest Rossby basin modes with 
increasing Reynolds number, 6, = 0.01, no-slip, R = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. The index 
(n, m) of each basin mode is shown next to the marker corresponding to R = 0.9. Combinations of 
marker and line styles are used to distinguish the eigenmodes. (b) The variation of the imaginary 
part of the eigenfrequency with the Reynolds number for some eigenmodes; 6, = 0.01, no-slip. 
WI, W72, W73--the wall-trapped modes; Res-resonant mode; Ret-recirculation gyre mode. 
RCl and RC2 mark the Reynolds numbers for which the modes Wl and W72 (respectively) start 
to grow. Apparently the steady solution becomes unstable for R > R,-,. 
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Figure 10. (a, upper row) The resonant mode qRes(x, y) corresponding to the steady solution $a, 6, = 
0.01, R = 0.8, no-slip. CZ = 0.1 max ( 1 q / ). The negative isolines are dashed. (b, middle row) The 
resonant mode (P,&x, y), R = 0.8, with removed contribution of 25 lowest idealized Rossby modes 
according to (3.8) or in other words qRes - qRessM. CZ = 0.1 max ( 1 cp 1). The negative isolines are 
dashed. The spatial pattern is shown on the expanded scale in the northwest corner of the basin. 
The dotted line shows the isoline of the potential vorticity q = y + 8fV2+ = 0.9 of the steady 
solution. (c, lower row) Same as (a) but for larger Reynolds number R = 0.9. 
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what mechanism causes such instability: high gradients of vorticity in this region or 
deceleration of the westward flow in approaching the western boundary. Probably the 
former supports the wavelike oscillations while the latter makes them grow. 

We term this mode “resonant” because it clearly represents a coupling between two 
oscillatory processes: eddies on the southern flank of the recirculation gyre and certain 
basin modes of Rossby waves. The resonant mode is distinguished by a peculiar type of 
eigenfunction having large amplitude perturbation localized near the recirculation gyre and 
a tail of smaller amplitude Rossby waves extending to, and decaying in, the basin interior. 

Such a pattern suggests an interpretation in terms of wave propagation: the instability 
extracts energy from the mean flow and radiates it into the interior with a southeastward 
group velocity associated with short Rossby waves. 

As the Reynolds number increases the recirculation gyre grows, so does the velocity of 
the flow on its southern side and therefore the real part of the eigenfrequency of the 
resonant mode gets higher. For R = 0.9 (note the last open circle adjacent to a,,, in Fig. 6b) 
Re(a,& comes close to the eigenfrequencies of the basin modes (3,2) and (2, 3). As a 
consequence these modes come into resonance with the eddies on the southern flank of the 
recirculation gyre. The pattern of qRes for R = 0.9 is shown in Figure 10~. We see that the 
spatial scale in the interior has become larger than in Figure 10a. The projection onto the 

idealized basin modes reveals that the contribution in the interior is indeed mostly from 
C& and cp!$: A32 = 0.2176 exp (inO.5864), AZ3 = 0.1859 exp (in1.3353), A33 = 0.1024 
exp (in1.7687) AA2 = 0.0934 exp (irrO.8417), AZ4 = 0.0439 exp (in0.5718); the rest of the 
amplitudes are much smaller. It is important to note that the resonant eigenmode is distinct 
from the modes (3,2) and (2,3) and other basin modes. In other words, apart from crRes 
there are eigenfrequencies us2 and ~23 present in the spectrum. 

Thus as the recirculation gyre becomes prominent there appear favorable conditions for 

instability on its southern flank. This instability in turn drives the Rossby basin modes 
which happen to have nearby frequencies and similar spatial scales. Due to the resonance 
the spatial patterns of the instability and Rossby modes become mixed. The large 
amplitude of (PRes in the interior of the basin implies efficient energy transfer from the 
instability to the Rossby waves. 

As seen in Figure 6, the lowest basin modes with small n, m are very distinct in the 
eigenspectrum. As the numbers rr, m increase the density of eigenfrequencies on the plot 
also increases. Irregular shifts in eigenfrequencies due to interaction with the mean flow 
cause the eigenfunctions of many modes to become mixed. Therefore, for large n, m it 
becomes almost impossible to recognize in the eigenfunction its idealized precursor. 
Fortunately, this is not really needed. Higher modes have smaller spatial scales and thus 
decay more rapidly. 

c. Recirculation gyre modes. Though not the most conspicuous at a first glance, a mode 
with zero real part of the eigenfrequency, Re(uR,,) = 0, (nonoscillatory mode) lying closest 
to the origin (Fig. 6) is of great importance. As discussed in IS, this mode is responsible for 
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Figure 11. (a) The recirculation gyre mode (P,Q&, y) and (b) the recirculation gyre mode 2, 
(P,&x, y), corresponding to the steady solution & 6, = 0.01, R = 0.8, no-slip. These modes are 
nonoscillatory, Re(o) = 0, their imaginary parts are identically zero; therefore, only the real part is 
plotted. Cl = 0.1 max (I cp I). The negative isolines are dashed. 

the existence of multiple solutions in the problem. When we consider a steady solution 
such that we approach a nose point the eigenfrequency (Zm(aR,,)) of this mode tends to 
zero. At the low nose point R = RL (or at the high nose point R = RH) the eigenfrequency of 
this mode vanishes exactly, uRec = 0. 

According to the Fredholm theorem for linear operators, the existence of a zero 
eigenvalue means that the solution of the problem is not unique. The same conclusions can 
be drawn for a zero eigenvalue of the Frechet derivative (3.1) for our nonlinear problem. In 
application to our problem this translates into the statement that the family of functions 

*Or. + J; (PRecL (3.9) 

with one parameter ,k represents (to a linear approximation) steady solutions in the 
vicinity of the low nose point, where iJror. is the steady solution at the very low nose point 
and qRecL is the corresponding recirculation gyre eigenfunction. In other words (3.9) 
corresponds to the vertical portion of Q(R) curve near RL. 

The pattern of the eigenfunction (P&c (Fig. 1 la) for the steady state i/r0 belonging to the 
low branch (Fig. 5b) resembles the recirculation gyre, therefore we call this eigenmode the 
recirculation mode, (PRec. This mode reflects the change of recirculation gyre intensity. Thus 
from the physical point of view the existence of the low, middle and high branches of 
steady solutions is connected with the formation of the recirculation gyre in the northwest 
comer of the basin. As the steady solution iJro changes, when parameters vary, the spatial 
pattern of the recirculation mode also changes. When one moves from the low to high 
branch the recirculation gyre grows to fill the whole basin, so does the pattern of (P&r. 

The imaginary part of eigenfrequency of this mode is negative on the low branch, 
Im(a,,,) < 0, positive on the middle, Im(o&) > 0, and again negative on the high branch, 
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Figure 12. The recirculation zone mode (P,&x, y) corresponding to the steady solution eO, 6, = 0.01, 
R = 0.8, no-slip. CZ = 0.1 max (1 cp I). The negative isolines are dashed. 

Zrrz(oR,,) < 0. Thus the middle branch is unstable. Such a behavior of one eigenmode is in 
accord with the most generic bifurcation A3 (Whitney tuck) of a two parameter (6,, 8,) 
dynamical system (Amol’d, 1984). The instability of the middle branch with respect to (p&c 
means that starting from the middle branch as an initial condition the time-dependent 
solution would tend either to the high or to the low branch depending on the sign of the 
initial disturbance. (Bear in mind that this behavior is with respect to the single mode, oRec. 
Other modes can (and do) destabilize both upper and lower branches.) 

We note that in the eigenspectrum (Fig. 6) there is a sequence of eigenfrequencies with 
Re(o) = 0 corresponding to nonoscillatory modes. Some of them are also associated with 
the existence of the recirculation gyre. For example, another nonoscillatory mode (o&2), 
next to the (TRec on the left, represents a next spatial harmonic. The pattern of the 
eigenfunction (p&c2 (Fig. 1 lb) resembles the recirculation gyre divided in halves. It can be 
interpreted as a change in the eastward extent of the recirculation gyre. Since this mode has 
smaller spatial scales it decays faster. 

d. Recirculation zone modes. There are also a number of eigenfrequencies in the spectrum 
(Fig. 6b) which lie distinctly outside the envelope of basin modes and have lower 
frequencies than the wall-trapped modes (discussed further below). We term the correspond- 
ing eigenmodes collectively as recirculation zone modes. Their spatial patterns do not 
allow simple interpretation of the physical mechanisms responsible for their emergence 
(e.g. Fig. 12). However, it is apparent that they are related to the nonuniform distribution of 
potential vorticity in the recirculation zone. 

e. Wall-trapped modes. The nonuniform distribution of vorticity in the western boundary 
layer gives rise to another type of wave motion-vorticity waves. These waves are similar 
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Figure 13. The wall-trapped mode (pWI(x, y) corresponding to the steady solution qO, 6, = 0.01, R = 
0.4, no-slip. This mode starts to grow for R > R cI = 0.353. CZ = 0.1 max (191). The negative 
isolines are dashed. 

to the waves described by the Orr-Sommerfeld equation for the parallel flow. Their linear 
combinations constitute wall-trapped modes. Their eigenfunctions are confined to the 
region of the western boundary current and decay offshore. 

In Figure 6 eigenfrequencies of the wall-trapped modes lie distinctly outside the 
envelope of the Rossby modes. As an example, we consider two marked WTl and WT2 on 
the plots. As the Reynolds number increases starting from zero the imaginary part of 
eigenfrequency of the mode WTl is the first to cross zero at Rcl = 0.353 (Fig. 9b). For R > 
Rc, Zm (owTI) of this mode becomes positive and therefore the steady solution becomes 
unstable. The mode WT2 begins to grow for R > R c2 = 0.377. For R = 0.4 in Fig. 6a there 

are two growing modes: WTl and W7’2. The corresponding eigenfunctions are shown in 
Figures 13, 14. As we see, the wall-trapped mode WTl is just a higher spatial harmonic in y 
as compared to WT2. For R = 0.8 the growth rate of WTl and W72 increase significantly; 
the real part of the eigenfrequencies also differ due to the change of the basic flow &,, 
mostly because of the recirculation gyre affecting the return current in the northern part of 
the western boundary layer. 

The wall-trapped mode W7’3 starts to grow at R = 0.62 (Fig. 9b). The spatial pattern of 
this mode is not truly confined to the western boundary, but it is localized in the region of 
the return flow adjacent to the main north-going western boundary current. 

According to the dispersion relation the maximum frequency umar of barotropic Rossby 
waves with a given latitudinal wavenumber 1 is attained for the zonal wavenumber k = -1, 
urnax = l/(21). Taking I = 27r/O. 16, corresponding to the oscillatory pattern near the western 

boundary of the wall-trapped mode W72 for R = 0.8 (Fig. 14), gives u,, = 0.0127 which 
is significantly smaller than the eigenfrequency Re(awn) = 0.052. Thus, as earlier 
appreciated by Ierley and Young (199 1) in a simpler parallel flow model of the western 
boundary current, oscillations in the boundary layer cannot radiate Rossby waves into the 
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Figure 14. The wall-trapped mode cpwn(x, y) corresponding to the steady solution IJJ~. 6, = 0.01, R = 
0.4, no-slip. This mode starts to grow for R > RC2 = 0.377. CZ = 0.1 max (Iv/). The negative 
isolines are dashed. 

interior and as a result the eigenmode becomes “wall-trapped.” Note that the eigenfre- 
quency of WT3 is lower and closer to the corresponding u,,, therefore the eigenfunction 
of W73 decays more slowly offshore. 

The pattern of the wall-trapped eigenfunctions resembles the eddies in the western 
boundary layer observed in many time-stepping numerical experiments (Bryan, 1963; 
Godfrey, 1973, KSPB, SKP). We shall return to more detailed comparison in the next 
section. 

To conclude this section we briefly discuss stability of the middle and high branches of 
steady solutions. Following the low branch, as the Reynolds number increases, approach- 
ing the low nose value RL, there appear more and more growing eigenmodes. Following the 
middle branch yet more eigenmodes are destabilized despite the slight decrease in 
Reynolds number. This is due to the dramatic increase of the amplitude of recirculation. 
(Some of this effect may be transient, however. That is, certain eigenmodes may indeed 
turn back and become decaying, especially in approaching the high nose point.) On the 
high branch there also exist many growing eigenmodes which render the high branch 
solution unstable for all R examined. 

It is worth pointing out that as the structure of the steady solution changes so does the 
structure of the eigenfunctions. The beta-effect is dominant on the lower branch while on 
the high branch advection is the dominant factor. For example, the lowest Rossby wave 
basin mode of the low branch progressively deforms until, far along the high branch, one 
identifies it as the lowest Lamb mode of a uniformly rotating gyre. 

It is interesting to note, as commented in IS, that in the slip case the high branch solution 
ultimately becomes stable for large R. As the Reynolds number increases from RH all the 
growing modes eventually turn back to the stable region Zm(o) < 0. Stabilization of the 
high branch can be attributed to the structural change of the solution which becomes 
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simpler: both the stream function and vorticity tend to the lowest Helmholtz eigenfunction 
of the basin sin (TX) sin (my) (see IS). Evidently no such simple behavior exists for the 
no-slip case. 

4. Comparison with the time-dependent solution 
The time-stepping experiments with the same problem (no-slip case, S, = 0.01, varying 

R) were carried out in KSPB and SKP using a finite-difference method. It was observed that 
for a Reynolds number smaller than the critical value Rc = 0.38 the time-dependent 
solution approaches a steady state which is essentially the same as $0 obtained in this work 
using the spectral method. For R > Rc = 0.38 the time-dependent solution does not 
stabilize as time proceeds; eddies were observed forming in the northern part of the 
western boundary current. 

The estimate for the critical Reynolds number Rc were obtained based on he &pen- 
dence of the kinetic energy of the eddies on R. This estimate is in a good agreement with 
the results of linear stability analysis, which indicates that the first wall-trapped mode 
(wl) starts to grow at a Reynolds number of Rc, = 0.353 and the second wall-trapped 
mode (m) at 4~. = 0.377. Moreover, the Fourier spectra of the time records of the 
stream function in the western boundary layer in the time-dependent problem for me 
Reynolds number just above the critical value show the existence of two primary peaks. 
For R = 0.4 we have u1 = 0.046, a2 = 0.03 1 (Fig. 7 in KSPB). These u agree well with the 
eigenfrequencies of the wall-trapped modes of the steady (unstable) solution for the same 
R = 0.4: Re(owrJ = 0.046 and Re(uwn) = 0.033. Most convincing, however, is the fact 
that the pattern of the second wall-trapped mode is very similar to the pattern of the eddies 
in the western boundary current. These results evidence that in the vicinity of Rc the sum +,J 
plus a linear combination of cpWI and cpwn can satisfactorily approximate the time- 
dependent solution as long as the amplitudes of perturbations are small. 

Beyond the first instability, R > Rc, the eddies and other pulsations produce Reynolds 
stresses which modify the dynamical balance. Therefore a time-averaged circulation no 
longer matches the steady (unstable) solution. Figure 15 compares the maximum value of 
the stream function Q($,) of the steady solution (solid line) with the same characteristic of 
the time-averaged solution Q(G) from SKP (dashed line). We see that Q(&) continuously 
increases with R and tends to the low nose value at R = RL = 1.6 where the low branch of 
the curve folds back onto the middle branch. On the other hand, Q(G) begins to deviate 
from Q(&J for R > Rc and remains approximately constant up to R = RL Then the 
recirculation gyre in the time-averaged solution begins to grow rapidly and Q(e) increases 
for R > RL. 

It was argued in KSPB and SKP that the observed saturation of the time-averaged 
solution in the range of Reynolds number Rc < R C RL is due to the enhanced diffusion of 
positive vorticity from the western boundary due to the eddies. The saturation is also 
clearly seen in the energy partitioning (Fig. 11 from SKP); the total kinetic energy of the 
time-averaged circulation E,,, closely follows the kinetic energy of the linear (Munk) 
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Figure 1.5. The comparison of the maximum of the stream function within the recirculation gyre for 
the steady (but unstable) solution +, (solid) and for the time-averaged solution $ (dashed), 6, = 
0.01, no-slip. RCl marks the Reynolds number for which the wall-trapped mode WTl starts to 
grow (the first instability). RL marks the Reynolds number corresponding to the low nose point. 

solution E,,,,,nk for the same viscosity; only for R > RL when the recirculation gyre increases 
in size does E,,, begin to deviate significantly from EMU,+ 

The breakdown of steady solutions $, at RL and the rapid growth of the recirculation 
gyre in the time-averaged solution $, which starts around RL, have a common cause- 
splitting of the western boundary current into an inertial part and a viscous sublayer. In the 
steady case the amount of negative vorticity carried to the north by the inertial part of the 
boundary current becomes exceedingly large so that viscous forces fail to compensate it. In 
the time-dependent case the efficiency of eddies in enhancing the flux of positive vorticity 
from the western boundary becomes limited; they no longer can easily extract positive 
vorticity from the viscous sublayer. Both effects should happen at similar Reynolds 
numbers, namely, when the splitting of the inertial-viscous boundary current becomes 
prominent. 

If we compare the properties of eddies derived from the fully nonlinear time-dependent 
problem with those predicted by linear eigenanalysis of the steady (unstable) solution for R 
greater than but not very close to Rc we get only qualitative agreement. For example, for 
R = 0.8 the eddies in the time-dependent solution have a dominant frequency u, = 0.0234. 
The eigenspectrum corresponding to the steady solution for R = 0.8 (Fig. 6b), on the other 
hand, has the primary wall-trapped mode WZ2 with Re(a) = 0.052 and its growth rate is 
significant. Figure 16a shows the eddies on the expanded scale in the time-dependent 
experiment with R = 0.8 (R08M in KSPB and SKP); the departure of the instantaneous 
stream function at time t = 10000 from the time-averaged solution is plotted. Figure 16b 
shows the pattern of the eigen stream function of the wall-trapped mode WT2 in the 
eigenproblem linearized about the steady (unstable) solution for R = 0.8. We see that the 
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Figure 16. The comparison of the spatial patterns of the eddies in the western boundary current with 
spatial patterns of the wall-trapped eigenmodes. ?il = 0.01, R = 0.8, no-slip. (a) The departure of 
the instantaneous stream function at t = 10000 from the time-averaged stream function, 
$(x, y, t = 10000) - $x, y) (the results of the time stepping problem (KSPB, SKP)). CZ = 0.1. (b) 
The real part of the wall-trapped mode WZ! corresponding to the steady solution JlO. CI = 0.1 
max (1 cp h. (c) The real part of the wall-trapped mode WT corresponding to the time-averaged 
solution JI. CI = 0.1 max (1 cp I). The absolute value of the eigenfunction of the linearized problem 
is irrelevant. The negative isolines are dashed. 

size of the eddies in Figure 16a is noticeably larger than the corresponding scale in 
Figure 16b. 

This is natural. We shouldn’t expect too much agreement merely because the time- 
averaged solution (Fig. 17a) and steady (unstable) solution (Fig. 5b) are quite different for 
such a Reynolds number; the latter has a noticeable recirculation gyre while the former 
does not. The results of the linear eigenanalysis, strictly speaking, are applicable only when 



86 Joumul of Marine Research w, 1 

O.! 

0.1 

0: 

0.1 

O.! 

o., 

O., 

0.: 

0. 

0.2 0.4 0.6 0.6 1 

Figure 17. (a) The stream function $x, y) of the time-averaged solution used in calculation of the 
eigenspcctmm. 8, = 0.01, R = 0.8, no-slip. Cl = 0.1. Compare this with the steady (unitable) 
solution shown in Figure 5b. (b) The eigenspectrum of the time-averaged solution JI. The 
eigenfrcquency of the wall-trapped mode shown in Figure 16c is marked by WT. 

the amplitudes of perturbations are small. The time-dependent solution spends most of the 
time bouncing around the time-averaged solution, and as the time-stepping numerical 
experiments show, never comes close to the steady (unstable) one. In other words the 
intensity of the recirculation gyre in the time-dependent solution is always considerably 
smaller than in the steady solution +c. 
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As an alternative we can explore the linear stability of the time-averaged solution $ 
(Fig. 17a); in other words we put 5; instead of $, as a basic flow in (3.1). Though not 
formally justified (unless, rather artificially, we think of Reynolds stress as an externally 
imposed force), this procedure does have an intuitive appeal as a heuristic way to explore 
the stabilization of the mean profile. Thus the growth rate for a mode of the steady solution 

that induces a supercritical Hopf bifurcation, for example, should have an analogous, but 
reduced, value for an associated mode of the time-dependent problem, consistent with the 
idea of saturation determined by a Landau equation. 

The resulting eigenspectrum is shown in Figure 17b. There are only two marginally 
unstable modes. The eigenfrequency of the wall-trapped mode uwT = 0.028 of the 
time-averaged field agrees better with the frequency of eddy formation ue = 0.0234. 
Moreover, the pattern of the corresponding eigenfunction shown in Figure 16c has a scale 
much closer to the size of the eddies in Figure 16a. 

Thus we conclude that for the analysis of time variability in the fully nonlinear 
time-dependent problem, one obtains better agreement by using the eigenmodes of the 
time-averaged solution. While such an approximation can only be rigorously justified for a 
mean field expansion with appropriately small interaction terms, there is considerable 
intuitive appeal to the idea that turbulent disturbances continually drive the flow back 
toward marginality. One common atmospheric idealization of this sort is the assumption 
that the atmosphere relaxes back to the neutral adiabat. For fully-developed turbulent flow 
in a channel, the mean profile goes well past marginal, it is superstable with respect to 
linear two-dimensional “Orr-Sommerfeld” disturbances. (The quotes are used to reinforce 
the purely formal correspondence in the form of the equation to the classic O-S problem.) 
However, recognizing the characteristic role of subcritical three-dimensional disturbances 
in shearing flow, one can find an adjacent problem in which, with the postulate of an 
underlying two-dimensional traveling O-S wave of moderate amplitude, the one- 
dimensional mean is rendered just marginal with respect to three-dimensional waves. 

Finally, we can answer the question why the eddies are observed in the time-dependent 
problem with no-slip condition at the western boundary and absent in the problem with the 
slip boundary condition (see KSPB, SKP and also Boning, 1986). Recall that one- 
dimensional stability analysis of the parallel flow with the profile as in the Munk boundary 
layer suggests that the slip case should be the more unstable (Ierley and Young, 1991). In 
the one-dimensional problem one should distinguish between convected instability and 
absolute or nonconvected instability (Drazin and Reid, 1981). If the group velocity cg of 
disturbance is sufficiently large (as apparently in the slip case) then the perturbation 
(though convectively unstable) will move away from the unstable region and a solution as 
a whole will be stable. On the contrary, if the group velocity is relatively small (as shown in 
Cessi and Ierley, 1993), then the perturbation will efficiently grow and result in instability 
of the how. 

In the two-dimensional stability problem there is no such dilemma. If the imaginary part 
of the eigenfrequency is positive then the mode is growing, and the solution is truly 
unstable. This is so because an eigenmode does not carry energy from one place to another, 
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the group velocity of an eigenmode in a bounded domain is zero by definition; it is actually 
a linear combination of the waves carrying energy in opposite directions so that the net flux 
is zero. In fact in the slip case (same a1 = 0.01) it is the resonant mode that starts to grow 
first at R = 0.37. Since in the slip case the size of the recirculation gyre is larger, the 
resonant mode is mixed with the basin modes (3,2) and (2,3). However, the eigenproblem 
(3.1) with slip boundary conditions also has the wall-trapped mode corresponding to eddies 
in the western boundary layer, but this mode starts to grow for larger Reynolds number R > 
R WTslip = 0.5 15. The absence of eddies in the time-dependent problem with slip boundary 
conditions can apparently be attributed to the fact that at Rwslip the time variability is 
already dominated by the basin mode which starts to grow first. 

5. Conclusions 

The classical barotropic model of the wind-driven ocean circulation in the subtropical 
gyre was considered. The nondimensional vorticity equation (1.1) was analyzed in the 
square domain 0 5 X, y 5 1. The impermeability and no-slip conditions (1.2a) were 
specified at the coasts (n = 0; 1) and the impermeability and slip conditions (1.2b) at the 
fluid boundaries 0, = 0; 1). The solutions of the problem (1. l), (1.2) are governed by two 
nondimensional parameters i& and 6 M: 8, = (inertial boundary layer width)/& au = 
(viscous boundary layer width)& where L is the scale of the domain of integration. 
Sometimes it appeared convenient to use the Reynolds number R, defined as the cube of the 
ratio of Z+ and &, instead of a1 or a,+,. We concentrated on the analysis of the solutions of the 
problem for geophysically meaningful values of the parameters $ aM (0 5 6,, 8.~ 5 0.1). 

First, the existence and the structure of steady solutions of the problem (1. l), (1.2) were 
analyzed. It was found that for every S,, S, there is at least one steady solution. The 
structure of these solutions can be of three types: boundary-layer, recirculation and 
basin-filling-gyre. It was shown that a certain subdomain of the parameters S,, SM exists for 
which the problem (l.l), (1.2) has three steady solutions of indicated types. In a 
three-dimensional space a surface given by Q = Q@,, 8,) where Q is the maximum value 
of the stream function, forms the so-called Whitney tuck. Projecting this surface onto the 
plane a,, i&, gives the wedge-shaped region where three steady solutions coexist. The tip of 
this wedge is located at S1 = 0.05637, SM = 0.04223. The corresponding Reynolds number 
R = 2.378 and maximum value of the stream function Q = 2.90. At this point all three 
solutions coalesce in a cusp singularity. There are some indications that possibly several 
Whitney tucks exist for larger values of &, au. 

The detailed comparison with the problem with the slip boundary conditions at the 
coasts is presented. The main conclusion is that in the vicinity of the main Whitney tucks 
(for R < 50) the general character of the steady solutions of the problem with no-slip and 
slip boundary conditions at the coasts is the same, although the location of the tucks on &, 
au plane differs (the no-slip cusp and fold pattern is shifted to a larger R as compared to the 
slip ones). In other words, the topological structure of the steady solution space is robust 
with respect to boundary conditions at the coasts. 

It is helpful to present the above mentioned results in a slightly different way. Consider 
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the case of fixed 8, = 0.01 and varying R that is relevant for the study of the wind-driven 
North Atlantic subtropical gyre. For this case the maximum value of the stream function Q 
as a function of R consists of three branches (forming the S-shaped curve): low, middle, and 
high. The low branch solutions are basically of boundary layer type (especially for small 
R). At R = RL = 1.6 the low branch turns back, forming a middle branch. The 
middle-branch solutions are characterized by a strong recirculation gyre. The middle 
branch turns into the upper branch at R = RH (around 0.6 for 6r = 0.01). The upper branch 
solutions are of basin-filling-gyre type and have high amplitudes. Thus the function Q = 
Q(R) is a three-valued function for some range of R. 

The steady solution of the boundary-layer type ceases to exist when R exceeds a critical 
value RL. The only steady solution for such R is of basin-filling-gyre type (upper branch), 
but such a solution has unrealistically high velocities. Thus, for 8, = 0.01 and R > RL the 
solution of the problem (l.l), (1.2) with, for example, zero initial condition (or with a 
reasonable amplitude of the initial stream function) will likely not stabilize with time. (It 
was proven also that the steady solution for R > RL is unstable.) It is difficult to 
characterize the evolution of such solutions for large time which is why this question 
remains open, though recent complementary work by Berloff and Mea&am (private 
communication) on a closely related problem suggests the ubiquity of strange attractors. 

Second, the stability of the steady solutions of the problem of (l.l), (1.2) was 
investigated. We restricted ourselves to traditional linear mode analysis. In such an 
approach the time dependent problem for perturbations of the basic flow is reduced to a 
spectral problem for determining the possible eigenfrequencies of the eigenmodes and the 
structure of the eigenmodes themselves. It was shown that the low branch solutions are 
stable for R < RC (Rc = 0.353 for 8, = 0.01); the middle and high branch solutions are 
unstable. (In the problem with slip boundary conditions the high branch solutions are stable 
for large R.) The following types of the eigenmodes were identified: (1) basin Rossby 
modes, which are just modified (by friction and main flow) Rossby wave modes; (2) a 
resonant mode representing a coupling of eddies on the southern flank of the recirculation 
gyre and certain basin modes of Rossby waves; (3) recirculation gyre modes characterized 
by zero real part of the corresponding eigenfiequencies (nonoscillatory modes); (4) 
recirculation zone modes related to the nonuniform distribution of potential vorticity in the 
recirculation zone; and (5) wall-trapped modes confined to the region of the western 
boundary current and decaying offshore. As the Reynolds number increases (for fixed S1) 
the wall-trapped modes start to grow first, determining a first critical Reynolds number, Rc. 
The resonant mode starts to grow at a larger Reynolds number providing a strong coupling 
between the mean circulation and Rossby basin modes. The recirculation gyre modes play 
an important role in causing the instability of the middle branch solutions, which have a 
prominent recirculation gyre. 

The eigenmode analysis is illuminating in the study of the evolution of the model. The 
spatial structure of numerical solutions of the nonlinear problem bears quantitative 
resemblance to the patterns of eigenmodes, especially if the Reynolds number does not 
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significantly exceed the critical value Rc. Using different methods Meacham and Berloff 
(1996) found a spatial structure of the most rapidly growing perturbation which agrees with 
the pattern of our wall-trapped eigenmodes. At the same time we note that for larger R (not 
very close to the critical value Rc) we obtain only a qualitative agreement between flow 
patterns derived from the nonlinear time-dependent problem and that predicted by linear 
eigenanalysis of the steady (unstable) solution. For example, the intensity of the recircula- 
tion gyre in the time-dependent solution is always considerably smaller than in the steady 
solution. Finally, for the analysis of time variability in the nonlinear time-dependent 
problem, it is more useful to consider the eigenmodes of the time-averaged solution 
considered as the basic flow in the stability analysis. The linear stability analysis explains 
also why the evolution of the model with slip coastal boundary conditions is different from 
the no-slip case (there are no eddies observed in the western boundary layer contrary to the 
no-slip case). 

We have discussed two mechanisms for the excitation of (barotropic) Rossby waves in 
the problem considered: wall-trapped disturbances and disturbances on the southern side of 
the recirculation gyre. We believe that the former is probably not an efficient means of 
coupling since, according to the analysis of a simplified one-dimensional boundary layer 
problem (Ierley and Young, 1991) the wall-trapped disturbances do not radiate. In the 
well-known numerical (two-layer QG) simulations by Holland (1978) barotropic basin 
modes are very strong. These are strikingly reminiscent of the resonant mode presented 
here, suggesting that further analysis could prove quite edifying. This may be the essential 
dynamical link underlying the intriguing time series analysis of Miller et al. (1986). 

Numerical integration of the nonlinear model indicates that both the spatial extent and 
strength of the recirculation continue to increase for larger R (SKI’). In IS it was suggested 
that the circulation does not, nor should it, saturate in the limit of vanishing lateral 

viscosity. The role of instability is simply to retard the rate of growth. Barotropic instability 
alone, we argue, is insufficient to retard the increase in recirculation beyond realistic 
values. Baroclinic instability and internal gravity waves are obvious candidates for future 
investigation. 

In conclusion we would like to stress the following point. From the mathematical 
standpoint (1.1) is a differential equation with the small parameters 13: and S& appearing as 
coefficients of the highest derivative terms. Typically, a boundary-layer structure is 
characteristic of the solutions of such an equation. Relative to the solution of the low-order 
(limiting) equation, these boundary layers either appear adjacent to the boundaries of the 
domain, where they act to remove residuals in satisfying (higher order) boundary 
conditions, or else manifest themselves as internal boundary layers, where they heal 
discontinuities in the marriage of low order solutions proceeding independently from each 
boundary. The formation of the recirculation gyre with x- and y-scales of the same order for 
certain relations between the small parameters (or some Reynolds numbers) is an anomaly 
that runs counter to this expectation. The gyre destroys the boundary-layer structure of the 
moderately viscous, steady, solution and requires for its existence that high-order terms to 
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be taken into account (within the gyre ?@($, A+) - a+/&>. (Though the appearance of 
strong gradients of vorticity at the margins of the recirculation gyre constitutes the 
reestablishment, if you will, of an internal boundary layer.) Physically the formation of the 
gyre has previously been explained (IS, KSPB, SKP), however the mathematical necessity 
of the gyre does not follow from traditional a priori arguments such as those of the classical 
boundary layer theory noted above. 

On the generality of our findings, it is pertinent to note that in a multilayer problem the 
solutions analyzed correspond to the solution describing the uppermost layer exposed to 
the wind forcing with the lower layers at rest. That is why we expect that our results are 
applicable not only to the barotropic problem broached here but to the steady solution of 
the baroclinic case as well. 
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