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The steady flow between reservoirs with different density 
and level through a contraction 

by A. Odulo’, J. C. Swanson’ and D. Mendelsohn’ 

ABSTRACT 
This paper presents a complete analytical solution of steady gravity flow between two reservoirs 

connected by a channel of slowly varying breadth and containing fluids of different densities and 
levels. The hydrostatic approximation is used and dissipation is neglected. 

It is shown that seven different regimes are possible depending on the value of the parameter 6 = 
-y/e, which is the ratio of relative lighter and denser reservoir level difference, y, to positive relative 
density difference, E. The exact solution of the problem is obtained for all these regimes. If  the level 
of the heavier fluid reservoir is higher than the level of lighter fluid reservoir, 6 5 0, then the denser 
fluid plunges under the lighter motionless fluid. I f  6 2 1, the lighter fluid runs up on a wedge of the 
motionless denser fluid. 

I f  0 < 6 < 1, two-directional exchange flow occurs. The exact analytical expressions for layer 
discharges for the entire range of the parameters E and 6 are found and discussed. Wood’s (1970) 
experimental data with nonsmall E are in good agreement with the theory. When E - 0 an exchange 
regime exists as long as y  -+ 0 to keep their ratio between 0 and 1, 1 > y/e > 0. At this limit the 
existence of an exchange flow and the solution depend only on the ratio y/e, not the values of y  and E 
individually, and the Boussinesq approximation can be used. 

Some examples of application of the theory to prediction of mass and volume transport through a 
contraction for steady and quasi-steady flows are given. 

1. Introduction 

The gravitational flow of two fluids of different densities through a contraction is 
important in numerous engineering and geophysical problems (e.g. Schijf and Schijnfeld 

(1953), Stommel and Farmer (1953), Bryden and Kinder (1991), Baines (1995), pp. 
146-147, Hogg and Huang (1995), Chapter 4). In fact, observations of two-directional flow 
go back at least to the sixth century, when “the fishermen of the towns on the Bosphorus 
say that the whole stream does not flow in the direction of Byzantium, but while the upper 

current which we can see plainly does flow in this direction, the deep water of the abyss, as 
it is called, moves in a direction exactly opposite to that of the upper current and so flow 
continuously against the current which is seen” (Gill, 1982, p. 96). In the seventeenth 

century Marsigli experimentally demonstrated that the density difference between the 
Black Sea and the Mediterranean causes a two-directional flow in the Strait. “He had 
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attempted to measure a difference in sea level between the Black Sea and the Mediterra- 

nean using a mercury barometer” (Gill, 1982, p. 97). But if the density difference between 
the reservoirs is very small, the exchange flow exists only for a very small difference in sea 
level. To study the influence of the difference in sea level on two-directional flow, Wood 

(1970) conducted an experiment with exchange flow between two reservoirs connected by 

a contraction, containing fluids of different densities (pi and p2 > pi) and covered a third 
layer of lightest (pa < pi) stagnant fluid. In this case neither E = (p2 - pJ(p2 - po) was 

very small nor was the relative difference in reservoir levels, y = (Hi - H,)/H. The 
measurements of the thickness of the upper and lower layers (qi and q2) were easily 

recorded photographically. 

Wood (1970) showed that the condition that the thicknesses of the moving layers 
decrease smoothly from their values in the upstream reservoirs (H, and Hz) to the value of 

zero in the infinitely wide downstream reservoirs, gives two additional equations which 
provide the complete system of algebraic equations determining a unique solution. He 

presented the results of numerical calculations as graphs of qI and I-~ at the minimum 
width bO and q: and q; as functions of the depths ratio H2/H, for a range of density 

difference ratios E. Here q = Q/(cbdi) is a discharge coefficient, c = m, b,, is the 
channel width in the narrowest cross section, g is the gravitational acceleration; see also 

notation in Appendix E. He also obtained the solution for the case of a denser layer 
plunging under a stationary lighter layer. 

Exchange flow in the case of the absence of the third layer (p,, = 0) was considered by 

Armi and Farmer (1986) Lawrence (1990), Dalziel (1991) (and in this paper); see also 
Baines (1995, $3.11). Changing notation one can make both problems (p. = 0 and the 
problem solved by Wood (1970)) identical. Armi and Farmer (1986) solved the problem 

numerically in the Boussinesq approximation using “net discharge,” U = q, - q2, as the 

independent parameter. They also discussed the case of a denser layer plunging under a 
stationary lighter layer and the case of a lighter layer running up on a stationary denser 

layer. In the Boussinesq approximation Lawrence (1990) found algebraic expressions for 
the thicknesses of the layers in the narrowest section and algebraic expressions for values 
of channel width where the layer velocities are equal and where their sum is equal to cl@. 

He used the discharge ratio q, = ql/q2 as the independent parameter. For the case of pure 
contraction Dalziel (1991) presented numerical results identical to those obtained by Armi 
and Farmer (1986). 

Most previous studies concentrated on the positions and flow conditions at so-called 
“control points.” The main goal of our study is the determination of the discharges Q, and 

Q2 in terms of external conditions (channel geometry, reservoir levels and fluid densities). 
In this paper we obtain the exact analytical solution of the steady flow through a 

contraction which connects two large basins with fluids of given densities and levels. Our 
study is based on the specific energy equation, introduced by Bakhmeteff (1932, $15), see 
also Henderson (1966, p. 3 1). It will be shown that the key parameter of this problem is 6 = 
(H, - H2)kH, H = max (H,, H2). If 6 < 0, then the denser fluid plunges under the stagnant 
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lighter layer (regimes l-3), if S > 1 then the lighter fluid runs up on a wedge of stagnant 

heavier fluid (regimes 5-7). The results for these regimes are presented in Section 2 and the 

solutions are given in Appendixes A and B. Regimes 1, 2, 3, 5, 6 and 7 differ in the 

positions of the tip of the wedge of the stagnant fluid (the plunge point, Wood, 1970, p. 
676) and in the dependence of Q, and Q2 on 6. For regimes 1 and 7 the discharges Q, and 

Qz are constants independent of E and 6. The discharge Q, - (6 - 1),‘2 for regime 6 and 
Q2 - (- S),12 for regime 2, Q, - S312 for regime 5 and Q2 - (1 - S)3’2 for regime 3. 

If 0 < S < 1, then both layers are in motion (regime 4). The complete analytical solution 

for the entire range of the parameter E (0 < E < 1) is given in Section 3. In particular the 
exact expressions for the contraction discharge coefficients q1 and q2 as functions of the 

parameters E and S are found. For exchange flow graphs q,(E, 6) and q2(E, 6) are close to 
q,(O, 6) and q2(0, S), respectively. In the Boussinesq approximation (E = 0; subsection 3b.) 

the solution takes the simpler form. In particular, the discharge of lighter fluid Q, = 
A(S)Scb,,H and the discharge of denser fluid Q2 = A(S)(l - S)cbfl (here A(S) varies 

between 2/Jz? (for S = 0 and S = 1) and ll$ (for S = 0.5)). The application of the steady 
solution in the case when S and/or E slowly change with time is discussed in Section 4. 

Let us now show the physical meaning of the parameter 6. If the reservoirs have the 
same densities but different depths and are separated by a gate, the difference of their 

potential energies per unit mass is g(H, - H2)/2. One can find the description of the flow 

initiating from the removal of the gate for a channel of constant width in Henderson (1966, 
pp. 309-310). If the reservoirs have the same depths, but different densities and are 
separated by a gate, the difference of their potential energies per unit mass is ~gH/2. One 

can think of S as the ratio of these differences of the potential energies. 

Now we shall give the example of the initial condition which results in the steady flow 
considered in this paper. Let the reservoirs have different densities (p, and p2 > p,), 

different depths (H, and Hz) and be separated by a gate in the narrowest cross section. Then 
the pressure on the left side of the gate is p, = gp,z (here z is the vertical downward 

coordinate, 0 < z < H,) and on the right side is p2 = gp2(z + H2 - H,) (here 
H, - H2 < z < H,). If H2 > H, (this means S < 0), then p2 > p1 at all z and after the 

removal of the gate the flow initially will be from right to left at all z. If p,H, > p2H2 (this 
means S > 1) then p, > p2 for all z and after the removal of the gate the flow initially will 
be from left to right for all z. If H, > H2 > p,H,lp, (this means 0 < 6 < 1) then p, > p2 

for 0 < z < SH, and p2 > p, for SH, < z < H,, therefore after the removal of the gate 

the flow initially will be from left to right for 0 < z < SH, and from right to left for 
SH, <z<H,. 

It is clear that the unsteady flows initiated by the removal of the gate in the cases where 
H, # H2 and where the densities on the either side of the gates are equal in one case but 

different in the other, are similar only if 1 S 1 >> 1. The flows are very different if 1 S 1 is order 
of or less than 1. In this paper we study the steady flow of two fluids with different 
densities. 

The conventions adopted throughout this paper are as follows: the lighter fluid moves 
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Figure 1. Plan view (a) for flow through a contraction and side views (b)-(h) for various flow 
regimes. Calculations of free surface (solid lines) and interface (dashed lines) were made for E = 
1O-3 using (1) and (2) for (b)-(d), (33) and (34) for(e) and (7)-(10) for (f)-(h). The corresponding 
values of the parameter 6 are (b) 6 = -667; (c) 6 = -62.5; (d) 6 = -0.25; (e) 6 = 0.25; (f) 6 = 
1.1; (g) 6 = 62.5 and (h) 6 = 667. 

from left to right and the denser fluid moves from right to left; all values and parameters are 
positive except 6 and y which are negative when Hi < Hz; x is the horizontal coordinate 

along a channel; the channel width b(x) is infinite at x - %m and has a unique minimum b,, 
at x = 0; the channel has a flat bottom, H = max (H,, Hz). 

2. Plunging and run up 

We consider the problem of two-layer flow through a rectangular profile channel of 
slowly varying width connecting two reservoirs of infinite width (plan view is sketched in 
Fig. 1 (a); Fig. 1 (b)-(h) present calculated side views for particular values of the parameters 

E and 6 and illustrate all seven regimes). 

a. A denser fluid plunging under a stationary layer If the level of the heavier fluid 
reservoir is higher than the level of lighter fluid reservoir (H, < Hz), then the lighter fluid is 

at rest (velocity u1 = 0). The position of the plunge point (defined as the position of the tip 
of the wedge of motionless fluid) is denoted as x*. 

The solution can be found from the Bernoulli and continuity equations and the 
requirement that the thickness of the denser layer q2 continuously decrease from H2 to 0 

(see Appendix A). The first three rows of Table 1 present the contraction discharge 
coefficients q1 = QllcHbO and q2 = Q2/cHb0 and the nondimensional thicknesses of the 
lighter and denser layers .$i = n ,IH and c2 = q21H at the position of minimum width at x = 
0 (which we denote as & and 520, correspondingly) as functions of E and 8 for regimes l-3. 

Regimes l-3 (see Fig. l(b)-(d)) correspond to the position of the plunge point x* being 
downstream, at and upstream of the narrowest section (Wood, 1970, p. 676). 

For given E and 6 the nondimensional thickness of the denser layer & satisfies the 
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Table 1. 

regime 2 
1/36>-6~1/(2+E) 

regime 3 
1/(2+r)z-6>0 

regime 4 
OS35 1 

regime 5 
1~6<3/(2+e) 

regime 6 
3/(2++6c(1+2~)/3~ 

regime 7 
(1+2~)/3~cSclk 

specific energy equation (see (A.7)) 

(1 +d$\j-6 I+& 0 

2((1-6(1-r))/3)‘D 2(1-6(1-E))/3 (1+6(2+E))/3 

(l-&)A G50 2(2+a)/(3(K,+2+a)) 

I-6(2fe)/3 2613 

0 (1-&)/(1--E) 

- 213 

at x 2 x*, (1) 

(1 - 6(1 - E))t; - 5; = qgb2 at x 5 x*. (2) 

This equation determines the free surface at x 2 x* and the interface at x % x* as functions 

of the nondimensional channel width, b(x) = b(x)lbo, in implicit form. 
The nondimensional free surface elevation 6 = &H can be expressed in terms of & as 

follows (see A.5) 

ES = 1 - 52 atx 2x*. 

At x < x* the free surface is a horizontal plane. 
The nondimensional velocity of the denser fluid v2 = u2/c is (see (A.l)) 

v2 = & at x > x*, 

and (see (A.3)) 

(3) 

(4) 

v2 = 45, - 6 at x 4 x*, (5) 

where 

5, = 1 + E8 - 52 atxSx*. (6) 

One can see that vZ(x) monotonically increases from v2(~) = 0 to v2( -m) = 
JFg=qi. 
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If a motionless lighter fluid completely covers a heavier fluid (6 = 0) then according to 
Archimedes Principle the flow of the lower layer is the same as in absence of the upper 

layer but with reduced gravity. If S = 0 then &(x) is described by Eq. (2) for all x. The 

shape of the interface is the same as the free surface for one layer flow (ES = - 1, in 

dimensional form H, = 0). However the discharge Q2 in the case with S = 0 is & times the 

discharge Q2 of the one layer case with ES = - 1. 

b. A lighterjuid running up over a stationary denser wedge. If the level of the lighter fluid 

reservoir is so high that 6 > 1 (H, > H2 + EH,), then the denser fluid is at rest, u2 = 0, and 

the lighter fluid runs up over the wedge of the denser fluid. 
The solution can be found from the Bernoulli and continuity equations and the 

requirement that the thickness of the lighter layer ql continuously decreases from HI to 0 

(see Appendix B). The last three rows of Table 1 present ql, q2, .& and &,, as functions of E 
and 6 for regime 5 (Fig. l(f)), for regime 6 (Fig. l(g)) and for regime 7 (Fig. l(h)), 

respectively. 
For given E and 6 the nondimensional thickness of the lighter layer 5, satisfies the 

specific energy equation (see (B.6)) 

(1 - El% = w* forx* 2 x (7) 

and 

(8 - 05: = sh2 forx 2 x*. (8) 

The nondimensional free surface 5 = &His determined by the equation (see (B.3)) 

ES = 1 - 51 for x* 2 x, 

and (see (B.5)) (9) 

c=s-6, for x 2 x*. 

The interface is determined by the equation (use the last equation and (B.4)) 

52 = 1 - ES - (1 - E)I;, for x 2 x*. (10) 

The nondimensional velocity of the lighter fluid v1 = u,/c is (see (B.l)) 

One can see that v, monotonically increases from 0 at x - ~0 to v,( -w) = 6. 

3. Exchange flow 

The solution for regime 4 will be obtained in this section from the Bernoulli and 

continuity equations and the requirement that the thickness of the layers n, and q2 
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continuously decrease from their maximum values to 0. The notation of row 4 in Table 1 
will be explained. 

a. Exact solution. If 0 < S < 1 (0 < H, - H2 < EH,), then both layers are in motion. The 

Bernoulli and continuity equations are 

u: = 2gs, (11) 

w,b = Q,, (12) 

u; = 2dC - ff, + Hz + -IA (13) 

w& = Q2. (14) 

We also have, from the definition of the free surface displacement 5 (see Fig. le), 

rll + 712 + 5 = HI. (15) 

To obtain (11) and (13) we have used the boundary conditions 

u, - 0, 5 - 0 atx- --03 7 

u2 - 0, 5 - H, - H2 atx-m. 

We have already found the solution for S = 0 and S = 1 (see regimes 3 and 5 in Table 1). 

We can describe some properties of the exchange flow even before solving the problem. 
When S increases from 0 to 1 then: 

4, increases from 0 to 2/Jz?, q2 decreases from 2/@ to 0 (therefore ql/q2 increases 
from 0 to 00, q1 - q2 increases from -2/@?’ to 2/@); q,(O) increases from H,/3 to 2H,/3, 

7j2(0) decreases from 2H2/3 to H2/3; u,(=J) increases from 0 to c, u2(-~0) decreases from 

c to 0. 
Using nondimensional variables (defined in Section 2, see also Appendix E) one can 

rewrite the system (1 l)-( 15) in the following form 

vf = 5, (16) 

v&b = 41, (17) 

v; = 5 - s + 51, (18) 

v&b = 92, (19) 

5, + 62 + E.$ = 1. (20) 

For a given channel geometry b(x), relative density difference E and relative level 

difference y (6 = y/e) the system of five equations (16)-(20) contains five unknown 

functions S(x), E&3, &(4, VI(X) and &) and two unknown contraction discharge 
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coefficients q, and q2. Wood (1970) showed that q1 and q2 can be found using the condition 

that the thickness q1 and q2 decrease smoothly from the values Hi and Hz to 0. It follows 

from his solution that q1 and q2 depend only on E and 6 and are the same for any 

contraction. 

The parameter E appears only in Eq. (20). Thus the Boussinesq approximation (E = 0, 

but 6 = Y/E, 5 = &H and c2 = 2g~H remain finite) and the rigid lid approximation 

(5, + c2 = 1) are identical for exchange flow. Note that if instead of a free surface we have 

a rigid lid at z = H, then one can determine the function 5 as 5 = (~~-00, H) - p(x, H))l 

(gp,) and 6 as 6 = f&-m, H) - p(a, H))l(EgHpJ and use the solution in the Boussinesq 

approximation obtained below (here p(x, H) is the pressure on the lid). 

From (20) and the boundary conditions we have 

0 5 5, 5 &(-00) = 1 and 0 I c2 I r&(m) = 1 - es. 

It follows from (16) and (18) that v1 = v2 at the point where 5, = 6, 

0 I vi 5 $ = v,(w) and 0 5 v2 I J1-s = q(-~0). 

Eliminating vi, v2 and 5 from the system (16)-(20) we get 

6, + 52 + Eqpb26; = 1 (21) 

852 + q;/bzc; = (1 - 6)& + qT(l - eS)/b?$. (22) 

Eq. (22) can be called the specific energy equation for an exchange flow. Eqs. (21) and (22) 

correspond to Eqs. (15) and (16) in Wood (1970). 

Let us rewrite Eq. (22) in the form 

q; - q;( 1 - &)K2 = &E;( 1 - 6 - 6K)b2, (23) 

where K(X) is the ratio of layer thicknesses 

K(X) = t2(4&(4. (24) 

Because K(X) changes continuously from 0 to @J, there must be such a point X, where 

K(X,) = K, = (1 - 8)/s. (25) 

So, by definition, x, is the point where .&(x)/&(x) = (1 - S)/S. Putting x = x, in (23) we get 

the relationship between q1 and q2, which corresponds to Eq. (26) in Wood (1970), 

J1-Es q*/q2 = S/(1 - S). (26) 

This relationship allows us to introduce A(E, S) such that 

q1 &--?j = AS, q2 = A(1 - 8). (27) 



40 

This leads to 

Journal of Marine Research 

,/i=%q,+q2=A, 

,/Gq, -q2=A(2S- 1) 

q1/q2 = S/((l - S)JI--Es). 

Substituting (27) into (16)-(20) after some algebra yields 

d-v, = Sells, 

v* = (1 - S&/s, 

S&b = As, 

where 

s* = (1 - S)& + 852. 

[55-l 

(28) 

(2% 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

From (3 1) and (32) we get 

J1-Es v, + v* = s, JFzi v’1 - v* = (6 - 5, - Ese)/S, 

J= V, = KV2/K,. (36) 

In particular REV, = v~(x,) (see Eq. (22) in Wood, 1970). If 6 = l/2, one can see 

from (25) that ?,(x,) = r).&) and from (26) that H,QT = H,Qi. From (26) we get that Q, = 

Q2 when E = (1 - 2S)/(S( 1 - S)*) or approximately 6 = 0.5-0.076 for 0 I E 5 1. 

If we add to the system (31)-(32), (34)-(35) one more condition, for example, v1 = v2 or 

6, = t2 (each of which occurs at some position), we get five equations. These equations 

allow us to find all five functions v,(E, S), v*(E, S), &(E, S), &(E, S) and S(E, 6) (see 

Appendix C) which are independent of b(x) and do not require knowledge of A(E, 6). 

The analytical solution of the system (31)-(35) in parametric form, which expresses El, 

c2, v,, v2 and s in terms of b(x), is presented in Appendix D. The analytical expression for 

A(E, S) will be obtained below from the condition that the thicknesses q, and r)* are smooth 

functions. At this time we would like to point out that the expressions (3 1) and (32) for the 

velocities v, and v2 in terms of 5, and e2 and the quadratic equation (34), from which one 

can express 5, in terms of E2, contain neitherA(e, S) nor the channel width b(x). We see that 

the functions vi(I;*), ~~(1;~) and F;i(t2) do not depend on channel geometry. Solving the 

quadratic equation (34) and using (35) one gets from (33) the algebraic expression for 

b(e2), which gives the interface as function of the channel width in implicit form (see 
Fig. l(e)). 

In the system (31)-(35) the parameter E occurs only in the combination 1 - ES. 
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Therefore the Boussinesq approximation can be used for the entire range of E (0 < E < 1) 
ify << 1. 

ToJindA(e, 6) we use (34) to rewrite Eq. (33) as 

A%(K + KJ( 1 + K + di~‘/((l - ES)(K + K,)))~/K’ = b2. 

The right side of this equation has a minimum at x = 0. Therefore the left side must also 

have a minimum at x = 0. This leads to 

2K; - K,J(~ - K,) - 2K, + 2EK;(K,, + 2K,)/((1 - E + K,)(KO + KY)) = 0. (37) 

Here ~~ = K(O) is the ratio of layer thicknesses at the narrowest section which decreases 

from 2 to (1 - l )/2 when S increases from 0 to 1. 

Introducing the parameter cx = KO/K, one can find from (33), (34) and (37) the following 
expression for A(E, 6) in parametric form 

A2 = S(KO + ~t)~,J(27(1 + o)(l + Kd(2 + CY))~), (38) 

6 = CY/(Ko + CX), (39) 

Kg = (1 - CX2+ .%a(1 - Ci)/(l + 13) 

(40) 
+ (1 + o( 1 - e/2) + CX~)~ - 6e02- e2a3/( 1 + CX)~)/(~ + 2a), 

which completes the solution. 
One can see from (39) that (Y varies over the interval (0, to) when S changes from 0 to 1. 

The fourth row of Table 1 presents the contraction discharge coefficients ql and q2 and 
nondimensional thicknesses El0 and 520 as functions of E and S in parametric form (o is the 
parameter and ~~ is given by (40)) for regime 4 (Fig. l(e)). The velocities v,(O) and ~~(0) 

can be found from relations 

V,(O) = 4&o and v2(0) = q2%20. 

Figures 2-5 illustrate the solutions presented in the Table 1. Figure 2 shows the graphs 
q: and qi as functions of S for a wide range of the parameter E (cf. Wood, 1970, Fig. 6). If 
the lighter fluid is air and the denser fluid is water then E = 0.9987. For E = 0.9987 regimes 

5, 6 and 7 (water is motionless) exist when H2 ==c 0.0013H1. For E - 1 regimes 1, 2 and 3 
merge into regime 1 at - 1 < S -=c 0 and regimes 5, 6 and 7 merge to one point at S = 1. 
Remember that S changes in the interval [-l/e, I/E]. The graphs q:(S) and q;(S) are 

presented in Figure 2 in their entirety for all seven regimes for E = 1 (- 1 < S < l), E = 
0.75 (-413 < S < 413) and E = 0.5 (-2 < S < 2). 

Figure 3 shows the graphs q,(S) and q2(S) (cf. Wood, 1970, Fig. 6) for exchange flow 
only and the values of E as in Wood (1970). If E = 0 the graphs ql(S) and q2(S) are 

symmetrical on either side of the line S = 0.5. When E increases then ql(S) slightly 
increases and q2(S) slightly decreases; both the value of S for which q, = q2 = q= and the 
value of q= slightly decrease. 
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0.8 

0.6 

Figure 2. Graphs of q: and qi against 6 for E = 0,0.25,0.5,0.75, 1. 

Figure 4 shows graphs &a, .$a and t;(O)/H as functions of S for regimes 3,4 and 5 and the 
values of E as in Wood (1970). If E = 0 the graphs z&,(S) and z&,, are symmetrical on either 

side of the line S = 0.5 and [(0)/H = 0. Note that the graphs ~a(e, 6)/H, will be closer to 
each other for different E than the graphs Q~(E, S)/Hi. The graphs &a and &,, as functions of 
S and Wood’s (1970) experimental data are shown on Figure 5a and 5b, correspondingly. 

The agreement between the experimental points and theoretical curves is very good. 
Figures 4 and 5 correspond to Figures 9 and 10 in Wood (1970) which present .$,a and .&,, as 
functions of H21H, = 1 - ES. 

b. Boussinesq approximation. In most natural flows both E and y are very small. If E > y > 
0, an exchange flow occurs and the Boussinesq approximation can be used. In other words 
one can put y = 0 (H, = Hz) and E = 0 (pi = p2) everywhere except the expressions c2 = 

2~gH, 5 = PI and S = y/e. For exchange flow 0 < S < 1, therefore the condition y << 1 
follows from the condition E << 1. 

In the Boussinesq approximation it is convenient to use the ratio of layer thicknesses at 
the narrowest section ~~ (0.5 < ~~ < 2) as the parameter. The complete solution of the 

problem is (putting E = 0 in (40) and using (38)-(39) and the fourth row of Table 1) 

8 = (1 - K,,/2)/(1 - K,, + K;), (41) 

A2 = 2Ko( 1 + K;)/(l + Ko)‘, (42) 
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Figure 3. Discharge coefficients q1 and q2 against 6 for E = 0 (-J, 0.25 (--J, 0.4 (....... ), 0.6 
L-.-J. 

4: = 2Ko( 1 - K,,/2)2/(1 + K;)( 1 + Ko)~, (43) 

4; = 2K;(Ko - 1/2)2/(1 + K;)( 1 + Ko)~, (4) 

&IJ = l/(1 + Kg), 520 = ‘d(l + Ko>- (45) 

Note that one can get an explicit expression for ~~(8) from quadratic equation (41) and 
obtain A(6) in the explicit form 

6AQ) = (1 + 2$-G&/( 1 + &Y&2, (46) 

where u = 6 - l/2. Because ~~ = l/tlo - 1 one can rewrite the solution (41)-(45) using et0 
as the parameter. 

Using x as a parameter (--00 < x < 00) we have (putting E = 0 in Appendix D) 

25, = 1 - tanh x, 

2c2 = 1 + tanh x, 

& vI = 6(1 + tanh x)/(1 + (26 - 1) tanh x)“~, 

& v2 = (1 - 6)(1 - tanh x)/( 1 + (26 - 1) tanh x)‘“, 

(47) 

(48) 

(49) 

(50) 
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Figure 4. Nondimensional layer thickness c,(O), &(O) and free surface displacement {(0)/H against 6 
for E = 0 (-.-.-. ), 0.25 (-------), 0.4 (p), 0.6 (- --). 

&s = (1 + (26 - 1) tanh x)‘“, (51) 

b(x) = $A cash* x(1 + (26 - 1) tanh x)l’*. (52) 

We choose the monotonically increasing solution x(x) of Eq. (52). When x increases from 
--co to CO then x increases from --M to ~0. 

In the Boussinesq approximation x, = x,. At this point (see Table 3 in Appendix C) 

5, = 6, .5 = 1 - 8, x = tanh-’ (1 - 26), 

v,=v,=&i?ijE, b = A,/-. 
(53) 

The formulas (41)-(45) and (53) give the analytic solution of the system (3.11.9)-(3.11.14) 
in Baines (1995). 

At the point x,, where the layer thicknesses are equal (5, = e2 = l/2) we have (see 

Table 3 in Appendix C) 

x = 0, VI = SIJZ, v* = (1 - S)/&, s = l/&, b=A& (54) 

The formulas (41a and 41b) in Lawrence (1990) give identical expressions for b at these 

points. 
If 8 = l/2 (K~ = 1) the formulas (42)-(5 1) become very simple, 

A2 = l/8, 41 = qz = 45% 510 = 1;20 = l/2 (55) 
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Figure 5. Nondimensional layer thickness &(O) and &(O) against 6 for E = 0 (-), 0.25 (-.-.-.), 0.4 
C-h 0.6 ( . . . . ...) and Wood’s (1970) experimental data. The numbers in the parentheses show the 
values of E for corresponding experiment. 

[in dimensional form Q, = Q, = b0 H(~gff)~‘~/4, (Schijf and Schijnfeld 1953, p. 325)] and 

2& = 1 - (1 - l/b)‘“, 252 = 1 + (1 - l/b)“Z, forx 2 0, 

2E2 = 1 - (1 - l/b)“2, 25, = 1 + (1 - l/b)“2, for x 5 0, (56) 

v1 = S,lJz, v2 = &h/z s = l/&. 
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Table 2. 

Regime 2 
-6 2 l/2 

41 
q2 $5 

::I 0 1 

“IO 
“20 

Regime 3 Regime 4 
l/2 2 -6 2 0 01611 

2(( 1 -08)/3)3~2 

(1 + 26)/3 
2(1 - 6)/3 

(( 1 - Os)/3)1/2 

6A 
(1 - 6)A 

“(1 + 6)/3 
“(2 - 6)/3 

=26/(1 + S)$ 
=2(1 - 6)/(2 - s,& 

Regime 5 Regime 6 
1161 1.5 1.5IF 

2(6/3)3’2 (6 - 1)‘” 
0 0 

2613 1 
1 - 2613 
(6/3)‘” (6 -“l)l~2 

0 0 

In the Boussinesq approximation v1 + v 2 = s (one can call s the shear), q, + q2 = A(6) 

(one can call A the exchange flow rate), U = q, - q2 = (26 - l)A(S) and qr = ql/q2 = 
S/(1 - 6) (put E = 0 into (36), (28), (29) and (30) respectively). Presented above are 

analytical formulas for all functions shown in Figures 5-8 by Armi and Farmer (1986) 

(they used U as the independent variable) and in Figures 6-8 by Lawrence (1990) (he used 
qr as the independent variable). A(S) changes insignificantly (max (AZ) = A2(0) = A2( 1) = 4/ 

27, min (A2) = A2(1/2) = 4/32). Therefore the function U(S) is close to linear and the 

graphs of all values as functions of U (Armi and Farmer (1986)) and as functions of 6 (this 
paper) look similar. It is trivial that q2 = - U and qr = 0 for regimes l-3 (because q, = 0), 

q, = U and qr = m for regimes 5-7 (because q2 = 0). 

Table 2 is a simplified transposed version of Table 1. To get formulas for regime 4 in 
Table 2 we use solutions for regime 3 for 6 = 0 and for regime 5 for 6 = 1 and suppose that 

i&(S) and e,,(S) are linear continuous functions for regime 4. The sign = in Table 2 means 

that in addition to the Boussinesq approximation we also approximate &a(S) and .&,,(S) as 
linear functions and then we find v&S) and vzO(S) from (17) and (19) putting A = 2/@ for 

all S from the interval [0, 11. 

If E << 1 then, until ES << 1, the Boussinesq approximation can be also used for regimes 

2,3,5 and 6. 

4. Some examples of application of the theory 

The essential quantitative problem is the determination of the net volume exchange rate 

V’ = Q, - Qz and the net mass exchange rate M’ = p2Q2 - p,Q, if we know E and S and 
vice versa (see for example Bryden and Kinder (1991), Hogg and Huang (1995), Chapter 

4). Between M’ and V’ there is a simple relation 

M’lp, = eQl - V’ = Q2 - (1 - l )Q,. (57) 

If M’ = 0 we have E = 1 - Q2/Q, = 1 - q2/ql and V’ = EQ,. If V’ = 0 we have Q, = Q2 

and E = M’l(p2Ql). The relations (57) are correct for any exchange flow. For the case of 
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pure contraction, considered in this paper, we have, using (27) 

V’ = Jz; A(S)Q,(2S - 1 + eS2/(1 + d,i=% - ES)), 

wip2 = Jz; A(S)Q,(I - 26 + eS(i + JFZ - sy(i + J1-s - ES)). (59) 

Here Qi = gbti3. For any given M’ and V’ one can find E and 6 from (58) and (59). If 

both M/Q0 and V’lQO are order E iI2 then S - 0.5 is not small for small E. If M’ or V’ is zero 

then 26 = 1 + O(E). For M’ = 0 we have 

2s = 1 + &(2 - 6 - E)/(l - ES) = 1 + 3e./8 + O(G) 

e3’2 = (1 - E)V’I(& (1 - S)A(S)Q,) = 4V’/Q,, + O(E~‘~). 

In the quasi-steady approximation we assume that e(t), S(t), M’(t) and V’(t) slowly vary 

in time so that Eqs. (58) and (59) are correct. 
Suppose that S(t) = So + 6, sin (2mtlT) (due to tides), V’(t) = E (due to evaporation 

from the basin with the heavier fluid) and (M’(t)) = 0, here (. . .) means average over period 
T. Let 6, and E be known constants, then E and So are unknown constants. One can find E 

and So from 

((1 - S)A(S))/(l - E) = (SA(S)l(l - ES)“‘) = E/(e3”$ Q,). (60) 

For quasi-steady applications of this theory it is important that the so called barotropic 

transport U = q, - q2 is not zero (U = -2/m) when the levels in the reservoirs are equal 
(6 = 0) but U = 0 when S = l/2. For instance if the level of the heavier fluid reservoir 

changes periodically H2 = H,( 1 - @a + f(t)) (here H, and a are constants,f(t) is a periodic 
function with period T and (f(t)) = 0), then 6 = a + f(t) and U = 2A(S)(a - 0.5 + f(t)) are 
periodic functions with the same period T. Note that (U(t)) = 0 (this means (ql) = (q2)) if 

a = l/2 andf(t) is an even function. But generally (U(t)) # 0 and depends on a and the 
amplitude and behavior off(t). Using (46) one can easily calculate (U(t)) for any particular 
a andf(t). 

In Helfrichk (1995) experiment a small tank filled with a fluid of density p, and volume 

V, begins to vertically oscillate with a displacement a0 sin (2ntlT) in a large basin filled 
with a fluid of density p2. Because the free surface area of the small tank, S, was small in 
this experiment (Sa, - Q,T&), the change of the level in the small basin due to flux 
through the contraction must be taken into consideration. Neglecting changes of density 
and volume in the large basin we have 

dS/dt = (21=r(aolT) cos (2ntlT) + (Q2 - QJ/S)/(HE) (61) 

dddt = - eQ,/V. (62) 
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The first term in the right side of Eq. (61) describes the change in Hz due to oscillations of 

the small tank, the second term describes the change in HI due to the change of the fluid 

volume in the small tank. Eq. (62) describes the change of E due to the net mass exchange 

M. We also can put E = e(O) and V = V(0) in the right sides of Eqs. (61) and (62). We get 

two equations for e(t) and S(t) which can be easily solved with initial conditions e(O) = E,,, 

S(0) = 0. 

The above examples illustrate some applications of the theory to steady and quasi-steady 

flows. 

Eqs. (58)-(60) are valid for regime 4. If 8(t) becomes negative and/or larger than 1, then 

these equations must be extended using formulas for q1 and q2 for regimes 2,3,5 and 6. 

5. Discussion 

a. Comparison with one layerflow. When the fluid on both sides of the contraction is the 

same density, then only one-directional flow is possible. A steady how occurs if 2H1 > 3H2 

or 2Hz > 3H,. When the fluids on both sides of the contraction are of different densities 

exchange flow takes place only if the level of the lighter fluid is slightly higher than the 

level of the denser fluid (in the case of the rigid lid, the pressure on the lid far from the 

contraction on the side of the lighter fluid is slightly higher than the pressure on the rigid lid 

far from contraction on the side of the denser fluid). Precisely, the relative level difference 

y must be less than the relative density difference E (relative pressure difference must be 

less than the relative density difference in the case of the rigid lid). The maximum velocity 

of exchange flow (= $&$?) is smaller than the maximum velocity of steady one layer flow 

(=a-% 
When the fluid on both sides of the contraction is the same density the flux through the 

contraction can be zero if the levels in the basins are equal (H, = H2). In the case of 

different densities the exchange flow rate Q, + Q2 is always larger than some positive 

value. In the Boussinesq (or rigid lid) approximation Q, + Q2 2 Qmin = &Q,j2 and 

reaches this minimum value when 6 = l/2. Here Qi = gb$13. The discharge for one layer 

steady flow through a contraction is 2Q,,/@. 

b. Many features of real exchange flows were neglected in this papel: We have found the 

discharge coefficients ql and q2 for steady flow using a simple model which does not 

include effects such as friction, decreasing channel width with depth, changing depth along 

a channel, etc. 

The expressions Q:,2 = q,,2g’biH3 can always be written by replacing ql,2 with q1,2ef To 
take into account the effects of friction and/or decreasing channel width with depth on the 

discharge coefficients ql and q2 we introduce correction coefficients C, and C2 such that 

chef = c,q,, 92ef = c2q2, (63) 
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where 9, and q2 are the discharge coefficients from Table 1. Corresponding modifications 

must be made in (58)-(60). 

If the channel width b(x, Z) increases from the bottom to the free surface and b,, in QT,, = 
q,,2g’b$Z3 is the minimum width of the free surface, then 1 > C,(6) > C,(6). For some 

b(x, Z) the correction coefftcients C,(6) and C,(6) can be found analytically. 
To include effects of friction, some empirical friction coefficients are required in the 

momentum equations. Alternatively, it is reasonable to introduce empirical correction 
coefficients C, < 1 and C, < 1 in (63) to take account of the resistance losses (we assume 

that, similar to one layer flow, see Bakhmeteff, 1932, pp. 4243, the friction reduces 

discharges of both layers). These coefficients are different for different contractions. 
Due to friction, the depth of the interface and the depth of the zero velocity line can differ 

significantly in real flow, especially for regimes 2, 3, 5 and 6 (see for example Arita and 
Jirka, 1987, Fig. 2). This and other effects of friction are outside the scope of our 

consideration. 
When we model continuously stratified flow by two-layer flow the correct choice of p1 

and p2 is very important. A small difference in pt and/or p2 can lead to significant difference 
in E and as a result significant differences in 6, q1 and q2. 

The key relation of the theory (26) was obtained under the assumption that b(x) infinitely 

increases far from the contraction. Let a maximal width of the lighter fluid reservoir be a 
constant b_ at x < xP < 0 and a maximal width of the heavier fluid reservoir be a constant 
b, at x > x+ > 0. One can use the solution obtained in Section 3 in the interval [x-, x+] and 

take qi(x) = q;(x-), U;(X) = ui(x-) at x < X- and qi(x) = ni(X+), Ui(X) = ui(X+) at x > X+ 

(i = 1, 2). Not e t a Q x an h t .( ) d .( ) u, x can be arbitrary constants in the channel with constant 

width. 

c. Concluding remarks. Exchange flow through a contraction takes place because the 
fluids on either side of the contraction are of different densities and levels. The important 

result is that for small E the existence of an exchange flow and the solution depend only on 

the ratio of the relative reservoir level difference y to the relative density difference E, 6 = 
Y/E. In contrast to previous authors who presented results of numerical calculations we 
obtained the complete analytical solution of the problem. In Section 4 we demonstrated 
application of the analytical theory for the solution of some practical problems. The choice 

of S as an independent parameter is more successful than the choice of “net discharge” 
U = q, - q2 or the discharge ratio qr = ql/q2 to obtain an analytical solution for all regimes 

and to understand the underlying physics. 
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APPENDIX A 

Denser fluid plunging under a stationary lighter fluid 

If 6 I 0, then there is no flow of lighter fluid (Fig. 1 b-d). The Bernoulli and continuity 
equations for the denser fluid are 

u; = 2g5, (A.11 

w& = QB 64.2) 

in the region upstream of the point (x > x*) where the flowing layer plunges under the 

stationary fluid; and 

u; = %W* - ff, + -I,), (A.3) 

w-d = QB (A.4) 

in the region downstream of the plunging point (x < x*). We also have 

732 + 5 = ff2 at x > x*, (A.5) 

rl~ +rl2=H1 atx <x*. G4.6) 

Here u2, -rb and Q2 are the velocity, thickness and discharge of the denser fluid, 5 is the free 

surface displacement, r), is the thickness of the lighter layer. 
Eliminating u2 and 5 from (A.l), (A.2) and (A.5) we get 

W2 - -~2>‘1; = Q%kb2 at x > x*. (A.7a) 

Eliminating u2 and ql from (A.3), (A.4) and (A.6) we get 

(H, - q2 + (H2 - H,)/E)T$ = Q;/2Egb2 atx <xa. (A.7b) 

We are looking for a continuous solution of the equation (A.7) with boundary conditions 

112 - 0 atx- --03 7 r)2-H2 atx-a. 

When the plunging point is downstream of the position of minimum width (x* < 0, 

regime l), the left side of the equation (A.7a) must have a maximum at x = 0, because the 
right side has a maximum at x = 0. This requirement gives 

q,, = 2ff,/3, Q; = dobit (A.81 

The last expression gives uzo = gq20. Putting n2(x*) = HI and Q2 from (A.8) into (A.7a) we 

get the equation for the position of the plunging point x*. 

b2(x*)/b; = 4H;/(27Hf(H2 - pi,)). (A.9) 

Therefore regime 1 exists when 2H2/3 > HI > 0. 
When the plunging point is upstream of the position of minimum width (x* > 0, regime 
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3), the requirement that the left side of the equation (A.7b) must have a maximum at x = 0, 

because the right side has a maximum at x = 0, gives 

q20 = 2w, + (Hz - ffJW3, Q; = w;o%. (A.lO) 

. . The last expression gives uio = eg-nzO. Putting q2(xa) = Hi and Q2 from (A. 10) into (A.7b) 

we get the equation for the position of the plunging point x*. 

b2(m)lb; = 4(H, + (H2 - H$E)~/(~~H;(H~ - H,)). (A.ll) 

Therefore regime 3 exists when H2 > HI > H2/( 1 + E/2). 

When the plunging point is at the position of minimum width (x* = 0, regime 2) then 

q20 = H, (see Fig. lc). Putting r)20 = HI in (A.7a) we have 

Q; = 2g(H2 - H,)Hfb;. 

This gives uzo = 2g(H2 - HI). 

The layer thickness q2 decreases and velocity u2 increases in the flow direction. If one 

defines the critical velocity as (gr)20) l/2 for regime 1, as (2g(H2 - r)20))1’2 for regime 2 and 

as (egq20)t’2 for regime 3 then “the flow upstream of the minimum width is subcritical and 

downstream of it is supercritical” (Wood (1970), $2.2(a)). 

APPENDIX B 

Lighter fluid running up on a stationary denser fluid 

If 1 5 6 then there is no flow of denser fluid (Fig. 1 f-h). The Bernoulli and continuity 

equations for the lighter fluid are 

u: = 2g5, (B.1) 

wlb = Q,, 03.2) 

We also have 

rll + 5 =HI atx<x*, 03.3) 

in the region upstream of the plunging point where the flowing layer runs on the stationary 

fluid; 

5 + ?I + 7-12 = HI atx>x*, (B-4) 

5 + l -q1 = H, - H2 atx>x* 03.5) 

in the region downstream of the plunging point. The last equation is the condition of no 

motion of the denser fluid. From (B.4) and (B.5) we have (1 - l )qt(x*) = Hz. Here ul, q1 

and Q, are the velocity, thickness and discharge of the lighter fluid. 
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Eliminating U, and 5 from (B.l), (B.2) and (B.3) we get 

W, - T h: = Q:Qb* at x< x*. (B.6a) 

Eliminating uI and 5 from (B.l), (B.2) and (B.5) we get 

(-q I + (H, - H2)k)q; = Q:/2Egb2 atx >x*. (B.6b) 

We are looking for a continuous solution of the equation (B.6) with boundary conditions 

71-0 atx-a, 91 --HI atx- --co. 

When the plunging point is upstream of the position of minimum width (x* > 0, regime 

7), the requirement that the left side of the equation (B.6a) must have a maximum at x = 0, 
because the right side has a maximum at x = 0, gives 

qlo = 2H,~3, Q: = do% (B.7) 
, . 

The last expression gives nTo = g-ulo. Putting qr(xe) = Hz/(1 - E) and Qi from (B.7) into 
(A.6a) we get the equation for the position of the plunging point 

b*(x*)/b; = 4( 1 - E)*H;/(~~H;(H, - H2/( 1 - E))). (B.8) 

Therefore regime 7 exists when 2( 1 - E)H,/~ > H2 > 0. 

When the plunging point is upstream of the position of minimum width (x* > 0, regime 
5), the left side of the equation (B.6b) must have a maximum at x = 0, because the right 
side has a maximum at x = 0. This requirement gives 

r120 = Wj, - ffdk Q; = w;obk (B.9) 
. 

The last expression gives uio = egr)20. 

Putting q,(x*) = H2/( 1 - E) and Q, from (B.9) into (B.6b) we get the equation for the 
position of the plunging point 

b*(x*)lb; = 4(1 - E)*((H~ - H2)/~)3/(27H;(H1 - H2/(1 - E))). (B. 10) 

Therefore regime 5 exists when (1 - E)H, > H2 > (1 - E)H,I( 1 + E/2). 
When the plunging point is at the position of minimum width (x* = 0, regime 6) we put 

qlo = Hz/( 1 - E) into (B.6a) to find 

Q; = 2g(H1 - H2/( 1 - E))(H*/( 1 - E))*b;. 

This gives ufo = 2g(HI - H,l(l - E)). 

APPENDIX C 

The solution at x = x,, x = x, and x = cc,,. 

Let the point where the layer velocities are equal (u r = u2) be defined as x,, and the point 

where the layer thicknesses are equal (q, = 7)*) be defined as xv. The solution of the system 
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Table 3. 

--m 

0 

“: 
s2 

Wx) 
(1 - &)F, 

F2 

0 
0 

l-6 

l-6 
cc 

0 
m 

8(1 - 6)/(1 + \/l-E) 

6 

(1 - s)vG-s 

5 
5 

6(1 - ?I)(1 + J1-E8) 

A*/(&1 - sS)) 

2(1 - S)(l - &)/(l + J-z) 

2641 + JiQi - es) 

XT 

W(2 - 2ES + es*) 

(1 - 4/2 

(1 - l .5)/2 

5 
(1 - a)*(1 - ES)/2 

(1 - E.32 
SAV(l - EC)3 

282 

2(1 - 8)2 

m 

6 
0 

1 - rs 
8 

0 

6(1 - ES) 
cc 

m 

0 

(31)-(32), (34)-(35) has a simple form at points --a~, x,, x,, xq and w (see Table 3). To 

calculate the channel width at these points from (33) we need to know A(E, S). 
“To measure the degree of rapidity of flow” Bakhmeteff (1932), pp. 64-65, introduced 

“the kineticflowfactor” Fi(X) = 2$/&(X) (i = 1,2) which is “twice the ratio of the kinetic 

energy head to the potential energy head.” Recent authors use the notation F = Fr2, where 
Fr is called the local Froude number (Baines (1995), p. 38 and $1.4). Wood (1970, Fig. 4) 

showed that the combination F, + F2 - l FlFZ is equal to unity at the position of minimum 
width and some other point and less than unity between these points. He called them 
“points of control.” 

From (31) and (32) we get 

(1 - &)F, = %K*/(K + K,), F2 = 2(1 - 8)/(K + K2/K,). 

In particular F, + F2 - EF,F* = 1 at x = x,. Eq. (37) ensures that F, + Fz - EF,F~ = 1 
atx = 0. 

We see from Table 3 that x, < x,, when 6 > 0.5 and x, > x,, when 6 < 0.5 (because 5 

monotonically increases with x) and that 2s*(x) < 1 for 0 < E < 1 at points xy, x, and x,,. We 
also see that F,(x,) = F2(x,) when 1 - ES = K, (qz(x,)/H2 = ql(x,)/H1 andH:p, = Hgp, in 
dimensional form). This gives 6 = I/( 1 + fi). 

Wood (1970) called x, the point of virtual control and found &(x,), &(x,), v:(x,) and 
vi(xJ (Eqs. (22)-(25) in Wood, 1970). Lawrence (1990) noted that the solution is simple 
when F,(x,) = F,(x,). Indeed, for 6 = l/(1 + fi): (25) gives K, = fi, using (20) 
we get 6,(x,) = 2/(3 + KJ and .$(x,) = 2~J(3 + KJ (see Eqs. (24) and (25) in Wood, 

1970), (26) takes the form qt = K,~ (the last three equations are identical to Eqs. (44a, b) 
and (43) in Lawrence (1990), the graphs of &(x,), Ez(x,) and qr as functions of E are 

presented in Fig. 10 in Lawrence, 1990); (35) gives s2(xV) = 4(1 - S)/(3 + K,); we have 
2$(x,) = S&(x,) and 2v:(x,) = S&(x, ) b ecause F,(x,) = F2(x,) = 6; from (33)-(35) one 
gets Eq. s(s2 - (1 - 6)) = (26 - l)( 1 - S)A/b which shows that s(x) takes maximal value 
matx= - +-co and has the minimum s*(O) = 4(1 - S)/(3 + K,) at x = 0, thereforex, = 
0. Putting x = 0 in the equation for s gives A2 = 4~,( 1 + ~,)/(3 + KJ~; from (27) we have 

4: = 46/(3 + Kv)3, 4; = 46/(1 + 3/K,)3. 
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Thus x, > 0 if 6 < l/(1 + F) E an x, < 0 if 6 > l/(1 + 6); q, > q2 and d 
&,,(x,) > t2(x,) for 6 = l/(1 + fi). 

General solution 

APPENDIX D 

Introducing the parameter x = tanh-’ (2t2 - 1) the solution of the system (31)-(35) can 
be written as 

-K < x < tanh-’ (1 - 266) 

25, = 1 - tanh x - eS2(1 + tanh ~)~/(2(1 - eS)s2), 

2E2 = 1 + tanhx, 

2v, = S(1 + tanh x)/(s&&, 

2v2 = (1 - S)(l - tanh x .- eS2(1 + tanh ~)~/(2(1 - eS)s2))/s, 

4s2 = 1 + (26 - 1) tanh x + ((1 + (26 - 1) tanh x)~ 

- 4aS2(1 - S)(l + tanh ~)~/(l - ~8))“~ 

b(x) = 4Asl(cosh-2 x + eS*(l + tanh x)?(2(1 - ~6)s~)). 

Here A(E, 6) is given by (38)-(40). The analytical formulas for graphs presented on Fig. 
9(b) (with E = 5 and 6 = .8) in Lawrence (1990) are given above. 

APPENDIX E 

Notation 

The following symbols are used in Sections l-3 of this paper: 
A(E, S) = is introduced by (27), the analytical expression is given by (38)-(40); 

b(x) = the channel width; 
b0 = the minimal channel width; 

b(x) = b(x)& = the nondimensional channel width; 

c = ,j?&?? = the maximal velocity of an exchange flow; 
g = the gravitational acceleration; 

H, and H2 = the lighter and denser fluid levels far from a contraction; 
H = max (H,, H2); 
Q = the discharge; 

q = Q/(&J?) = the discharge coefficient or nondimensional discharge; 
s2(x) = (1 - S)& + St2, see (35); 

u = the velocity; 
v = ulc = the nondimensional velocity; 

x = the long channel coordinate; 
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x* = the position of the plunge point; 

x = the parameter (-co < x < “) in (47)-(52); 
(Y = the parameter (0 < OL < “) in (38)-(40); 
p = fluid density; 

E = (p2 - p1)/p2 = the positive relative density difference; 
y = (HI - H2)/H = the relative reservoir level difference; 
q = thickness of the layer; 

E = &H = the nondimensional free surface displacement; 
& = q,/H and z$ = qz/H are the nondimensional thicknesses of the lighter and 

denser layers; 

6 = -y/e = the ratio of relative reservoir level difference to relative density 
difference; 

K(X) = tz(x)/&(x) = the ratio of the layer thicknesses. 
Subscripts 

0 = at the narrowest cross section; 
1 = layer of lighter fluid; 
2 = layer of denser fluid. 
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