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The principle of biological attraction, demonstrated by the 
bio-continuum theory of zooplankton patch dynamics 

by Meng Zhoul and Mark E. Huntley’ 

ABSTRACT 
A theory of zooplankton and micronekton patch dynamics is developed that expressly includes 

animal behavior. This represents a departure from traditional models of patch dynamics, which 
generally treat animals as Lagrangian particles whose distributions are determined solely by 
processes of advection and diffusion. The “bio-continuum” theory is based on principles of statistical 
mechanics, and describes animal aggregations in terms of mean motion, random motion, random 
kinetic energy, distribution and abundance. The forces on an animal aggregation act both upon the 
aggregation as a whole (external forces) or between individuals (internal forces). We demonstrate 
here that the internal forces which serve to maintain autocoherence are, in essence, a force of 
biological attraction that can be quantified in Newtons. A coefficient of biological attraction is 
defined, and its magnitude evaluated in aggregations of Antarctic euphausiids (Euphausia superba). 
We hypothesize that the coefficient of biological attraction may be constant for all organisms in the 
sea. 

A method for measuring all key variables with acoustic Doppler technology is presented, with 
specific attention to application of the Acoustic Doppler Current Profiler (ADCP). We conclude that 
bio-continuum theory, coupled with acoustic Doppler observations, provides a practical approach for 
studying animal aggregation dynamics in the sea. 

1. Introduction 

Patchiness of zooplankton and micronekton is an important feature of the ocean. It has 
been well recognized in many individual species, and is critical in determining the fate of 
natural populations in a dynamic physical environment. Early studies of patch dynamics 
emphasized the role of intraspecific autocoherence on patch size (Anderson, 1981; Okubo, 
1980; Parr, 1927). A typical model by Anderson (198 1) describes the size of a fish school as 
being governed by Fokker-Planck stochastic differential equations. Dynamics were intro- 
duced into models of patchiness by Okubo and Anderson (1984) and Okubo (1986). In 
their theory, the equation of motion is Newtonian, so that the acceleration of an animal is 
determined by the friction force, autocoherence, and a random Markovian acceleration. 
From these assumptions, A Fokker-Planck equation was used to describe the probability- 
density function. Under equilibrium conditions, the velocity distribution is Maxwellian and 
fits observed data of an insect swarm very well. However, behavior, per se, did not enter 
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into consideration. Similarly, Steele and Henderson’s (1992) model of plankton patchiness 
uses white-noise forcing of a simple phytoplankton-zooplankton Lotka-Volterra model, 
with diffusion, to produce power spectra of wave-number variance that match observa- 
tions. The results, in both cases, resemble real situations in terms of statistical means of 
integral scales, but provide little insight into the animal behaviors that are one of the prime 
underlying causes of patchy distributions. 

Recent attempts to resolve this dilemma have been only partially fruitful. Models 
consisting of n-individual animal models have been developed to understand the random 
movement of animals in a swarm or a school, and the resulting density distribution (Okubo, 
1986). Unfortunately, the ability of such n-individual models to reproduce the dynamics of 
a patch is restricted by our knowledge of individual behavior and by an existing computing 
power. 

Behavior clearly plays a role in patch dynamics. Aggregative behavior confers advan- 
tages in avoiding predation (Brock and Riffenburgh, 1960; Clark, 1974; Partridge, 1982; 
Pitcher, 1983; Swartzmann, 1991) and in utilizing food resources that are themselves 
patchily distributed (Cowles et al., 1993; Duffy and Wissel, 1988). Therefore, animals are 
not simply passive particles that respond stochastically to processes of advection and 
diffusion. They actively aggregate near food sources, they swim to avoid predators, and 
they move to desired locations or environments (e.g. Blaxter, 1969; Radakov, 1973; Shaw, 
1978). These behaviors are the mechanisms that maintain the autocoherence of aggrega- 
tions. 

Advection-diffusion equations cannot describe behavioral processes that determine 
patch dynamics. This raises two important questions. First, what system of equations can 
explain how animals respond to environmental forces such as food sources, predators, 
light, and flow fields? Second, what mechanics determine the distribution and swimming 
velocities of individuals, their attraction to one another, and the shape of their aggrega- 
tions? A theory of patch dynamics should incorporate these aspects, building on what we 
know about physical laws of motion and the behavioral responses of animals to their 
environment. 

The ability to observe patches of zooplankton and micronekton has greatly improved in 
the past decade through the use of bioacoustic methods (e.g. Smith et al., 1992). We draw 
particular attention to the use of acoustic Doppler technology. Like all bioacoustic 
methods, this approach provides observations of distribution and abundance (Flagg and 
Smith, 1989; RDI, 1989; Zhou et al., 1994). However, Doppler spectra can also be used to 
make direct measurements of animal swimming speeds, as was first shown by Holliday’s 
(1974; 1977) measurements on fish. This unique feature, as well as the widespread use of 
one particular instrument, the Acoustic Doppler Current Profiler (ADCP), provides an 
opportunity to bridge the gap between observations and an improved theory of patch 
dynamics. Measurements of animal mean motion and random motion are precisely what is 
required to measure those aspects of animal behavior lacking in current models of plankton 
and nekton patch dynamics. 
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The theory developed in this article specifically parameterizes animal behavior. Divid- 
ing an animal’s motion into its mean and random components, and applying Boltzmann’s 
transport equation leads us to derive equations of motion that govern patch dynamics, 
acknowledging fundamental laws of physics that go beyond the recognition of simple 
advective and diffusive processes. The resulting dynamical theory describes animal 
swarms in terms of measurable macro-phenomena (e.g. animal abundance, mean veloci- 
ties, and random motion), which constitute what we refer to as the “bio-continuum.” A 
special feature of the theory is that these macrovariables can be measured by acoustic 
Doppler techniques. 

2. Basic theory 

An animal’s motion may be determined by complicated processes of physiology and 
behavior; nevertheless, it is an adequate assumption that the motion of the animal is 
governed by Newton’s second law (Okubo, 1986; Okubo and Anderson, 1984), i.e. 

dx 

z=” (1) 

dv 
- = F(x, t) 
dt 

where x is the vector describing the animal’s position relative to the origin of the coordinate 
system, v is its velocity, and F is the ratio, to the animal’s mass, of all forces acting on it. 
Noting thatf(x, v, t) is the distribution function of animals at time tat x with a velocity v, 
we have the distribution function at t + At as 

fi 
x+vAt,v+$At,t+At =f(x,~,t)+(Af)~+(Af),+(Af)~ 

I 
(3) 

where (A f )c is the redistribution caused by “avoidance interactions” between animals. By 
this we refer to events in which two animals alter their velocities to avoid potential 
collisions, thus causing their redistribution. Such avoidance events are the mechanism by 
which individuals within patches are able to maintain relatively constant nearest neighbor 
distance (Test and McCann, 1976; Hamner et al, 1989). The population dynamics term, 
(A f )B, describes the change due to processes of birth and mortality. The physiological 
term, (A f )p, refers to the change of velocities caused by physiological states of animals. 
Examples of such changes among marine zooplankton include die1 variation in feeding 
activity (e.g. Baars and Oosterhuis, 1985; Dam and Peterson, 1993), which in turn affects 
physiological processes such as digestive metabolism (Head et al., 1984; Mayzaud et al., 
1984), respiratory metabolism (Duval and Geen, 1976; Steele and Mullin, 1977), and is 
often accompanied by changes in swimming activity (Dagg, 1985; Huntley and Brooks, 
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1982; Saiz et al., 1993). For example, the feeding activity of micronektonic Euphausia 
superba directly affects swimming behavior, causing “feeding frenzies” that involve 
turning, somersaulting and rapid swimming in the presence of high concentrations of food 
(Hamner, 1984; Stretch et al., 1988). 

Rearranging Eq. 3, and taking the limit as At - dt, we obtain Boltzmann’s transport 
equation as 

(4) 

where V, and V, are gradient operators corresponding to x and v. 
We now define the following variables in their standard forms (Degroot and Mazur, 

1962): 

PC& t) = S _+_mf(x, vv t> a (numbers me3) (5) 

where p is animal abundance and dA, is an infinitesimal volume in v-space. The mean 
swimming velocity, u, is given as 

1 
s 

+m 
UC% t> = ; --m vfb, v, t> a, (m s-t) 

We define a correlation tensor, H, 

wx, t> = J_:m (v - NV - ulf@, v, t) a, (numbers m-l SC’) (7) 

which describes the correlated motion between those components of velocity induced by 
avoidance between animals. Units of the correlation tensor, for an animal of unit mass (kg) 
are [N kg-r mm2], which are units of “pressure, ” i.e. a force acting on a unit surface, and 
we therefore refer to it simply as a pressure tensor. Thus, the tensor of Definition (7) also 
describes the rates of exchange of momentum between components of velocity due to the 
avoidance between animals. The random kinetic energy, 8, in unit volume of the 
aggregation is defined as 

0(x, t> = ; J_I” Iv - UlTm, v, t> a, (m* sm2) (8) 

and 

J(x, t) = ; J-L@= (v - u)lv - +f(x, v, t) d4, (numbers se3) (9) 

describes the correlation between the random motion component (v - u) and the kinetic 
energy component [Iv - u]*], i.e. the flux of random kinetic energy across a boundary of 
volume dA,. 

To simplify the problem, we follow standard procedures in statistical mechanics 
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(Degroot and Mazur, 1962). We make the following assumptions, that (1) momentum is 
conserved during avoidance events, and (2) only binary avoidance can occur. 

Integrating Eq. 4 and substituting Definitions 5-9, we obtain the basic equations for the 
“bio-continuum” as 

z + V . (up) = r,(birth, death) Continuity 

~+“.Vu+h-I=~F, Momentum 
P P 

~+~.ve+~ll:vu+~v.l=lQ, 
P P 

Internal energy. 

(10) 

(11) 

The conservation of numbers is described by Eq. (lo), where r, is the rate of change in 
animal abundance related to population dynamics. The momentum balance is described by 
Eq. (1 l), where F, is the sum of all forces (in N kg-’ mP3), both among animals (internal, 
or auto-coherence forces) and upon animals from their environment (external forces), 
acting on individuals in a unit volume. The third equation represents the conservation of 
random kinetic energy, where the rate of change of activity due to change in physiological 
state (Q,) is balanced by the rate of change in random kinetic energy (deldt), the advection 
of random kinetic energy, (u . VO), the interaction between random motion and nonuniform 
mean velocities [( l/p)II:Vu], and the flux of random kinetic energy [( l/p)V . J1. 

The above three formulations are the governing equations of motion in animal aggrega- 
tions. The left side of each equation describes the mechanics which govern the motion; the 
right side represents biological phenomena, described in terms of population dynamics, 
behavior, and physiology. To close these equations requires further development of both 
the mechanical and biological aspects. First, we require closure of the constitutive 
functions for II and J. Second, it is necessary to clearly parameterize the biological forces 
and suggest how they may be measured. In the following section, we discuss the 
constitutive functions and methods for their measurement. 

3. Development of constitutive and state functions 

a. Simplijcation of II and J. If the random component of animal motion is isotropic within 
an aggregation, then II is symmetric from Definition (7). We define a “normal pressure,“p, 
as 

1 
P(K t)= 3 --m s +m Iv - upf(x, v, t) d&l, 

which describes, for avoiding animals, the correlation between those components of 
post-avoidance motion that are in the same direction as their original motion. We also 
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define a shear stress tensor, E, as 

E=n-p1 (14) 

which describes the lateral redistribution of their motion due to such avoidance. The 
diagonal elements of E are equal to zero if the random motion is isotropic. From 
Definitions (8) and (13) we have the state function as 

p = wp (15) 

which represents the normal pressure as a function of random kinetic energy and the 
abundance of animals. From Definitions (9) and (14), E and J represent fluxes of 
momentum and random kinetic energy, respectively. The zero order approximation, from 
phenomenological theory (DeGroot and Mazur, 1962), is that the fluxes are proportional to 
the gradients of macrovariables, i.e. 

E = -yVu (16) 

where y is the momentum flux coefficient, and 

J=yVO (17) 

where l.t is the random kinetic energy flux coefficient. We note that Eqs. (16) and (17) could 
be made more complicated as a function of velocities, random kinetic energy, abundance 
and time history. However, the simplifying assumptions we make here do not affect the 
general result. Given the simplifications of Eqs. (15)-( 17), then Eqs. (lo)-( 12) and 
(14)-( 17) provide a complete set of basic equations adequate to describe the dynamics of 
animal aggregations. 

For the more complicated case of anisotropic random motion, such as might be 
encountered in a patch of Antarctic euphausiids, the horizontal motion of animals is 
stronger than their vertical motion (Hamner et al, 1989). We note that Definition (7) can be 
expressed as 

II = hjl 6, j = x, Y, 2) 

where, for example, pxy is the correlation between the x and y components of random 
motion velocity and, similarly, 

E = (eij) (i, j = x, Y, z>. 

Thus, if E = W/U is the ratio of the vertical to horizontal motion, where Wand U are the 
scales of vertical and horizontal motion respectively, we have 

and 

(18) 

&ii 

eij = Yij G i#j (19) 
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where y,.. is a symmetric tensor of momentum flux coefficients which satisfies yXZ = Y,,~ = 
l yXY If we have E << 1, then we have pu + pyy + pu = pxx + pyy, because pu - 0. The 
normal pressure can then be expressed as p = (pm + p&/2. As a result, the state function 
becomes 

p = p8. (20) 

b. The Bio-force, F,. In Eqs. (1) and (2) we have assumed that Newton’s second law 
describes animal motion (Duffy and Wissel, 1988; Okubo, 1986; Okubo and Anderson, 
1984); so, from Eq. (11) 

F, = p(F, + Fd (21) 

where F1 is the internal force due to autocoherence in unit volume, and FE is the sum of 
external biological forces, both acting on an individual of unit mass and having units of 
[N kg-‘]. The sum of these internal and external forces we term the “bio-force.” 

The external force, FE, can be parameterized with reference to food, temperature, 
predators, and other environmental influences. It is obvious that a complete and general 
parameterization would be complex, given the many variables known to affect animal 
behavior, and will not be attempted here. In this article we make the reasonable assumption 
that the effects of temperature, predators, light, and other environmental forces are, to a 
first order approximation, uniform within any aggregation of animals. These forces tend to 
act upon the aggregation as a whole. 

The internal force, FI, is the sum of forces between individuals that act to maintain their 
association with one another. This is a force of autocoherence, and it is therefore a function 
of the distance between animals, their abundance, and species-specific recognition mecha- 
nisms. Because autocoherence acts between animals, its integration over the entire patch 
must be equal to zero. A simple linear form for the internal force is: 

FAX, 0 = 2 s:- (5 - x) 15 - x I -“MI%, 0 dA, (22) 

where 5 is position in the x domain, cg is the autocoherence scale coefficient, A4 is 
individual body mass, and n is an exponent. The value of n arises from the mechanisms that 
animals use to communicate with one another, which determine their consequent motion. 
One hypothesis is that, with respect to one another, animals orient their motion according 
to “gradients of information,” such as the concentration of chemical substances or acoustic 
signals (Bollens et al., 1994; Buskey and Stoecker, 1989; Poulet and Ouellet, 1982). Such 
gradients are, in general, satisfied by the reverse quadratic law in three dimensional space 
and therefore diminish in intensity as the square of the distance from the source of the 
stimulus. Thus, n must be equal to 3. With n = 3, the autocoherent force, FAX, t), has the 
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potential, G(x), i.e. 

5 G(x) = - - 
47FIxI 

[54,5 

(23) 

and, substituting into (22), we obtain 

F&L t> = V, sTm MP& W(5 - x) &,. (24) 

Formulae (22) and (23) will hold when the distance between animals is greater than r,, 
referred to as the “equilibrium distance” (Parr, 1927; Breder, 1951; Okubo, 1986). The 
equilibrium distance is finite, and is generally greater than animal body length. In this 
article we focus on an analysis of the internal, autocoherent force, FI. 

c. Equilibrium of random motion. One further assumption we make here is that the local 
adjustment of animal position is independent of mean distribution and motion. In other 
words, the time scale required for an animal to adjust its position relative to its neighbors is 
much smaller than the time scale of the mean motion of the aggregation. This is the local 
equilibrium assumption, i.e., that in a small volume, the random kinetic energy (Cl), 
abundance (p) and pressure ( p) are uniform, and therefore the effect of mean motion can be 
ignored. 

The energy added to the total random energy of animals, SQ, in unit volume is divided 
into 68 (the change in their random kinetic energy), and also to @(l/p) (work done by 
pressure) which tends to expand the volume occupied, i.e., 

Substituting (20), and rearranging, we obtain 

-=Sln t SQ 
8 0 P’ 

(26) 

If there is no change in total random energy, i.e. if SQ = 0, we have 

0 = c,p (27) 

and 

P = G3P2 (28) 

where c0 is the ratio 8/p, with an initial value, ce = edpa, which is constant when SQ is zero. 
Eq. (28) indicates that without any energy input, the random energy of animals will 
decrease linearly as their abundance decreases. Thus, avoidance events between animals 
will be reduced when the aggregation is less crowded. 
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Assuming that animals maintain a constant cruising speed, i.e. 8 = 8a, we have 

P = OOP (29) 

and 

(30) 

where AQ is the maximum energy that can be added to maintain the total random energy as 
abundance changes from its initial value, po, to some other value, p. It is obvious from Eqs. 
(28) and (29) that, in general, the pressure term is a power function of animal abundance 
such that 

P = cePP (31) 

where p must be greater than 1 and less than 2. Under conditions of local equilibrium, two 
extreme cases are possible. Either no energy is added to the system (p = 2), or maximum 
energy is added to the system (p = 1). These limits constrain the relationships between 
abundance, pressure, and random kinetic energy (Fig. 1). 

4. An aggregation with uniform, steady mean motion 

If an aggregation has no mean motion, or has a uniform steady motion, and the 
horizontal motion of individuals is much greater than their vertical motion (i.e. E = Wl 
V << l), as occurs in aggregations of Antarctic krill (Hamner et aZ., 1989) then, based on 
phenomenological theory (DeGroot and Mazur, 1962), the off-diagonal elements of the 
pressure tensor eV are zero because &Jc$ = 0 (see Eq. 19). Thus, we can express the 
balance between the internal force of autocoherence and the pressure gradient from Eqs. 
(11) and (24), as follows 

1 ap -- = 
P ax s $ MP(~) ; G(S - x> dAg 

1 ap -- = 
P ay S -; MP(~) ; G(t - x) d, 

1 ap E2-- = 
P az s -1 MP(S) ; G(S - xl de 

(32) 

(33) 

(34) 

where G is defined by Eq. (23). Substituting relation (31) into the above three equations, 
and taking the divergence of these equations, we obtain 

cop a2pf+* 
p-1 F 

I 

+ a2pp-I 
ay2 ~pW2G(t - x> dA,. (35) 



1026 Journal of Marine Research [54,5 

3 

2 

1 

0 

Figure 1. (A) Normalized pressure ( p/pO) and (B) normalized random kinetic energy (W&J as a 
function of normalized abundance (p/pO) for hypothetical aggregations in which the power 
function, p (in Eq. 3 l), is allowed to vary between its upper and lower limits. 
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From the formula for G (Eq. 23), it is apparent that G is the three-dimensional Green 

function for the Poisson equation, and (l/c,)VG(x) is a a-function. Thus, Eq. (35) is equal 
to 

(36) 

where cgr the autocoherence function, can be evaluated from the pressure gradient and the 
abundance distribution. We refer to cg, as the “coefficient of biological attraction.” 

By transforming the coordinates such that 

x = x’, Y = Y’, z = EZ’ (37) 

Eq. (36) can then be rewritten as 

VI2 p-1= 
MC,@ - 1) 

P 
CEIP 

PW> (38) 

where V’ is the gradient operator in x’. In this transformed coordinate system, the z 
direction is streched to the same order of x and y directions, which yields a symmetric 
solution. Using spheric coordinates, Eq. (38) can be written as the ordinary differential 
equation 

MC&P - 1) 

COP 
PW (39) 

where r is the radial distance in spheric coordinates. Assuming the center of the 
aggregation is set at the origin of the coordinates, then the abundance (p) of animals at any 

location within the aggregation can be written as 

p = BOFm (40) 

where both B,, and m are arbitrary constants which need to be determined. Substituting Eq. 
(40) into Eq. (39), we obtain 

BOp-‘(f3 - l)mr-“(P-1)-2[(P - 1)m - l] = 
MC&@ - 1) 

Cd 
BOY”. (41) 

To obtain solutions from Eq. (41), we must have that 

m = m(P - 1) + 2 

and 

(42) 

Bl-‘(p - l)m[(B - 1)m - l]= 
MC,@ - 1) 

COP 
. B,,. (43) 
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Rearranging Eq. (42), we obtain 

2 
rn’2-p (44) 

where m defines the rate at which animal abundance increases with distance from the edge 
of the aggregation toward its center. 

From the analysis of Eqs. (27) through (30), we demonstrated that the value of B must lie 
between 1 and 2 (Fig. l), and therefore it follows from Eq. (44) that m > 0. Thus, the 
abundance of animals will decrease with distance from the center of the aggregation. 
However, the present solution yields infinite abundance at the origin, which clearly cannot 
be. To constrain this solution, we assume that there must be some maximum abundance, 
pmax, at which the attractive force vanishes, i.e. where the equilibrium distance between 
animals (TJ is equivalent to (l/~,,)“~ (Parr, 1927; Breder, 1951; Okubo, 1986). This leads 
to the solution 

(45) 

where a is that distance from the center of the aggregation at which animal abundance 
begins to decline from its upper limit, pmax. Where the abundance is at its maximum 
(p = p,,,) then the random kinetic energy also reaches a maximum, 8 = 8,,. Rearranging 
Eq. (3 l), we obtain 

ctl = %laxP2 (46) 

and, substituting Eqs. (44) and (46) into (43), we now solve for the coefficient of biological 
attraction, cg 

c 8 = 5 (m - 3)(m - l)a-*. 
max 

We can now calculate the total number of animals in the aggregation, N, by integrating Eq. 
(44) over the volume of the aggregation, i.e. 

N = [ 4nPp dr = ,,r:,) . pmaxa3 

where m must be greater than 3 (there is no solution yielding a finite number of animals in 
the aggregation when m is equal to or less than 3). 

The radius of the aggregation can be defined from the density distribution, i.e. 

R = s,” P drIpma,. (49) 
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Substituting Eq. (45) into the above definition, we obtain 

RdLa 
m--1 ’ 

Eqs. (48) and (50) provide the means to measure the key parameters of animal aggrega- 
tions. We now have a system of equations that contain a series of measurable variables, 
namely the maximum abundance of animals near the center of the aggregation (p,,,), the 
distance from the edge of the aggregation to its center (R), the distance from the center at 
which the maximal abundance begins to decline (a), the rate of that decline with distance 
(m), and the total number of animals in the aggregation (N>. In practice, all variables are 
measurable, and lead to a value for the coefficient of biological attraction. 

5. The biological force of attraction, and its role in maintaining aggregations 

We can now evaluate the constant of animal attraction, cs, as a function of measurable 
variables. Combining (47) and (50), and cancelling a, we obtain 

20,,, (m - 3)m2 

cg= Mp,, (m - 1)R2 

The dimensions of the autocoherence function are 

[m* sK2] 
k,l = ,kg m-3l [mP21 = EN. m2. kg21 

(51) 

(52) 

which is dimensionally equivalent to Newton’s gravitational constant. Thus, cg is the 
biological attraction. The force of attraction, FA, between two animals of masses Mi and M2 
is described by 

where d is the distance between them. 
Although the highest swimming speeds, or “escape velocities,” can be maintained for 

very brief periods, marine animals tend to swim at a constant velocity, or “cruising speed” 
(Zhong et al., 1996). The maximum kinetic energy of animals in an aggregation, 0,,,, is 
therefore well represented as a function of the cruising speed. Rearranging (51), we obtain 

0 
P mm WhaxcgR2(m - 1) =-= mm 
PIllaX 2(m - 3)m2 

(54) 

which represents the bulk balance of forces in the aggregation. The potential stored in the 
pressure field causes the aggregation to expand, and the autocoherent force of attraction 
causes it to contract. 
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Body Weight (kg) 

Figure 2. Random kinetic energy (m* s-*) as a function of body wet mass (kg) for marine animals 
ranging in size from protozoans to whales. Data from Zhong et al. (1996). 

Kinetic energy is a function of animal mass (Fig. 2; Zhong et al., 1996). Thus, Eq. (54) is 
appropriately scaled by rearranging as 

8 max = R . C+(M) 

where the normalized force of attraction, 4(M), is 

(55) 

cbo?l = 
~~rnaxc~R(~ - 1) 

2(m - 3)m2 
(56) 

represents the force exerted by the mass of all animals in the aggregation on a unit mass of 
individual. Figure 3 shows that, for a given magnitude of attractive force, large animals can 
maintain larger aggregations than small animals. 

6. Observations of the autocoherent force, F,, in an aggregation of Antarctic krill 

a. Methods. Application of the bio-continuum theory is limited only by the measurability 
of its defined variables. Here we provide an example using measurements on aggregations 
of Antarctic krill (Euphausia superba). Acoustic Doppler technology offers the instrument 
of choice for this task, as it is capable of providing the necessary in situ measurements of 
distribution and abundance. 

In July 1992, euphausiids were the primary Doppler scatterers in Gerlache Strait, 
Antarctica. Data collected by Acoustic Doppler Current Profiler (ADCP) during the 
RACER IV 1992 winter expedition (Zhou et al., 1994) can be used to measure the key 
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R (ml 
Figure 3. The mass-normalized force of attraction (N kg-‘), calculated from Eq. (56) as a function of 

the radius of the animal aggregation (m) for characteristic individual mass of representative marine 
animals: copepods, krill, fishes and whales. 

variables required to characterize krill aggregations according to the bio-continuum theory, 
and from these to estimate the coefficient of biological attraction for Euphausia superba. 

In the Gerlache and Bransfield Straits, circulation in the upper layer has scales of IO4 to 
lo5 meters (Niiler et al., 1991; Huntley and Niiler, 1995). This circulation scale is one order 
of magnitude greater than the scale of krill aggregations (10’ to lo3 m). Thus, the 
assumption that patches are drifting in the uniform mean flow fields, and are in a 
quasi-steady state with respect to external physical forcing, is justified. 

A hull-mounted 153 kHz ADCP (RD Instruments, San Diego, CA) was set to collect data 
using a bin width of 4 m, a pulse length of 4 m, and a ping interval of 4 s. The wavelength 
of sound at 153 kHz is approximately equal to 1 cm at a sound speed of 1474 m s-i in 
Antarctic waters of typical temperature (1°C) and salinity (34%0), constraining the size of 
organism that can be detected. From such theoretical considerations, as well from the 
analysis of samples collected by MOCNESS, Zhou et al. (1994) demonstrated that their 
measurements of echo intensity represented the total volume or biomass of three species of 
euphausiids, Euphausia superba, E. crystallorophias and Thysanoessa macrura. The 
euphausiid biomass was overwhelmingly dominated by E. superba of 21-24 mm in length. 
Taking the average length of euphausiids at 22 mm, and the individual target strength at 
-79 dB, biomass and abundance were directly measured from ADCP data. 

b. Results. Here we demonstrate the application of theory to a krill aggregation with scales 
of 150 m in the vertical and 2 km in the horizontal, and centered at 120 m depth (Fig. 4). 
The abundance at its center was approximately 8 animals m-3. The aggregation was 
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Figure 4. Antarctic krill, Euphausia superba: Echo observations from ADCP relative to depth (m) 
and distance (km) in Gerlache Strait, Antarctic Peninsula in July, 1992. 

discrete, having sharp edges. A horizontal section through the abundance maximum at 
120 m reveals that abundance increased monotonically toward the center of the aggrega- 
tion, and then was approximately constant (i.e. p = pmax = 8) for a distance of almost one 
km (Fig. 5). This feature is made clearer when the log-transformed abundance is plotted 
against distance, normalized to the x-dimension of the aggregation (Fig. 6; L = 1.2 km). 
This observation supports our solution of Eq. (45), i.e. that abundance may attain a 
constant value near the center of an aggregation. The circles in Figure 6 are observations of 
the right side of the aggregation; and diamonds are those of the left side. The two solid lines 
are the low-pass data obtained after filtering the high frequency noise. The transition from 
pmax to lower abundance occurs where the slope is broken, at r/L = 0.4, which from Eq. 
(45) leads to a = 500 m. It is clear that the gradient of abundance at p = pmax is gradual 
rather than abrupt. Above the transient region, the slope, m, attained a value of 8, which is a 
possible steady state solution for the condition of m > 3, as implied by Eq. (48). From Eq. 

Figure 5. Euphausiu superba: Abundance (individuals me3) along a horizontal transect at 120 m 
depth through the aggregation shown in Figure 4. 
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Figure 6. Euphausia superba: Normalized abundance (p/p,,,) as a function of normalized distance 
(r/L) through the aggregation shown in Figure 4. Circles represent data to the right of the patch 
center; diamonds are on the left of center. Dark lines are the low-pass filtered data. 

(50), we calculate R = 570 m, recalling that R is defined as the mean radius of the 
abundance distribution function (Eq. 49). 

The constant of animal attraction, cgr can be estimated for this aggregation as follows. 
First, we made no direct measurements of swimming velocity, so we estimate the random 
kinetic energy using Zhong et al’s (1996) relation (Fig. 3) 

8 = 0.117Mo.43 (57) 

where M is the mass, in wet weight (kg). For Euphausia superba of 22 mm body length, 
M = 1 X 10e4 kg, which yields 0 = 2.23 X 10m3 kg m2 ss2. Applying Eq. (51), the 
constant of biological attraction for the aggregation (Fig. 4) is 

cg = 7.8 X 1O-4 N m2 kgW2. (58) 

This suggests, applying Eq. (53), that two Euphausia superba separated by 1 m within this 
aggregation would experience an attractive force equivalent to 7.8 X lo-l2 N. 

7. Universality of the force of animal attraction 

The phenomenon of attraction has been widely observed among animals. A large 
number of insects and other terrestrial animals are known to emit and respond to chemical 
gradients, perhaps the most famous example being that of the silk moth, Bombyx mori, 
which produces a remarkably powerful compound (bombykol) that acts as a sex attractant 
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over great distances. Some marine organisms may also use chemical signals to “communi- 
cate” with one another, although the usefulness of this mechanism is limited to small scales 
because of the significantly lower rates of molecular diffusion in water by comparison to 
air. Marine animals with highly evolved visual systems, such as fishes, may rely upon 
images to recognize members of their own species, whereas those with less evolved visual 
apparatus, such as copepods and euphausiids, may rely upon bioluminescent emissions at 
species-specific wavelengths to accomplish the same function. Marine mammals employ 
yet another means, acoustics, to communicate with one another. In summary, much is 
known about the physiological mechanisms of animal communication. 

Aggregation of species into highly compact groups is also a well-recognized phenom- 
enon and one in which the mechanisms of attraction, alluded to above, must certainly play 
a role. The occurrence of pods of mammals, schools of fishes, swarms of euphausiids, and 
patches of copepods suggests that such aggregations are a common feature of species- 
specific organization at an ecological level below that of the population. 

The bio-continuum theory presented here is aimed at elucidating the fundamental 
principles that underlie the dynamics of animal aggregations. We have sought to define, in 
a formal manner, the force of biological attraction that causes the observed spatial 
autocoherence of species at the appropriate scales. This is done without reference to the 
detailed physiological mechanisms that are proximally responsible for the formation and 
maintenance of pods, schools or swarms; we assume that these mechanisms are scaled in a 
manner that allows their effects to be reduced to simple mathematical statements that 
transcend species differences. 

The “coefficient of biological attraction” we have defined can clearly be evaluated for 
Euphuusia superba. Is it a “constant of biological attraction,” and therefore a universal 
value? We cannot say. To explore the possibility that cg is constant will require observations 
of the aggregations of species of different mass and taxonomic origin, with very careful 
measurements of the key parameters of the theory presented here. The required measure- 
ments, given by Eq. (51), are the random kinetic energy (t3), the mass of an individual 
animal (M), its maximum abundance in the aggregation (p,,J, the size of the aggregation 
(R), and the rate at which abundance decreases near the edge of the aggregation (m). We 
note that the random kinetic energy can be directly estimated from measurements of 
swimming velocity, and that the estimate of cR is particularly sensitive to the value form. 

For observations of micronekton and nekton, acoustic Doppler technology may prove 
especially applicable, as this methodology allows direct measurement of most of the 
necessary variables. From the Doppler spectrum, the mean Doppler shift represents the 
mean motion of back scatterers with the relation 

where V, is the relative velocity between the sound source and the sound receiver, C is the 
speed of sound, FD is the Doppler shift, and Fs is the acoustic system frequency. In an 
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aggregation of micronekton or nekton, the random motion of swimming patterns causes a 
broadening of the Doppler spectrum, from which the mean motion is directly calculated. 
The resultant spectral broadening exactly represents the velocity distribution of animals in 
the ensonified volume along the transducer (Holliday, 1974, 1977), from which both the 
mean motion (u) and the random kinetic energy (0) can be measured. Application of the 
ADCP allows direct measurement of other necessary variables (R, m, and p,,,), as 
demonstrated elsewhere (Figs. 4-6 and Zhou et al., 1994). Individual mass, M, can be 
measured by collecting animals in nets and weighing them following standard techniques. 
Measurements of aggregation parameters on large fishes and mammals might also be 
accomplished by acoustic techniques, using lower frequencies than for nekton, but we 
expect that observations of very large mammals may prove especially challenging and 
would require other methods. 

To discover that the coefficient of biological attraction is constant would obviously lead 
to a better understanding of the principles that govern conspecific association. While one 
anticipates the arrival of data that address this hypothesis, it is interesting to ponder that, at 
least for Euphausia superba, the coefficient of biological attraction (7.8 X 10m4 N m2 kg-2) 
is approximately 7 orders of magnitude greater than the constant of gravitational attraction 
(6.670 X 10-l’ N m2 kge2). 
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