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Unsteady similarity solutions and oscillating ocean gyres 

by Neil R. Edwards’ 

ABSTRACT 
The effect of time-dependent forcing on steady solutions representing basin-scale flows is 

investigated. Analytical and numerical solutions are considered separately and compared. 
We first use symmetry methods to show how any steady solution of the ideal thermocline 

equations can be used to generate a family of unsteady solutions, via an arbitrary function of time 
a(r). The resulting time-dependent solutions correspond to distortion of the isopycnal surfaces by a 
velocity field which varies linearly in the three coordinate directions. Although the displacements are 
linear, the fluctuations can lead to a form of nonlinear streaming wherever the function o appears 
nonlinearly in expressions for mass and heat fluxes. For an example steady solution, changes in 
internal energy caused by the time-dependence are associated with changes in thermocline depth and 
fluxes of energy from the western boundary, although it is unclear to what extent this behavior is 
specific to the example chosen. We also describe another symmetry of the time-dependent thermo- 
cline equations which generates wave-like solutions from arbitrary steady solutions. All the 
time-dependent solutions are special cases of a symmetry which applies to a general advection 
equation. Potential vorticity advection provides another special case. 

With the inclusion of convective and dissipative processes, a more realistic steady solution is 
found numerically in a flat-bottomed sector. I f  the surface forcing functions oscillate annually, the 
resulting flow resembles the analytical predictions. As the oscillation period increases, spatial 
variations in phase disrupt the agreement as first boundary and then diffusive effects become 
important. For decadal period oscillations, nonlinear streaming is found to significantly increase the 
meridional overturning. 

1. Introduction 

The ideal thermocline equations, which describe the density and momentum balances of 
a frictionless fluid in geostrophic and hydrostatic balance, form one of the simplest systems 
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which can usefully be used to describe global (gyre) scale ocean circulation patterns. These 
equations, sometimes with the addition of vertical diffusion of density, have therefore 
formed the basis of most of the analytical work on such flows. Solutions typically take a 
similarity form which relies on some symmetry property of the equations to reduce the 
number of independent variables from three to two. Examples include the work of Niiler 
and Dubbelday (1970), Welander (1971), Young and Ierley (1986) and Killworth (1987). 
However, Salmon and Hollerbach (1991) were the first to use the group theoretical 
techniques pioneered by Sophus Lie in the 19th century to systematically catalogue a large 
class of point symmetries and symmetry solutions to the thermocline equations. These 
authors utilized what is now normally described as the classical symmetry method. 

An alternative strategy for reducing the number of independent variables is to consider a 
fluid of many homogeneous layers, in which the layer thicknesses become additional 
dependent variables. This approach was used to great effect in the work of Luyten et al. 
(1983), and by de Szoeke (1995). All of these solutions tend to become unrealistic close to 
boundaries where diffusive or inertial effects would, in reality, be significant. 

The inclusion of additional physical effects, such as horizontal diffusion or linear 
damping of momentum, can lead to symmetry breaking and thus restrict the possible 
similarity forms, although Filippov (1968) has derived and examined some such solutions. 
If, instead, the equations are extended by allowing for the rate of change of density, the 
classical symmetry method can still produce genuinely new symmetries. These will then, 
in the first instance, have the effect of reducing the number of independent variables back 
to three. Such a symmetry can then be expressed in the form of an unknown function of 
three transformed coordinates, which satisfies some new equation derived from the original 
equations. In the most interesting case, the derived equation is precisely the time- 
independent form of the thermocline equations. Thus the symmetry gives a recipe by which 
any solution of the ideal steady thermocline equations can be used to produce a related 
solution of the time-dependent equations. In Sections 2 and 3 of this article a symmetry of 
this type is presented and analyzed; in Section 4 the symmetry is applied to an example 
steady solution; and in Section 5 more general symmetries are discussed. 

We then describe the results of numerical simulations aimed at assessing the extent to 
which these solutions are relevant to flows with dissipation in bounded domains of global 
scale. Linear friction is added to the momentum balance so that the equations can satisfy a 
no normal flow boundary condition at all boundaries; a more realistic equation of state is 
used, in which density depends linearly on salinity and nonlinearly on temperature; a 
convective adjustment term is included so that static stability is maintained at every 
timestep; and diffusion of heat and salt is added to represent subgrid scale mixing and to 
improve numerical stability. The question of appropriate boundary conditions for the 
diffusive fluxes in the resulting system is not trivial and is discussed in Section 6, where the 
numerical model is described, and in the Appendix. In Sections 7 and 8 we describe how 
the model behaves when the surface forcing functions oscillate with a period of between 
one and forty years. Finally, in Sections 9 and 10, we make comparisons with the behavior 
predicted by the analytical solution and summarize our conclusions. 
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2. Governing equations and the classical symmetry method 

The time-dependent ideal thermocline equations can be expressed in the following 

dimensionless form. 

-fi = -4% 

fu = -4$ 
0 = +,, (1) 

CL, + vy + w, = 0, 
8, + ue, + ve, + we, = 0. 

Here u = (u, v, w) is the fluid velocity in a Cartesian coordinate system in which x is 

directed eastward, y northward and z vertically upward. $ is pressure or geopotential while 
8 represents temperature or (more generally) buoyancy. Subscripts denote differentiation. 
For convenience, the Coriolis parameterf will subsequently be set to y. For a discussion of 
the validity of these equations for large-scale ocean flows see for instance Pedlosky (1987). 

A brief explanation of how symmetry group methods can be used to derive solutions to 
differential equations appears in Salmon and Hollerbach (1991). For an authoritative text 
on the subject the reader is referred to the works by Olver (1986) or Bluman and Kumei 
(1989). The objective here is merely to present solutions, which can readily be verified to 
satisfy the appropriate governing equations. It is therefore not appropriate, in this instance, 
to give more than the following brief overview of the salient points of the technique, with 
reference to the thermocline equations. 

Most importantly for the applied scientist, classical symmetry group methods can be 
applied to arbitrary nonlinear differential equations in a way which is sufficiently formulaic 
that most of the analysis can be carried out by readily available algebraic manipulation 
packages. It is not necessary to have a deep understanding of the underlying group theory 

to make use of the technique. It is straightforward to analyse sets of equations such as (l), 
although the thermocline equations can be expressed, without loss of generality, as a single 
equation for a potential function M. The potential, M, can be defined by a vertical integral 
of pressure. The equivalent form of (1) is 

where 

1 1 1 
u = - - M,,, (3) 

Y 
v=-Mu, 

Y 
w  = -M,, 

Y2 
+ = M,, 8 = M,,. 

J(A, B) is the Jacobian AxBy - A,& It turns out that working with the M equation reveals 
an additional symmetry, which leads to physically significant solutions despite the fact that 
the extra symmetry has no dynamical signature (the solution discussed in Section 4 stems 
from a symmetry of this type). Such symmetries are sometimes referred to as potential 
symmetries. 
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In order to find solutions of (2) we first find symmetries of (2). Symmetries are 
transformations of the dependent and independent variables which leave the thermocline 
equation (2) unchanged. Solutions of (2) can be written as 

w, y> z, L M) = 0, (4) 

and can be thought of as four-dimensional surfaces in a five-dimensional space. The 
equation itself, 

4x, Y, z, t, M, M,, . . . , M,,> = 0, (5) 

is considered as a hypersurface in a much higher dimensional “jet” space in which each 
derivative of the dependent variable constitutes an additional dimension. Since symmetries 
map the equation to itself, they are normally described as finite transformations correspond- 
ing to infinitesimal symmetry generators, which at each point define a direction which is 
tangent to the equation surface defined by (5). Thus the generators lie in a tangent space, 
and are usually expressed as differential operators (such as x8, - y$,). Such an operator, v 
say, acting on the coordinates of the base space (x, y, z, t, M) defines a transformation of 
coordinates in the jet space. This extended or “prolonged” transformation prv can be 
expressed in terms of the components of the base transformation v. By equating coeffr- 
cients in the jet space, the condition that the transformation maps the equation surface to 
itself then gives rise to a large set of simultaneous differential equations in the elements of 
v. These equations, although usually heavily overdetermined, are nonetheless linear. They 
can therefore very often be readily solved by simple algorithmic methods. Their solution 
then gives a very general point symmetry of the original equation. We have used the PC 
program Mulie written by Alan Head (Head, 1993) to set up and solve these determining 
equations; several other packages exist which can also perform this task. Mulie runs on 
IBM type PCs and is available by anonymous ftp on the internet. 

These symmetries can be used to generate new solutions from known solutions. For 
instance, if M(x, y, z) is a steady solution of (2), then M(a, y, z) is also a steady solution for 
any function (Y(x, y), as noted by Killworth (1983). This transformation is particularly 
useful as it can be used to ensure that solutions satisfy a condition of no mass flux through 
an eastern boundary. A more powerful consequence of the knowledge of the symmetry 
properties of an equation is that they can be used to find similarity solutions. These are 
solutions which are unaffected by a given symmetry transformation. In the language of 
differential operators, such solutions are invariant under a given symmetry generator so 
that the condition that a solution r be invariant, for instance, becomes VT = 0. For 
instance, the translational invariance in the x direction, expressed by the function (Y above, 
leads to similarity solutions M = M(y, z). Scaling symmetries lead to solutions in which M 

depends on ratios of the independent variables raised to various powers, for instance the 
similarity form discovered by Young and Ierley (1986); 

M = X~I(l+dG(Zx-~‘l(l+“), yXa/(l+d), (6) 

where G is a function to be determined by substitution into the steady form of (2). 
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For a given equation the symmetry generators form a Lie algebra and the power of the 
theory lies in its ability to find an optimal subset of symmetry generators which can be used 
to obtain all the elements of the algebra, and thus their associated similarity solutions. 

Similarity solutions are normally found by solving characteristic equations correspond- 
ing to motion along the direction defined by a symmetry generator v. This fixes the solution 
in the form of an unknown function which satisfies an equation to be derived by 

substitution into the original equation, and which depends on a smaller number of 
dependent variables than appeared in the original equation. The process can be repeated 
until an equation is obtained which is simple enough that explicit solutions can be derived 
by other means. 

Note that the classical method described above may not find all the symmetries of a 
given equation. More powerful methods such as the direct method of Clarkson and Kruskal 
(1989) can sometimes find more symmetries but the equations determining the symmetry 
generators are typically nonlinear with these more general methods and are not always 
readily solved. 

The symmetries of (2) are mostly identical to, or generalizations of, those given by 
Salmon and Hollerbach for the steady case. The full set of symmetry generators found by 
the classical method can be written as 

v2 = 2xd, - yd, 

v3 = PW, + XY2&WM 

vq = xa, + zd, + 2A4&4 (7) 

vg = xa, + Ma, 

V6 = 2&(t)xd, - dr(t)y$ - Cqt)D3, - (2iu(t)M + e@cy2z)a, + 4t>a, 

VT = Z2dM 

V8 = Y(Y> mh4 

a(t), P(t), y(y, t) and +(y, t) are arbitrary functions. These correspond closely to the eight 
generators for the steady thermocline equations listed by Salmon and Hollerbach. v2, v5 
and v7 are all unchanged by time-dependence. Scaling in x (vr) can no longer depend 
arbitrarily on x and y but may depend on y and t. v3 and vs have been generalized to include 
arbitrary time-dependence, v4 differs from the steady counterpart which is simply x8, + za, 
while vg is the only generator which directly affects the time variation of solutions. The rest 
of this paper is concerned mostly with a similarity solution which stems from vg, and is a 
small generalization of a solution originally found by Rick Salmon (private communica- 
tion). 

To determine the finite symmetry transformation and the similarity solution correspond- 
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ing to the generator vg, we solve the characteristic equations 

dx -dy -dz -dM dt 
-= -=-= 
2&x dry ciz 2dLM+m2z=cy. 

P4,5 

(8) 

The solution of (8) is that the following quantities are constant 

XC2, Y”, za, o12M + &oory2z. (9) 

Thus v6 generates the finite transformation of coordinates 

(4 Y, z, t, M> - (xol-2, ~a, zw q(t), a2M + iuoucy2z), (10) 

for a function q(t) which is determined below. This coordinate transformation allows us to 
generate new solutions from known solutions; if MO(x, y, z, t) is a solution of (2), then 

M = u-~M,(xoI-~, yew, Z(Y, q(t)) - % xy2z (11) 

should also be a solution. Substituting into (2) shows that this is indeed the case if (Y = l/q. 
To find a similarity solution we first write one of the invariants as a function of the 

others; 

o1’M + kxxy2z = G(x~r-~, yci, za). (12) 

G depends on only three independent variables (one less than we started with) and satisfies 
an equation which is found by substituting into (2). In this case the equation turns out to be 
the time-independent form of (2). (2) has thereby been “solved” in the sense that solutions 
can now be found in terms of solutions to a simpler equation. This process can of course be 
repeated until the number of independent variables is reduced to one. 

For reference, we now list the finite transformations for all eight of the generators given 
above. 

1 
VI : (xv Y, z, t, M> +-+ + ; 4~~3 Y, z, t, M - z9r 

v2 : (x, y, z, t, M> - (c2x, c-‘Y, z, t, M) 

v3 : (x, y, z, t, M> - (xv Y, z + P(t), t, M + Xy2&>> 

v4 : (x, y, z, t, Ml ++ (cx, y> cz, t, c2M) 

v5 : (x, y, z, t, M) - (CT Y, Z? t, CM) 

v6 : (x, y, z, t, M) c-t (+Q2x, +j-‘y, q-‘z, q(t), T!-~M - ,W3xy2z) 

v7 : (x, y, z, t, M) - (xv Y, z, t, M + cz2> 

vg : (x, y, z, t, M> - (xv Y, z, tt M + Y(Y, t>) 

(13) 
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3. Physical interpretation 

If we let MO denote any given solution of the steady ideal thermocline equation, we can 
now write down an associated solution of (2), using v3 and vg, 

M(x, y, 2, t) = a-*M()(“-*x, ay, az - p> + a-‘xy2P - ;xy*z: 

where (Y and p are arbitrary functions of time. Writing x = (x, y, z) and 

s = (a-*x, oly, cxz - p>, 

the velocity components are 

2ti 
u(x, t) = au,(s) + T, 

v(x, t) = a-*vo(s) - y ) 

(14) 

(13 

(16) 

w(x, t) = a-*w(Js> + a-$ - ; ) 

where the subscript 0 denotes the value of a variable in the steady solution. The pressure is 

ci! 
+(x, t) = C’&(S) - - cF* (17) 

while the temperature 0 is simply 

0(x, t) = 0,(s). (18) 

It is clear from (18) that this solution has an extremely simple interpretation: contours of 0, 
i.e. isopycnals, are translated from an initial position s to x. This translation defines an 
invertible transformation x(s, t), in which case the velocity which advects the isopycnals is 
k, where 

( 

2&x &y &Z k = - -- &p -- . 
a’ a’ I 

(19) ci 

This is discussed in more detail in Section 5, but note from (19) that the advecting velocity 
is linear in x. The solution therefore represents linear distortion of isopycnals, although it 
should be noted that while the advecting velocity is linear in x, the solution itself is 
nonlinear in 0~. Nevertheless, (19) will be referred to as the “linear (isopycnal) distortion 
solution.” This time-dependent distortion seems most likely to be physically relevant when 
the function a(t) is periodic (for instance (Y = 1 + E sin (ot)) for then, within a bounded 
domain, the distortion will remain bounded. If E << 1 then the advecting velocity % may 
also stay within realistic limits. Nonperiodic solutions might be applicable to the study of 
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shock formation. Such solutions would be valid up to a finite time after which diffusive 
processes became important. 

The potential vorticity q in this formulation is ~0, which, in the time-dependent solution, 
becomes 

4(x9 0 = 40(s). 

So the potential vorticity is also simply advected by the velocity t. In the steady ideal 
thermocline equations the three quantities 8, q and the Bernoulli function B are all constant 
on streamlines (B = C$ - 8~ or in terms of M, M, - a,); hence any one can be expressed 
as a function of the other two. Killworth (1987) exploits this fact to derive some of the most 
realistic similarity solutions of the ideal equations. These similarity solutions arise from 
basic scaling symmetries but they only become linear, and thus tractable, when expressed 
in density coordinates. The assumed similarity form requires that 

@ = F(P), 

where p is density, which is equivalent to -8 in our notation. This relationship was 
introduced by Welander (197 1) and is also satisfied by the layered solutions of Luyten et al. 
(1983). Some of the similarity forms of Salmon and Hollerbach (1991) could be expressed 
in this form, but only with F a complicated differential function of p. For the present 
solution (14), if p = 0, B is 

B(x, t) = C’B,,(s) - +y2, (22) 

thus qB is not in general a function only of p while dl is nonzero. However if & returns to 
zero at some time, so that one steady solution has been distorted into another, and if the 
original solution satisfies (21), the new solution satisfies 

qW0) = a-‘qoW&> 

= a-‘F(po(s>), 

(23) 

so the similarity form is preserved up to a constant scaling factor. Note that in density 
coordinates (x, y, p) with f = y, the time dependent B equation is BPPt + J(B, B,dy) = 0, 
which has the symmetry solution 

B = z B,(aC2x, oly, p) - Eq2, 

where a and c are arbitrary constants, a(t) is arbitrary and B0 is a steady solution. This is 
almost equivalent to (22) except that the distortion remains on density surfaces. 

Similarity solutions are notoriously bad at satisfying realistic boundary conditions. In 
fact, even the thermocline equations in general can only satisfy very limited conditions at 
boundaries. Typically the philosophy for similarity solutions is to attempt to satisfy no 
normal flow through the bottom and eastern boundaries, and to impose surface distribu- 
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tions of density (or temperature) and vertical velocity (representing an Ekman pumping out 
of an unresolved mixed layer). Often there is limited freedom with respect to the surface 
conditions, and the forms of the surface fields are part of the solution. 

Because the time-dependent M equation (2) inherits the symmetry generators correspond- 
ing to translation in z and, in an only slightly restricted form, in X, the solution (14) can be 
made to satisfy similar boundary conditions to the steady solution MO. In particular, we can 
assume without loss of generality that the bottom and eastern boundaries lie at z = 0 and 
x = 0 respectively, whereby it is clear from Eq. (19) that if B = 0, the linear distortion 
solution (14) does not advect points across these boundaries. Thus if uo.n = 0 on these 
boundaries in the steady solution, where n is a vector normal to the boundary, then the 
same holds for the time-dependent solution (but see below for a caveat to this). The B term 
simply corresponds to a change of origin in z and will henceforth be ignored. If the surface 
in the scaled coordinates lies at z = 1 then Eqs. (18) and (16) state that the temperature and 
vertical velocity there are 

N-G y> 1, t> = eo(a-2x, WJ, a), 

w(x, y, 1, t) = oPwo((.w-2x, cxy, OL) - % . 

(25) 

Compared to the steady solution, there is an extra component to the vertical velocity, a 
rearrangement of the surface values and a change due to vertical distortion (that is, values 
at z = 1 at time t correspond to values at z = a(t) in the steady solution). If (Y = 1 + 
E sin (cot) as proposed earlier, these changes constitute small oscillations of the surface 
forcing functions about their steady values. 

One other possibility is to consider the solution scaled such that the isopycnal distortion 
has no surface signature, for instance by defining the surface to be the origin of Z. This 
might represent slow modulation of a large-scale flow pattern by time-dependent upwelling 
from abyssal to thermocline waters. 

Because the advecting velocity i is necessarily linear in x, the linear distortion solution 
does not fit into the traditional framework for the analysis of stability of steady solutions to 
small spatially periodic perturbations. Further, if we choose the advecting velocity to be 
zero at z, = 0 then the time-dependence is intimately related to changes in the surface 
forcing. Whether the solution could be used to demonstrate the existence of an energeti- 
cally favorable departure from a known steady solution depends on the details of the steady 
solution. One aspect of this question concerns the origin of the changes in internal energy 
which occur; this is determined for a particular example in the following section. 

The vulnerability of a given solution to arbitrary disturbances will in general be affected 
by the distortion process. There may not be a great qualitative change because both the 
temperature and potential vorticity fields are advected without interior topological changes. 
For instance Killworth (1987) notes that in his type I solutions qY changes sign in the 
domain, suggesting the susceptibility of the solution to eddying and consequent potential 
vorticity homogenization in the southern half of the gyre. The simple advection of q 



802 Journal of Marine Research [54,5 

contours by the linear distortion solution means the same remarks apply to any such 
distortion of these solutiohs. Following Charney and Stern (1962), Pedlosky (1987) derives 
a necessary condition for instability and shows that if qy does not change sign within the 
domain, then one of two other conditions must hold. Either the product of qY and 8, should 
be positive somewhere on the upper boundary, or else a similar condition applies involving 
the meridional slope of 8 surfaces minus the meridional slope of the lower boundary. In 
principle the condition at the upper boundary could be affected by the advection of 
isopycnal surfaces from below, however, only the condition at the lower boundary seems 
likely to be affected qualitatively by the linear distortion process, if the distortion reverses 
the relative magnitudes of the slope of the boundary and the slope of 8 surfaces. 

4. An example 

In order to work out the energy transfers implied by the linear distortion solution (14), it 
is necessary to consider an example steady solution Ma. The time-dependent extension 
might then represent, for instance, seasonal variation of the steady state. The solution to be 
used is one of those discussed by Salmon and Hollerbach (1991); their Eq. (8.12). The 
ocean is taken to occupy the region 0 5 x I 1,0 I z 5 1,0 < ys 5 y zz yp With the time- 
dependent extension (14) translated so as to satisfy no normal flow at x = 1, and with p set 
to zero, the solution becomes 

- f h;(2az - zo) I + $ (x - l), 

“=320iz-zo)-~Y. 
0 

wE iu 

w=-((orz2-z~)--z, 

aho a 

0=- 2Y2% 
h (1 - x) + ; I(az - z,,>H(az - zo) - ; h:l. 

0 

The potential function is 

wE 
M= --(1 -x)y2(orz2-z()z) 

aho 

ah; 
H(ciz - zo) - 3 ((.Wz2 - zoz> 

I 

(27) 

G-W 
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Setting (Y = 1 recovers the original solution. In the above, wE is the vertical velocity at the 
upper boundary in the steady solution, which is assumed to be constant here, but can in 
general vary in y without destroying the basic symmetry; zr, is a constant vertical level at 
which the potential vorticity in the steady solution jumps from zero below to the value C in 
the upper layer (the temperature gradient 8, also jumps at z. from zero to a nonzero value); 
ho = 1 - zo; and H is the Heaviside function, which takes the value zero for negative 
argument and one for positive argument. y needs to be bounded away from the equator 
(y = 0) because of the breakdown of geostrophy there. In the time-dependent solution the 
velocity at the upper boundary is 

wEhol & 
--- 

ho IX’ 

where h, = 1 - zo/ol, which is the depth of the interface between the two layers when 
a# 1. 

If wE < 0 the solution resembles in some aspects the southern part of a subtropical gyre. 
The wE terms have no associated vertical temperature gradient and can be thought of as the 
wind-driven part of the circulation, while the C terms, which have no associated vertical 
velocity and are therefore independent of the Ekman pumping velocity at the upper 
boundary, can be thought of as the thermohaline part of the circulation. Upwelling in the 
lower half of the lower layer drives a poleward flow at depth, while further up the 
wind-driven flow is southward and eastward. The thermohaline terms add a component to 
the eastward thermal wind which varies in sign with z. The surface temperature increases to 
the northwest as a result of the wE terms and to the south as a result of the C terms. Figure 1 
shows the surface temperature and velocity defined by (27) for cx = 1 + e. cos (2&F’) at 
four different times. 

In the steady case the solution can be generalized to a continuous solution of the full 
thermocline equations with vertical diffusion of temperature, in which case the discontinu- 
ity at zo, which crudely represents the ocean thermocline, is replaced by a smooth change in 
gradients. The similarity form leads to a linear advection diffusion equation for tempera- 
ture or potential vorticity in the y - z plane. Vertical distortion in the time-dependent 
solution means that the similarity solution (14) breaks down if a constant vertical 
diffusivity is included. 

In the steady solution, the thermohaline terms do not contribute to the vertically 
averaged mass transport and the depth average of the eastward velocity is zero at x = 1. 
This is not the case for the time-dependent solution in which the vertically integrated 
eastward velocity at x = 1 is 

(29) 

The vertically integrated heat flux through the eastern boundary is not zero even if OL = 1. 
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Figure 1. Contours of 8 and velocity arrows for the solution (27) at the surface z = 1 with (Y = 1 + 
q, cos (2atlP) at times; (a) I = P/4, (b) t = P/2, (c) t = 3P/4, (d) r = P. The dimensionless 
parametersusedwere;wE= -1,z0=6/7,C=5,P= l,~,=O.l. 

In the time-dependent solution the net heat flux is 

which reduces to 

h;hu - hihi) - $ h;h2(hcl + 3) 1 
C2h3 
0 (7h, - 6) 
72y4 

(30) 

(31) 

in the steady case. 
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The fundamental nonlinearity in (Y of the solution (14) becomes relevant at this point. 
Assume from here onward that 

(Y = 1 + e(t), (32) 

where E is a small periodic perturbation whose time-average e(t) is zero. The time-averages 
of any terms which appear nonlinearly in OL will not in general be equal to their values in the 
steady solution. Hence an exactly periodic distortion of isopycnals by a velocity which is 
linear in x, represented by (14), will lead to changes in the time-averages of mass and heat 
fluxes. This can be described as a form of nonlinear streaming associated with the 
oscillations. If /E/ < 1 then l/( 1 + E) > 1 - E, therefore by (32), 7 > 1. Hence, from 
(27), the oscillation of the wind-driven part of the solution leads in this case to an additional 
contribution to the time-averaged mass flux in all three directions. The additional flux, 
which is a result of the oscillation in the thermocline depth, is of order l 2 and is directed 
downward and south-westward. There is also a time-averaged flux in the x direction, 
arising from the thermohaline terms, which is the average of (29). This will be positive for 
small E, so the sign of the net flux in the x direction will depend on the relative magnitudes 
of the wind and thermohaline-driven circulations. 

From the time-dependent ideal thermocline equations (1) we can derive the energy 
equation 

u.v+ = we. (33) 

Since there is no kinetic energy, (33) represents an instantaneous conversion of work done 
by the pressure field into potential energy, for which the rate equation is 

$ (-ze>= v.(uze) - we. (34) 

Thus the integrated form of the equation for the potential energy in a volume V is 

i sv -z0 dV = 6, (zf3 - 4)u.n dS, 

where n is the outward pointing normal to the volume V. The energy flux ze - $ is given 

by 

Z&---C+=- 1 +E(x- l)y2, (36) 

and hence 

d 

ZV S -z0dV= -slnkj[zo(l -kj2j+i”:]. (37) 

The expressions for the flux of energy into the domain from each of the boundaries (except 
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the lower boundary where w = 0) contain a variety of terms arising from the modulation of 
the fluxes in the steady solution, as well as additional fluxes whose origin is the advecting 
velocity in the time-dependent solution. my of these terms balance separately, so 
perhaps the most interesting question is to determine the source of the flux which balances 
the change of energy in the interior (37). The most physically sensible scenario might be 
that the interior energy change is balanced by the flux of energy at the surface, representing 
the time varying forcing, but this is not the case. Since the function (Y remains arbitrary, we 
can look for terms in the boundary fluxes which have the same functionality in (Y as (37). It 
transpires that such terms occur only at the western boundary. They represent work done by 
the fluctuating (iu) term in the pressure field and fluxes of both kinetic and potential energy 
due to the advecting velocity i. The latter, which correspond to the &cum4 terms in (37), are 
a result of the displacement of the “thermocline” to the position z&. 

The wind forced part of the solution is only affected by the linear distortion symmetry in 
a limited way, and does not contribute to the internal energy change. The fact that the 
change of interior energy in this solution is due to fluxes from the western boundary 
implies that these are the only unbalanced energy fluxes which result directly from the 
distortion. They will not generally be the largest. Neither is it clear to what extent this 
balance is a result of the choice of steady solution Ma. 

5. More general advection symmetries 

The linear distortion solution (14) is a special case of a far more general symmetry which 
applies to the advection equation for a passive scalar x (note that density is not passive in 
the thermocline equations as it affects the velocity field). If there is a steady state x0 and a 
steady velocity field u. such that 

pl.vxo = 0, 

then any invertible transformation s - x(s, t) defines a solution of the time-dependent 
advection equation 

2 + u.vx = 0, 

where 

x(x3 0 = xo(sh 
axi 

Ui(X, t) = yg UOj(S) + ii(S, t), 
J 

This is not difficult to verify using the chain rule: 

(39) 

(40) 

dX asj aXO 
-= -- 
axi axi dSj s 

(41) 
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The advecting velocity % can then distort the contours of x0 in an arbitrary (non-singular) 

way. Restrictions on the form of S come about in the case of a non-passive scalar due to the 
relationship between x and u. For the thermocline equations the thermal wind relations 

must be satisfied. For a general transformation, these take the form 

(42) 

Apparently these can only be satisfied if the transformation matrix ds~axi is diagonal, in 
which case the advecting velocity has no thermal wind signature (it must also be 
divergence free). Although the fact that a solution exists at all appears to rely on the special 
form of the Coriolis parameter (i.e. the beta plane assumption), it is easy to show that a 
symmetry of exactly the same form as (14) also exists in global spherical polar coordinates, 
where the Coriolis parameter can again be used as the latitudinal coordinate. 

Ertel’s potential vorticity provides a further example to show that the increased 
generality of Eqs. (38) to (41) is more than merely an aid to understanding, although the 
advecting velocity must again be linear and the temperature can only vary in z. Suppose 

that there exists a steady velocity field u. and steady temperature and density distributions 
e. and p. so that the potential vorticity PO is 

PO = 
v x llo + 2LR xl0 

a2 ’ 
(43) 

PO 

and that uO.VPo = 0. Then ifs = (OLX, oy, c(um2z), where the constant c and the function a(t) 
are arbitrary, it is easy to show that if 

m t> = PO(S), 

a2 
fxx, t> = Q- e,(s), 

u(x, t) = a-‘uo(s) - ; ) 

v(x, t) = a-‘vo(s) - % ) 

a2 2&z 
4% t> = ; we(s) + (y 9 

P(XT 0 = POW, 

then u is also divergence free and P satisfies 

; + u.VP = 0. (44) 
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One other important symmetry property of the time-dependent thermocline equations 
deserves to be pointed out. The fact that fairly general translations in x are still permitted in 
the time-dependent form, as a result of the symmetry generator vr, means that completely 
general steady solutions can be converted to wave solutions travelling in the x direction. 
The transformation of solutions generated by the symmetry v1 can be expressed in the form 

(45) 

where the propagation speed of the disturbance in the x direction is 

and MO is a solution of the steady ideal thermocline equation. The steady solution therefore 
propagates with a barotropic velocity which depends arbitrarily on y and t. v, W, 8 and q are 

advected with M but an extra velocity component in the propagation direction appears, so 
that u becomes 

1 
u = ug - c + - lJJy V@ i I y Y 

6. The numerical model and the basic steady solution 

By constructing a numerical model with more complete dynamics, we can overcome 
some of the problems associated with boundary conditions which limit the validity of the 
analytical solutions. Our aim is to consider the extent to which the qualitative features of 
the linear isopycnal distortion similarity solution can be reproduced by such a model. 

To this end we take as starting point the thermocline equations with the addition of a 
linear drag in the horizontal momentum equations. A more general equation of state is 
allowed for, with separate equations for salinity S and temperature T, both of which are 
subject to horizontal and vertical diffusion as well as convective adjustment. 

Referred to spherical polar coordinates (4, s, z), where $I is longitude, s = sin 0, 8 is 
latitude and z is measured vertically upward, the equations can be expressed in the 
dimensionless form 

1 dP a 
-.gl= -;---xu+-p, (46) 

8P a 
su= -c-g-xv+~ +, (47) 
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au a 

0 

l3W 
- - + $ (vc) + z = 0, 

w c 

P = Pa n 

(49) 

(50) 

In the above, c = cos 8, A is the drag coefficient and 7 = (~6, rs) is the (dimensionless) 
wind stress. Horizontal lengths have been scaled by the Earth’s radius rO; vertical lengths 
by a typical mid-ocean depth D; the horizontal velocity components (u, v) in the (4, s) 
directions have been scaled by a typical horizontal velocity U, and the vertical velocity w 
has been scaled by UD/rO. The scalings for the perturbation pressure p and density p are 
derived from the geostrophic and hydrostatic relations respectively. Quantity X in (51) 
represents either temperature T or salinity S and 

-=- (52) 

is the material derivative. Scalings for salt S and temperature Tare not necessary because 
they appear linearly in Eq. (51); their magnitudes depend on the boundary forcing. The 
time scale is r,lU. F is the convective adjustment term, which acts to remove static 
instability while conserving S and T. The convection scheme renders each fluid column 
completely stable at every timestep by iteratively searching for instability and combining 
adjacent levels into vertically uniform regions. Combining two levels in this way may 
cause the new region to be unstable with respect to the levels immediately above or below, 
but since the size of the homogeneous region increases by one vertical level each time 
instability is detected, it is possible to ensure complete mixing in a small finite number of 
steps (Rahmstorf, 1993). The state equation for the dimensional density p* takes the form 

pe = 1000 + 0.7968s - 0.0559T - 0.0063T2 + 3.7315 X 10+T3, (53) 

which closely approximates the UNESCO formula for observed ocean density in kgme3 if 
S is in practical salinity units and Tin degrees Celsius (Gill, 1982). In this and several other 
respects we follow Winton and Sarachik (1993), who used a similar model to study long 
period oscillations of the thermohaline circulation which can occur with increased surface 
salinity forcing. 

These equations can satisfy a boundary condition of no normal flow at all boundaries, 
but beyond that, clarity in respect of the appropriate boundary conditions has hitherto been 
lacking. The no normal flow condition implies a mixed condition on the derivatives of p at 
the boundary which makes it impractical to specify the gradients of T and S. However, by 
postulating a distribution of diffusivity K~ which tends to zero at the lateral boundaries, it is 
possible to see how specifying no diffusive flux across these boundaries may result in a 
well posed mathematical problem. This point is discussed in depth in the Appendix. 
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The equations are solved in a 60” wide sector of uniform depth D from 10” to 70” North, 
using surface forcing functions which were found by Winton and Sarachik to result in a 
stable steady circulation. Thus the heat flux out of the top grid box is given by 

3T To - To 
-------AZ, -“v-$ - 

7, 
(54) 

where AZ is the depth of the top grid level, TO is the temperature in the top grid level, 7, is a 
restoring timescale, and the prescribed atmospheric temperature T, is 

T, = A cos (cl@ - O,)), 

where A, c, and 8a are constants. The wind stress is purely zonal with amplitude 

T+ = B cos (c,(0- IT/~)) + C, 

and the surface salinity flux is derived from the gradient of an implied steady state 
northward flux of salinity F through the basin given by 

D 
F= - sin 

cos 8 

B, C, D, c2 and 0, are constants. The use of mixed surface boundary conditions, in which 
the salinity flux is fixed but the heat flux is variable, is an approximation which has been 
shown to affect the stability of steady solutions (Zhang et al., 1993; Rahmstorf and 
Willebrand, 1995; Cai, 1995). The form of the surface boundary conditions does not have a 
strong effect on our solutions. Diffusion parameter values have been chosen to ensure 
numerical stability, while the Rayleigh friction parameter X in the momentum equation is 
constrained by the need to have at least one gridpoint in the frictional boundary layers. The 
values of all the above parameters and their dimensional equivalents, where appropriate, 
are given in Table 1. 

To solve the elliptic problem for the barotropic stream function we use Gaussian 
elimination, which is time consuming on the first step but extremely fast thereafter 
(without topography the equation need only be solved once). The velocities can then be 
found by an integration in z, and the solution advanced to the next time step, after applying 
convective adjustment. Spatial gradients, which are second order throughout, are ex- 

pressed in a difference form such that internal heat and salt fluxes are conserved to 
numerical accuracy throughout the integration. An explicit first order difference scheme is 
used for timestepping. More than adequate temporal resolution is guaranteed by the small 
timestep which is necessary to maintain stability. Hence a higher order temporal scheme 
would be inappropriate. The numerical grid has 20 equally spaced points in each of the s 
and $ directions and 16 logarithmically spaced vertical levels whose separation increases 
by a factor of ten from top to bottom. To test the model we have repeated the published 
experiments of Salmon (1990) and Winton and Sarachik (1993) to determine steady states 
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Table 1. Parameter values, the salt flux equates to a freshwater flux of 1.2 m yr-’ at 35 psu at the 
northern boundary. 

Parameter Value Dimensional equivalent 

A 
Cl 
00 

81 
B 
c 
c2 

D 
A 

KH 

Kv 

7, 

25 
1.565 
10” 
7o” 

2.400 x 1O-3 
1.029 x 1O-3 

5.143 
5.064 X 1O-3 
6.349 x 1O-2 

0.01 
1.593 x IO-3 
4.137 x 10-Z 

25°C 
- 
- 
- 

0.07 Nmm2 
0.03 Nmm2 

- 
6.452 X lo6 psu m3 s-i 

(1.25 days)-’ 
3185 m* s-i 

2 X 10m4 m* s-l 
61 days 

of the system. The results were sufficiently close to validate the model, in spite of 
differences in the dynamics and numerical methods. 

Our intention is to compare the predictions made by the analytical work of how 
time-dependent forcing affects steady solutions, with how time-dependence affects steady 
numerical solutions. Therefore the steady solution corresponding to MO to be used for the 
numerical experiments will be one produced by the numerical model itself. To attempt to 
use an existing analytical solution instead would make the results harder to interpret. The 
numerical model will readily produce steady solutions which satisfy appropriate boundary 
conditions and resemble real ocean flows, although they do not conform exactly to ideal 
dynamics. In particular numerical solutions include frictional boundary layers. 

To produce a steady solution the model is integrated in time from an initially uniform, 
motionless state for a period of about 2000 years. By this time changes in temperature and 
salinity are at the level of numerical noise and the residual surface heat flux is 5 X 
10e3 Wme2. The final steady solution is similar to that described in detail by Colin de 
Verdi&e (1988, 1989); thermal forcing acts to create an anticyclonic gyre at upper levels, 
which tends to override the wind driving in the north. Strong sinking occurs in the 
northeast comer, where convection is required to balance the heat equation. Away from the 
northern convection region a thermocline develops with a maximum averaged upwelling at 
about one seventh of the ocean depth. Below the thermocline, advection dominates the 
budgets of heat and salt except near the northern boundary, and the sense of the circulation 
is opposite to that in the upper levels, with a southward flowing western boundary current 
forming one branch of a cyclonic gyre. These qualitative features are stable to variations of 
drag and diffusion parameters. With the present values we obtain a maximum in the 
meridional overturning stream function of 17 Sv, and a maximum northward heat flux of 
0.8 X 10’” W. Figure 2 shows temperature and velocity on various horizontal and vertical 
sections through the model domain. 
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Figure 2. Contours of Tand velocity arrows for the numerically generated steady solution; (a) at the 
surface z = 1, (b) upper thermocline z = 0.9, (c) near the bottom z = 0.1, (d) vertical meridional 
section at mid-basin 9 = IT/~. Model vertical levels are uniformly spaced in the logarithmic 
coordinate 5 = log (1 - z + 0.1). 

7. Numerical experiments with oscillatory forcing 

The numerical model is forced by a wind stress and thermohaline fluxes applied over the 
uppermost grid level, which therefore represents the Ekman mixed layer. These forcings 
are varied in a way which is consistent with reproducing the time-dependence of the 
temperature and vertical velocity fields at the base of the Ekman mixed layer as predicted 
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by the analytical solution. In order to do this we make a number of simplifying 
assumptions. We first fix the function OL by setting 

a = 1 - e(t) = 1 - Eg cos (2&P), 

and choosing values for the amplitude e. and period P. In the analytical solution l o is the 
vertical displacement amplitude. The temperature at the top of the analytical solution, 

which we take to be the level zE at the base of the mixed layer, should vary as a result of 
advection in all three directions. The amplitude of the temperature oscillation is therefore a 

function of position. We approximate the predicted amplitude by neglecting variation in the 
north-south direction in favor of vertical variation, which should be dominant in the 

majority of the domain. For a given amplitude of vertical displacement l o, we can infer a 
temperature perturbation to the steady numerical solution by interpolating between the 

temperature values at the top two gridpoints. We then assume that the surface restoring 
temperature, which is used to calculate the surface heat flux, varies by the same amount. 
This is reasonable because the restoring time scale inherent in the temperature boundary 

condition is 61 days, which is significantly smaller than the oscillation periods to be used in 
most cases. Values are averaged in the east-west direction, so that the forcing remains 

zonal, and hence neither encourages nor precludes advection in the zonal direction. In 
effect we are assuming that close to the surface z = 1 the temperature obeys 

T(Z, t) = T,(crz) = To(z) - E x ’ 

and that the surface restoring temperature T, is then given by 

(56) 

The subscript zero again denotes the steady solution. It turns out that the required 
perturbation to the surface restoring temperatures is well fitted by a piecewise linear 
function of s which is zero over the northernmost quarter of the range of s, and increases to 
a maximum at the southern boundary. 

Two mechanisms contribute to the variation of the vertical velocity at a fixed point in the 
linear distortion solution (14), namely gradients in the advected steady state vertical 

velocity wo, and the additional velocity g corresponding to the distortion itself. Under 
certain conditions, which are considered later, the latter is dominant. We therefore consider 

only the additional velocity -&z/cx, the last term in the third equation of (16). To calculate 
the additional wind stress needed to create this velocity we use the Ekman pumping 
condition 

W E = k.V x 1 . 

0 S 
(57) 
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Thus we require an additional eastward wind stress r+, which if chosen to be zero at the 

equator and at the northern boundary sir is given by 

7 + = % (s - SJ f . 

Since E will be small it is sufficient to use h in place of a/o. 
The magnitudes of the changes in wE due respectively to advection of gradients in the 

steady state and the distortion velocity ir itself can be estimated as 

awe 2nTTEo 

E”az 
and - 

P . 

Thus the latter will be greater for periods P smaller than 

awe -’ 
pa=2Tdz . I I 

Immediately below the mixed layer at the center of the subtropical gyre in the steady 
solution the value of P, is 21.5 or about 80 years. The solutions considered have periods 
less than 10, so the retained term is indeed more significant in these cases. A measure of the 
expected relative importance of the thermal forcing can be gained by examining the 
vertical velocity gradient in an alternative steady solution in which the flow is purely 
thermohaline driven, that is the wind forcing is set to zero. For a vertical displacement of 
the same amplitude, the expected change in the vertical velocity wr at zE would be 
approximately 

At the same position below the mixed layer we find the value of awlaz is only a factor of 
two smaller in the thermally driven case than with wind and thermal forcing. This suggests 
that the thermal forcing is likely to have a similar effect to the advection of vertical velocity 
gradients, regardless of the amplitude and period of the oscillation. Our neglect of the latter 
effect may reduce the extent to which our solutions resemble the analytical predictions for 
the longer period oscillations. 

Three different cases will be described, with periods of approximately one, eight and 
forty years. The amplitudes have been deliberately chosen to be fairly large, to illustrate the 
effects of the oscillations. Results are shown after 200 to 400 years integration, starting 
from the steady state, by which time the oscillations have become almost uniformly 
periodic. 

8. Numerical results 

a. Rapid oscillations. With an oscillation period of one year, and a dimensionless 
displacement amplitude e. equal to 0.001, the maximum value of the applied wind stress 
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Figure 3. The barotropic stream function with period P equal to 1 year at; (a) t = P/4, (b) t = P/2, (c) 
t = 3P/4, (d) t = P. The scale is 1274 Sv. 

derived from (58) is 0.18 Nme2. This is of the same order as the steady state wind stress, so 
the barotropic flow is radically altered during the cycle. Figure 3 shows the variation of the 
barotropic stream function. As expected from the discussion above, the effect of the 
thermal forcing at this oscillation frequency is small; removing it altogether led to 
alterations of less than one percent in the velocities and displacements, even at the point of 
minimum velocity perturbation. Immediately below the mixed layer at t = 3P/4, the extra 
vertical velocity induced by the additional oscillatory wind stress is very close to the 
expected peak dimensionless value of 0.025 throughout most of the domain. Mass 
conservation requires a compensatory upwelling but even lower down this return flow is 
confined to the southern and eastern regions of the model ocean, and to the other boundary 
points. We therefore define a subsection B of the model ocean by excluding the southern 
quarter of the s range and the eastern quarter of the + range. Within the region L% the 
analytical solution may have some applicability. 
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Figure 4. The vertical variation of the oscillatory part of the vertical velocity at t = P/4; wd, along 
with the predicted value wP = 2aeg/P, at the center of the domain. 

In the ideal fluid analytical solution, the temperature varies only by advection. The 
velocity responsible for the displacement is given by (19) with x and y replaced by the 
spherical coordinates + and S. ir is linear in the sense that w is proportional to z, u is 
proportional to #I and v proportional to S. The resulting displacements of isosurfaces 
behave similarly. 

To see whether the numerical solutions exhibit the same behavior, we first consider the 
times t = P/4 and t = 3Pl4. At these times the isotherm displacement should pass through 
zero and changes in velocity compared to the steady state should be due only to the 
displacement velocity %, induced in the numerical model by the oscillatory wind stress. The 
velocity field from the numerical model is averaged over one cycle and subtracted from the 
velocity at t = P/4. The resulting velocity field ud therefore corresponds to the maximum of 
displacement velocity S which occurs at t = P/4. The extra vertical velocity wd is very close 
to the predicted value throughout most of the domain, a compensatory return flow 
occupying the southern and eastern regions as noted above. The variation of wd with z at the 
center of the domain is shown in Figure 4 along with the predicted value. The horizontal 
component of the additional velocity ud can only be approximately fitted to the analytical 
solution over a limited region, as the presence of the boundaries in the numerical model 
causes the horizontal flow to recirculate in a basin scale gyre, as would be expected from 
the form of the stream function at t = P/4. However the horizontal part of ud is very nearly 
constant in z below the mixed layer, as predicted. 

In the numerical model changes in temperature will not be entirely due to advection, but 
examination of the magnitudes of terms in the dynamical equations for T and S shows that 
even in the steady state, advection is dominant throughout most of the solution. Diffusion 
in the vertical is a leading order term in the thermocline, but for rapid motions, changes of 
temperature are likely to be dominated by advection even there. 

Confining attention to the region 3 the displacement velocity % should have sinusoidal 
time-dependence sin (2&P) everywhere, while the resulting isosurface displacements 
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Figure 5. Variation of modeled (AT,) and predicted (AT) maximum temperature changes along 
various sections for period P = 1 yr. A logarithmic scale is used to reveal the range of variation 
throughout the fluid column. The sections are (a) mid basin; (c$, S) = (0.52,0.54), (b) Northwest; 
($, S) = (0.26,0.73), (c) Upper thermocline; (s, z) = (0.54,0.9), (d) Upper thermocline; (9, z) = 
(0.52,0.9). 

should be proportional to cos (2mP). Analysis of the model solution suggests that the 
direction of the displacement velocity at a point does remain roughly constant throughout 
the cycle and that the phase of the oscillation is roughly as predicted. The amplitude of the 
(vector) displacement d at any point should therefore be equal to Pud/2n, assuming ud 
corresponds to the amplitude of ir at each point. Since the displacements are small, the 
temporal variation of VT at a fixed point should also be small, in which case the amplitude 
of the periodic variation in temperature due to advection should be equal to 

AT = -d.VT, (60) 

In Figure 5 this estimate is compared with the difference AT, between the model 
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temperature field at time t = P/2 (when the maximum displacement is predicted to occur) 
and the time-averaged field. Within L@ the temperature variations are typically slightly 
less than the predicted values, due presumably to the effects of diffusion, but otherwise the 
results suggest that the isotherms in the model solution are being displaced roughly in the 
manner predicted. 

A feature of the numerical simulation which could not be predicted by the analytical 
solution is that the time-averaged state, about which the solution oscillates, is different 
from the steady state used to initialize the integration. This may be related to the 
phenomenon of nonlinear streaming mentioned in Section 4 whereby the periodic distor- 
tion leads to changes in the time-averaged mass and heat fluxes. In the bounded domain of 
the numerical model, additional interior fluxes must be balanced by changes in the 
boundary layers. This in turn will alter the interior flow, which is known to be fundamen- 
tally affected by the details of the boundary layers even in the linear regime (Pedlosky, 
1969), although Salmon (1994) has suggested that this sensitivity is partly due to the 
unrealistically deep side wall layers in flat bottomed ocean models. 

The time-averaged state, obtained by averaging over the last complete cycle, has less 
potential energy and more kinetic energy than the initial steady state. The dimensionless 
loss in potential energy (calculated as the integral of pz over the entire domain) was 
3.335 X 10m3, while the kinetic energy increased from 3.233 X lo-* to 4.899 X lo-* (the 
energy scale is 7 X lo*’ J). Within one cycle the potential energy changes by only about 
6.043 X 10e5, and the kinetic energy varies between about 4.75 X lo-* and 5.61 X lo-*, 
so the changes in the steady state are even larger than the amplitude of the oscillation. The 
continual oscillation of temperature surfaces probably acts to increase the vertical penetra- 
tion of the surface heating, which occurs by vertical diffusion in the subtropical region. 
Cooling is carried out by vertical advection and convection in the north, and may be less 
strongly affected due to the weak stratification there. In this way the loss of potential energy 
might be linked to a deeper thermocline which is also manifested by an increase of 20 
percent in the maximum of the zonally averaged overturning stream function. The actual 
picture is more complicated because in the upper half of the ocean, the averaged state does 
in fact have more potential energy than the initial steady state, possibly because stronger 
horizontal flows act to increase the effect of horizontal diffusion, which is a cooling 
influence there. At any rate the reduced density in the deep ocean outweighs this effect by a 
factor of two. 

It is possible to consider the nonlinear streaming induced by the oscillations directly, by 
calculating the time-averaged velocity field and subtracting the velocity field associated 
with the time-averaged T and S fields. In the region 9 the differences are less than 
0.1 percent of the velocities in the mean state, too small to be accurately resolved. In the 
return flow region to the east and south, an organized velocity streaming field occurs of a 
similar form to that induced in the upwelling phase of the oscillation, that is north 
eastwards at upper levels and south westwards at depth, with magnitude about one percent 
of the maximum value of ud at a given level. The depth average of the streaming flow is 
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Figure 6. The vertical variation of the oscillatory part of the vertical velocity at 1 = P/4; wd, along 
with the predicted value w,, = 27r~&P, at the center of the domain for the intermediate period case. 

zero since the barotropic flow is constrained by the wind forcing. No such constraint 
applies to the meridional heat flux induced in the same way by the oscillation. Additional 
time-averaged heat fluxes, induced by the extra velocities, do occur as a result of the 
oscillation; the meridional component is northward in the upper levels and southward 
below. They add up to a net northward flux, averaged over time and over zonal sections, 
which decreases to the north and has a maximum amplitude of about 3.5 percent of the 
maximum zonally averaged meridional heat flux in the mean state. 

h. Intermediate period. With the period of the forcing oscillation increased to about eight 
years, the character of the solution is quite different. Larger displacements are induced by a 
given displacing velocity S, so that even with the dimensionless displacement amplitude l o 
increased from 0.001 to 0.017, (the depth of the top grid box, equivalent to about 70 m) the 
implied additional wind stress amplitude is still only 0.38 Nm-*. As noted earlier this is 
deliberately large, but of a realistic order of magnitude. The maximum change in surface 
restoring temperature for this value of a0 is 3.5 K. Over a period of about 200 years the 
integration settles down to a uniformly periodic state, but in contrast to the results with 
annual forcing, parallels with the analytical solutions are strictly limited. This is clear from 
Figure 6 which is a comparison of diagnosed and predicted values of vertical velocity 
exactly analogous to Figure 4. The principal reason for this disagreement is the fact that the 
phase of the induced oscillation is a strong function of horizontal position. This is 
graphically illustrated by Figure 7 which shows the variation of temperature at z, = 0.9 
through one complete cycle as a function of zonal coordinate C$ and time (+ covers the 
whole basin). Although the phase variations mean that the modeled ocean does not pass 
through its averaged state at all points simultanously, it is still interesting to calculate the 
velocity and meridional heat flux associated with this average state, and make comparisons 
with the time-averaged velocity and heat flux fields. Again the differences correspond to a 
form of nonlinear streaming induced by the oscillatory forcing. As for the annual period 
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Figure 7. Model temperature as a function of time t and C$ in the upper thermocline at (s, 2) = 
(0.54,0.9) for one complete cycle (the time scale is 4.04 years). 

oscillations of smaller displacement amplitude, the streaming velocity is south-westward at 
depth and north-eastward at upper levels, but in this case it is less confined to the boundary 
regions and has measurable amplitude everywhere, peaking at two to five percent of the 
maximum velocity in the steady state at a given level. Again this flow can have no 
barotropic component, but can induce a nonzero time and zonally averaged meridional heat 
flux. In this case the induced meridional heat fluxes are a much larger fraction of the 
average values; the streaming velocity increases the maximum northward heat flux by over 
10 percent and the peak value of the induced northward flux, which occurs at the southern 
boundary, is almost 50 percent of the peak northward flux in the averaged state. Since the 
time-averaged state is somewhat artificial, it may be more relevant to make comparisons 
with the initial steady state corresponding to the steady forcing. Compared to this state, the 
average northward heat flux is increased by 25 percent at its maximum value and 100 
percent at the southern boundary. 

c. Long period oscillations. For the final run to be discussed, the displacement amplitude 
E,, was again set to 0.017 while the period was increased to about 40 years. At this 
frequency and amplitude the changes in wind stress do not qualitatively alter the barotropic 
flow, but oscillations in wind and thermal forcings have a similarly strong impact on the 
solutions. This time the phase of the oscillation is roughly uniform on horizontal surfaces, 
but instead varies with depth. Time series of temperature in the center of the basin clearly 
show a temperature wave propagating downward through the thermocline, but the 

disturbance in the deep ocean is too weak to analyze. 
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Streaming velocities and additional meridional heat fluxes, calculated as before, are of a 
very similar form to the previous case but approximately ten times smaller. The same holds 
for the zonal average of the extra time-averaged heat fluxes. The heat fluxes implied by the 
steady state in this case are similar to those of the initial steady state. Note that the 
streaming velocities are still typically a factor of ten larger than the differences in velocity 
due to the residual unsteadiness of the oscillation. 

9. Discussion of numerical results 

The agreement between the numerical simulations and the analytical solution is greatest 
for annual period oscillations (much shorter periods are not appropriate to these dynamics). 
At longer periods the agreement deteriorates as the phase coherence of the oscillation is 
lost. This appears to be due to the westward propagation of long baroclinic Rossby waves. 
If the period is longer still, the propagation of disturbances from the eastern boundary may 
be rapid enough for the solution to reach approximate equilibrium, on the time scale of the 
oscillation. However, the propagation of information in the vertical still disrupts the phase 
of the oscillation. This is likely to be due to diffusion, neglected in the analytical solution, 
which would predict a decaying oscillation in the vertical with a vertical wavelength of 
about 0.25 of the ocean depth, for the parameters used. The observed vertical wavelength is 
closer to 0.4, but would be expected to be strongly modulated by advective effects. 

It is possible to make an analytical estimate of the phase speed of long baroclinic Rossby 
waves to compare with the disturbances seen in Figure 7. At the latitude appropriate to the 
figure, the density gradient is fairly well fitted by the exponential function pZ = AeY(Z-l), 
with y = 5.09, A = 13.8, for which it can be shown that the fastest baroclinic wave mode 
has a dimensionless phase speed of about 0.71. Figure 7 appears to show disturbances 
propagating westward at a speed somewhat less than one and similar results are obtained 
with twice the period, reinforcing the conclusion that the disturbances correspond to 
Rossby waves. 

Given that the annual oscillations are too fast for a baroclinic response mediated by long 
Rossby waves to occur, it is unsurprising that what is observed with annual forcing is 
essentially the instantaneous response to an applied wind stress. Horizontal velocity 
divergence in the directly wind-forced mixed layer produces roughly the intended Ekman 
pumping velocity. Incompressibility requires that this divergence is always in balance with 
upwelling from below, which can only arise as the divergence of a barotropic velocity field 
there. The roughly constant value of aw/& is an automatic consequence. Close to the 
eastern boundary this uniformity will break down due to baroclinic waves. The breakdown 
of the solution in the south may also be due to very strong downwelling at the southern 
boundary resulting from the unbalanced Ekman transport in the mixed layer. A better 
explanation is given by Gill and Niiler (1973) who predicted that the deep flow resulting 
from seasonal variations in surface forcing should be barotropic north of about 30N. In the 
more stratified waters nearer to the equator, they found that vertical motions could create 
significant baroclinic velocities above the main thermocline by changing the density 
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structure. They also predicted that annual changes in thermohaline fluxes at the surface 
would normally only affect local storage and that mean horizontal advection (which we 

ignored in calculating the oscillatory forcing) is not a dominant term. Note that the 
distortion velocity k in the analytical solution has a further special property, beyond merely 
being vertically uniform, which allows the solution to satisfy the thermal wind equations. 
Isotherms, or more generally isopycnals, are advected in such a way that the advecting 

velocity itself is the only source of time-dependence in the solution. That is, the solution is 

distorted along a locus of states, all of which would constitute steady solutions to the ideal 
thermocline equations in the absence of the distorting velocity. This is because the distorted 

steady state velocity field remains parallel to isopycnals. Unfortunately it is not straightfor- 
ward to ascertain whether anything similar is occurring in the numerical solutions, partly 
because we have not attempted to model the’changes in vertical velocity at the base of the 

mixed layer due to vertical advection of the steady solution. However, this is expected to be 
a small effect, so turning off the oscillatory forcing and finding the residual unsteadiness of 
the solution at various stages of the cycle does go some way toward investigating this 

point. We first restrict attention to a domain even smaller than B containing the most 
advective part of the solution and covering only half of the range of each of c$, s and z. Over 

this restricted region we calculate the r.m.s. of the instantaneous rates of change of all the 
dynamic variables in the model. For the initial steady state this measure of unsteadiness 
takes the value 2.6 X 10m3, while for the annually oscillating solution the residual 

unsteadiness when the forcing is removed does not exceed 1.2 X 1O-3 when either the 
distortion or the distorting velocity is maximal (that is fort = 0, P/4, P/2,3P/4) but reaches 
7.4 X lop3 during the forced oscillation. Thus it appears, at least in a limited, highly 

advective region, that some of the essential character of the analytical solution is 
reproduced in this respect. 

Some comments must be made on the effects of other differences between the model 
dynamics and those of the ideal fluid solution. We have so far made no specific comments 

about the effects of salinity. If we neglect diffusion and convection in the planetary 
geostrophic equations, then with any local form of constitutive relation p(T, S), the 
temperature, salinity and density of fluid parcels will all obey the same pure advection 
equation in the interior of the fluid. Hence the inclusion of salinity can only affect how the 

modeled behavior of p, T or S resembles that of 8 in the ideal fluid solution via the details of 
the diffusion; which must be small for any agreement to occur at all. The most important 

effect of salinity is therefore hopefully to render the initial steady solution, and the model 
dynamics in general, more realistic. Figure 8 shows the modeled and predicted variation of 

salinity with depth in exact analogy with Figure 5, confirming the prediction that salinity is 
behaving very similarly to temperature when the agreement with the ideal solution is good. 

Note that none of the oscillating numerical solutions induce extra convection, so its 
inclusion will not have affected the comparisons, other than by changing the initial steady 
state solution. 



19961 Edwards: Oscillating ocean gyres 823 

(3 03 

0.5 

depth (l-z) 

(4 (d) 

-6 

o!o 015 

depth (l-z) 

I 
1.0 

I I 
I , -0.02 I I I I 

0.0 0.5 1.0 0.2 0.4 0.6 0.8 

4 S 

Figure 8. Variation of modeled (AS,) and predicted (AS) maximum salinity changes along various 
sections for period P = 1 yr. A logarithmic scale is used to reveal the range of variation throughout 
the fluid column. The sections are (a) mid basin; (+, S) = (0.52, 0.54), (b) Northwest; (4, S) = 
(0.26, 0.73), (c) Upper thermocline; (s, z) = (0.54,0.9), (d) Upper thermocline; ($, z) = 
(0.52,0.9). 

10. Conclusions 

An analytical solution of the unsteady ideal thermocline equations has been found which 
corresponds to distortion of the isopycnals of any given steady solution by an advecting 
velocity which varies linearly in the three coordinate directions. The temporal behavior is 
governed by a single arbitrary function of time. Potential vorticity, but not Bernoulli 
function, is also simply advected by the distorting velocity. Any advection equation has 
very general symmetries of this type, but for nonpassive quantities such as density, the 
distorting velocity is constrained to take a very special form. For the thermocline equations 
the constraints are satisfied by a distortion which has no thermal wind signature and in 
addition, can be seen to occur along a locus of steady states. The unsteady solution satisfies 
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similar boundary conditions to the steady solution which it generalizes and is unlikely to 
qualitatively alter its stability properties. For the example steady solution examined in 

Section 4, changes in internal energy caused by the time-dependence are associated with 
changes in thermocline depth and fluxes of energy from the western boundary. 

The analytical solution has been compared with results obtained by applying a particular 
form of oscillatory forcing to a numerical model which integrates the planetary geostrophic 
equations in a box-shaped northern hemisphere basin. For annual period oscillations, 
certain features are reproduced by the model. The presence of western and northern 
boundaries prevents the horizontal flow from increasing linearly in the zonal and meridi- 

onal directions, but otherwise the oscillatory part of the velocity field is similar to the 
analytical prediction. Changes in temperature and salinity are largely as predicted from the 
oscillating velocity field, particularly away from the eastern and southern boundaries. For 
longer periods the agreement breaks down due to the propagation of long waves from the 
eastern boundary. At still longer periods of around 40 years, it is the effect of vertical 
diffusion which disrupts the agreement. Thus the most likely physical application of the 
analytical solution is to annual fluctuations in thermocline depth. An important feature of 
the results which is predicted by the analytical solution, is that the oscillations induce 
changes in the time-averaged mass and heat fluxes of the steady state solution. These 
additional fluxes turn out to be negligible in some regions for annual forcing, but can be 
highly significant in general, for instance in altering the net meridional heat transport. This 
process is equivalent to the generation of turbulent fluxes by small scale eddies, but here 
the fluctuations are due to basin scale changes in forcing at periods of up to 40 years. 
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APPENDIX A 

The heat flux boundary condition 

The no normal flow condition at lateral boundaries implies a linear relationship between 
the normal and tangential derivatives of density there. This makes it impractical to specify 
the derivatives of T or S at lateral boundaries. However, by postulating a distribution of 
diffusivity K~ which tends to zero at the lateral boundaries, it may be possible to formulate 
a mathematical problem with no diffusive heat or salt flux across these boundaries, which 
has well behaved solutions. This requires some justification as the governing equations 
become singular where K~ vanishes, however this does not preclude the existence of 
nonsingular solutions. As an example consider the model one-dimensional problem 
representing the solution close to a lateral boundary, resulting from neglecting time- 
dependence, convection and all variation tangential to the boundary. Referred to a 
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Cartesian coordinate X, normal to a boundary at x = 0, the heat Eq. (5 1) becomes 

‘c&x - uT,+yT=O, 641) 

where the subscript denotes a derivative and the y term parameterizes all the neglected 
variations. Now suppose the x-variations of uH, u and y are such that (Al) can be written as 

x2T, + xq(x)T, + r(x) = 0. (A21 

Solutions to (A2) can be found close to its singular point at zero using the method of 
Frobenius, see for example Kreider et al. (1966), if q and r are analytic near zero (r(0) can 
be zero). For certain choices of q and r, one or both of the two linearly independent 
solutions to (A2) will be nonsingular at zero. In particular (expanding q and r as e.g. 
q = q. + qlx + q2x2 + . . .) if we set q(x) = q. + qlx with 0 < q. < 1 and r(x) = rlx, then 
the equation has two linearly independent, nonsingular solutions of the form 

T = 5 ad”‘. (A3) 
k=O 

v = vl, v2 are the two solutions of 

Z(v) = v(v - 1) + qov + r. = 0, 644) 

which in this case are 0 and 1 - qo, and the ak are given by 

ak = - @&jz [( j + v)qk-j + rk-jlaj, 

J 0 

k > 0, 

for v = v,, v2. Either of these solutions can be matched to an interior solution at a point x = 
x, where T, uH, u and y take prescribed interior values T,, ul, u1 and y1 by setting r, = 
y,x:Iu, and q, = -u,/K, - qo/xl. The solution with v = 0 has a nonzero value of Tat the 
boundary and both solutions satisfy UT, = 0 there. 

The existence of such nonsingular solutions to the model one-dimensional problem 
suggests that there are nonsingular solutions to a three-dimensional problem in which uH is 
constant in the interior and approaches zero in some way close to boundaries, possibly in 
proportion to the squared distance from the boundary as above. This would explain how 
numerical solutions are readily obtained, and indicate how they might be made resolution 
independent, by incorporating the variation in K explicitly. 
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