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Grid-scale instability of convective-adjustment schemes 

by Paola Cessi1,2 

ABSTRACT 
Through a simple illustrative example, it is shown that instantaneous convective adjustment 

schemes, of the type used in general circulation models to parametrize nonhydrostatic 
convective processes, lead to the spontaneous emergence of the smallest resolved horizontal 
scale: the grid mode is unstable regardless of the strength of the horizontal diffusivity. 
Convective adjustment vertically mixes properties at each grid-point, irrespective of the 
horizontal distribution of such properties. Thus, horizontal spatial gradients are amplified by 
convective adjustment, as long as adjustment is faster than the horizontal diffusion (or 
advection) time between neighboring grid-points. In the example presented here, the grid- 
scale instability is a global attractor and can only be “suppressed” by inaccurate time-stepping, 
or by the finite computational representation of numbers. This clarifies that the “grid-mode” is 
not a computational instability, but an intrinsic property of instantaneous convective adjust- 
ment schemes. A smooth solution, without grid-scale gradients, also exists, but it is unstable to 
infinitesimal perturbations for all values of the external parameters. We emphasize that the 
spatial average of the grid-mode differs substantially from the spatial average of the smooth 
(but unstable) solution. 

1. Introduction 
In general circulation models of the oceans, static instabilities (heavy fluid over 

light) are removed by “convective adjustment” (CA) algorithms. The essential idea is 
that when unstable stratification is detected in a column of fluid, temperature and 
salinity are rapidly mixed vertically to produce a neutrally stable state (Bryan, 1969). 
There are different imprementations of CA algorithms (e.g., Marotzke, 1991; Yin 
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and Sarachik, 1994) but a common aspect is that the decision to adjust is based on 
vertical density gradients and ignores horizontal differences in density. Therefore, if 
CA occurs at one grid-point, but not at a neighboring one, then a density gradient on 
the grid-scale is created very rapidly. 

This obvious deficency of CA algorithms has not undermined their popularity 
because of the widespread conviction that advective-diffusive processes can destroy 
grid-scale gradients, and that, in any case, the average properties are unchanged by a 
grid-scale modulation. 

There is ample evidence in both the oceanographic literature (Rahmstorf and 
Willebrand, 1995) and in day-to-day practice (Meacham, personal communication) 
that advective-diffusive processes are not guaranteed to suppress instability at the 
smallest resolved scale. Indeed, the emergence of grid-scale patterns is a plague not 
limited to ocean general circulation models (GCM’s); atmospheric models using 
moist convective adjustment exhibit precipitation on the grid-scale (e.g., Numaguti 
and Hayashi, 1991). In all the cited examples the origin of the grid-scale structure is 
unclear because of the complexity of motions that can be excited: small-scale gravity 
waves have been considered a prime suspect for the generation of small-scale 
structure in the tropical atmosphere (Lindzen, 1974). Moreover, in a GCM it is not 
possible to test whether the grid-scale modulation alters the spatially averaged 
properties of the fields of interest. 

Here we illustrate, through a minimal example, that gradients on the grid-scale are 
excited solely by convective adjustment in a horizontally extended system. Further, 
the spatially averaged fields are very different depending on whether the grid-mode 
is allowed or suppressed. These results stress the necessity of developing parametri- 
zations of convective processes that are stable and correctly describe the physics of 
sub-grid scales. 

2. Formulation 

Consider a well-mixed layer of fluid, overlying an infinitely deep layer, where the 
density, p, depends linearly on the temperature, T, and the salinity, S, i.e. p = S - T. 
(cf. Fig. 1). For simplicity we assume that the temperature of the upper layer is kept 
fixed to the value T (x, t) = 1, and both the temperature and salinity of the lower layer 
are kept at reservoir values: S&X, t) = T&, t) = 0. The salinity of the top layer is 
continuously increased by a specified flux, of unit magnitude, and it is allowed to 
diffuse laterally downgradient. Whenever the density of the top layer exceeds that of 
the lower layer, the static instability is removed instantaneously, by mixing the 
salinity vertically, and thus setting 5(x, t) equal to the reservoir value. This rapid 
mixing is the convective-adjustment rule. Thus the model is: 

a,s = 1 + ol@, ifS I1 

s -+ 0, ifS > 1, 
(2.la,b) 
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T (x, t) = I, s (x, t) = ?, p = S-l 

To= So= p,= 0 
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Figure 1. A schematic drawing of the diffusively coupled thermohaline oscillators. A layer of 
vertically homogeneous fluid of density p = S(X, t) - T(x, t) is below an “atmosphere” 
providing a constant evaporation-precipitation flux of unit magnitude. In this layer the 
temperature is maintained at the constant value, T = 1, while the salinity evolves in time and 
space due to the E-P flux, horizontal downgradient diffusion and convective adjustment. 
The temperature and salinity of the deep reservoir are maintained to the value To = So = 0. 
Whenever the density of the top layer exceeds that of the deep reservoir convective 
adjustment occurs, i.e. the top salinity is instantaneously mixed to the reservoir value. 

where 0 5 x I 1. We avoid end-effects by considering a periodic system with 
S(x, t) = S(x + 1, t). 

Notice that the temperature of the upper layer is fixed to the value 1, while the 
salinity evolves in time: we are considering a scenario in which the thermal relaxation 
is much more rapid than that of salinity (Stommel, 1961; Bryan, 1986). This is the 
fundamental asymmetry between heat and salt in the system. 

For expository purposes we have used the case of salinity-driven “convection.” 
Other configurations, after suitable resealing, can be put in a form resembling (2.1). 
In (2.la) weak vertical mixing with the deep lower layer that might occur in stably 
stratified conditions has been neglected (this would amount to adding -kS to the 
right-hand side of (2.la)). This generalization has been explored and it has no 
qualitative impact on the conclusions. Finally, we have assumed that the forcing is 
spatially uniform: we find that the system spontaneously generates spatially modu- 
lated salinity fields. In our opinion it is important to understand these intrinsic 
sources of spatial variability before examining the interaction with externally im- 
posed spatial nonuniformities. 

The formulation (2.1), because of the adjustment rule, must be interpreted in the 
context of a discretized model. As it stands, 8:s is not defined after the CA rule has 
been applied. Or perhaps it is not clear how convective adjustment can be imple- 
mented in a continuous (or even a spectral) model. This shortcoming applies equally 
to all GCMs that use CA. However the difficulty with the continuous limit is not an 
objection to the modeling strategy, as long as the model is interpreted as a set of 
coupled ordinary differential equations (in time), obtained by spatially discretizing 
the continuous system. Specifically, we divide the domain 0 I x _< 1 into N intervals 
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of length h = l/N so that x = nh, and 1 < n I N. The state of the system at time t is 
defined by the vector with components S,(t) which evolves according to 

s, = 1 + &(s,+i - 2s, + $-I), if S, _< 1, 

$2 -+ 0, if S, > 1. 
(2.2a,b) 

Although, for numerical implementation, the system (2.2a) must also be discretized 
in time, we consider time to be continuous. In the next section, analytic solutions of 
(2.2) are discussed, and this provides some assurance that the semi-discrete formula- 
tion above in (2.2) is well posed. 

3. The homogeneous solution and its stability 

The system (2.2) has a simple solution in which all the &‘s are equal 

S,(t) = t - int(t), (3.1) 

where int(t) is the integer part of t, e.g. int(T) = 3 and int(e) = 2. In this spatially 
uniform solution all the grid-points are adjusting in synchrony at t = 1,2,3. . . . This 
solution is analogous to the thermohaline relaxation-oscillations isolated by We- 
lander (1982). However, with many thermohaline oscillators coupled diffusively, the 
spatially uniform solution is unstable to disturbances on the grid-scale. 

Figure 2 shows the space-time coordinates of CA events for a numerical integra- 
tion of (2.2) using the simplest time-discretization scheme: forward Euler. Specifi- 
cally, given the present state S,(t), we define the tentative future state by: 

i,(t + dt) = S,(t) + dt + dt(cx.N2) [S,+,(t) - 2&(t) + S,-,(t)], (3.2) 

where dt is the time step. We then apply CA and obtain the true future state by using 
the rule: 

S,(t + dt) = $(t + dt) if &(t + dt) I 1, 

S,(t + dt) = 0 if in(t + dt) > 1. 
(3.3a,b) 

In the computation of Figure 2 the initial condition, S,(O), is a random number 
between 0 and 0.01 picked from a uniform distribution. The first CA events are at 
about t = 1, as expected from the simple spatially uniform solution (3.1) but they 
occur at every other grid-point (except for four “defects” located at n = 5, 16,65,92). 
Notice that the decay time for the mode alternating in space at every grid-point, i.e., 
&(t) = a(t)( -l>“, is (40N2))l. For the computation shown, with OL = 0.0003 and N = 
100, the decay time of a grid-mode is l/12, and yet CA is still occurring on the 
grid-scale at t = 20. Consequently, the salinity field at the final time, shown in Figure 3, 
has a “noisy” spatial distribution, with structure down to the smallest resolved scale. 
The spatially uniform solution in (3.1) is apparently never reached from the initial 
condition used in Figure 2. 
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Figure 2. The space-time coordinates of convective adjustment events for a numerical 
integration of the system (3.2) - (3.3) with a = 0.0003, N = 100, dt = 1/(128N2). The initial 
condition &(O) is a random number between 0 and 0.01 picked from a uniform distribution 
(we used the ESSL subroutine DURAND with seed = 33). All the variables in the 
computation are in double precision. 

In the following we present evidence that the spatially uniform solution is unstable 
to infinitesimal disturbances on the grid-scale, for all values of aN2, i.e. the grid- 
mode is unstable no matter how fine the spatial resolution and no matter how large 
the horizontal diffusion. 

4. The return map for the grid-mode 

Let us look for a particular solution of (2.2) such that the values of S at all the even 
grid-points are equal, and those at all the odd ones are equal: 

L(t) = a(t), 

hn+l(t) = b(t). 
(4.1) 

Then, the system of N coupled equations in (2.2) is reduced to the pair 

a = 1 + f3(b - a)/2 ifa 5 1, 

a+0 ifa > 1, 

6 = 1 + P(a - b)/2 ifb 5 1, 
(4.2a,b,c,d) 

b-0 ifb > 1, 

where p = 4oLN2. We assume that at t = 0 a has just undergone CA and b(0) = B. 
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Figure 3. The salinity as a function of the space-coordinate n at the final time of the 
computation described in Figure 2, S, (20). We resisted the temptation to connect the points 
in order to emphasize that there is structure down to the smallest resolved scale. 

After any adjustment, a and b have values only between 0 and 1, so we may consider 
B to be positive. Until the next CA event, the solution of (4.2) is 

a(t) = t + B[l - exp (-Pt)]/2, 

b(t) = t + B[l + exp (-@t)]l2. (4.3) 

In this case b will reach the threshold for CA before a, at the time t = TV, given by the 
solution of the transcendental equation, 

71 = 1 - B[l + exp (-p7,)]/2. (4.4) 

An example of the phase plane, (a, b), is shown in Figure 4 for p = 2.25. At t = TV, a 
will be 

a(Tl) = 2~~ + B - 1. (4.5) 

After this first adjustment, the roles of a and b are exchanged. Now it will be a that 
adjusts next, at the time t = 71 + TV, with 72 satisfying: 

72 = 1 - a(Tl)[l + eXp (-pT2)]/2. (4.6) 

At t = 71 + TV, b will be 

b(q + T2) = 272 + U(T1) - 1. (4.7) 



19961 Cessi: Grid-scale instability of CA schemes 413 

.8 .8 - - 

.6 .6 - - 

rD rD - - 

0 0 .2 .2 .4 .4 .6 .6 .8 .8 1.0 1.0 
a a 

Figure 4. The phase plane (a, b), solutions of (4.2). At t = 0, u has just adjusted and b(0) = B. 
At t = TV the system reaches the point (a(~*), 1) and at this instant b adjusts, bringing the 
system to (a(~,), 0). Next, at t = r1 + Q, a adjusts and the system reaches (0, b(~r + TV)). The 
return map is obtained by calculating b(T1 + 72) as a function of b(0). 

Thus, given Bi, the value of b at the time of a CA for a, we can find Bi+r, the value of b 
at the next a adjustment, by solving the set of nonlinear transcendental equations: 

F(B) = 27(B) + B - 1, 

T(B) = 1 - B{l + exp [- @(B)]}/2. 

(4.8a,b,c) 

Here T(B,) is 71 in (4.4) i.e. the time for b to reach the CA threshold. F(Bi) is equal to 
a(Tl) in (4.5) and r2 in (4.6) is identified with T(F(BJ). The final value, b(T1 + TV) in 
(4.7) at the end of the adjustment cycle is Bi+r. The procedure (4.8) requires the 
numerical solution of a simple transcendental equation for r(B). The mapping in 
(4.8) can be iterated many times to obtain successive values of Bi. If any Bi is zero or 
larger than one, then the even and odd grid-points adjust simultaneously and the 
spatially homogeneous solution (3.1) emerges. Because the algorithm in (4.8) only 
gives the values of b(t) at the times when a(t) goes through CA we call it a return 
map. 
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Figure 5. The return map of the grid-mode showing, &+i, the solution of (4.8) as a function of 
&, for l3 = 1.9 (solid line). The dashed line is the identity map Bi+l = Bi. If the odd 
grid-points start at the value Bi at the time when the even grid-points are adjusting, they will 
be at Bi+, at the next CA event of the even grid-points. The intersections of the return map 
with the identity map are periodic solutions in time. If the slope of the return map at these 
intersections exceeds one, then they are unstable. If the slope is less than one, then the fixed 
point is stable. The origin, corresponding to the spatially homogeneous solution (3.1), is 
unstable for all values of the coupling coefficient l3. 

One way to visualize concisely the results of applying the algorithm (4.8) is to plot 
Bi+i as a function of Bi, with 0 I Bi I 1 for different values of the coupling 
coefficients l3. A graph Of F(F(Bi)) versus Bi, for p = 1.9, is shown in Figure 5. Given 
an initial condition Bi, the long-time evolution of the system (4.2) can be inferred 
graphically using the return map. Points where the curve of F(F(Bi)) intersects the 
line Bi+l = Bi, correspond to periodic solutions of the system (4.2), because when a 
comes back to the same value (0 in this case), b also returns to the value it started 
from. If the slope of the return map is less than unity at these intersection points, the 
periodic solution is stable, and if the slope is larger than unity, then the periodic 
solution is unstable (Berge et al., 1986). 

The return map in Figure 5 shows that the spatially homogeneous solution, 
corresponding to the point (Bi, Bi+,) = (0,O) or (Bi, Bi+l) = (l,l), is unstable to 
infinitesimal perturbations. But there is another globally attracting limit cycle with 
Bi = Bi+l = Bg. This attractor is a fixed point of (4.8): 

T(B,) = @‘(B,)) = ?h, 

Bg = F(B,) = F(F(B,)) = [l + exp (-p/2)]-‘. 
(4.9a,b) 
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The fixed point in (4.9) corresponds to a state where all the odd grid-points (i.e. the 
b’s) are at a finite value, given by (4.9b) when all the even grid-points (i.e. the a’s) are 
adjusting. Conversely, at the times when the odd grid-points are adjusting, the even 
grid-points are at F(B,) in (4.9b). The time to go through one of these half-cycles is 
precisely T = ‘/, so that the period of the grid-mode is 1, the same as the spatially 
homogeneous (but unstable) solution (3.1). However the spatially averaged salinity 
of the grid-mode, g(t) = (a + b)/2, is different from the spatially averaged salinity of 
the homogeneous solution (which is obtained if one starts exactly at b(0) = 0). For 
the grid-mode 

q(t) = t - int(2t)/2 + B,/2, (4.10) 

so that the time and space averaged salinity is 

s o1 s,(t) dt = ; + B,/2. (4.11) 

The time-average of the spatially homogeneous solution, (3.1), is simply %, as is 
(4.11) in the limit of p -+ 0, i.e. in the weakly coupled limit. Conversely, in the 
strongly diffusive limit, p + 03, the time and space average of the grid-mode salinity 
approaches 3/. Counterintuitively, when the coupling between neighboring grid- 
points is large the macroscopic properties of the grid-mode differ the most from 
those of the spatially homogeneous solution. 

In fact, the instability of the spatially homogeneous solution, measured by the 
slope of the return map minus unity at the origin, increases as l3 increases and for 
p > 2 the return map (4.8) is discontinuous at the point Bi = 0. Figure 6 shows the 
solutions of the return map (4.8) for l3 = 3. For l3 > 2, a qualitative change occurs in 
F(F(Bi)) (cf. Fig. 5 with Fig. 6): the return map is everywhere concave, still 
intersecting the point (Bg, Bg) with a slope less than unity. To understand this point it 
is useful to examine the behavior of the solutions to (4.8) when Bi -+ 0. In this limit, 
the time for the first adjustment of b is T(Bi) in (4.8~) and is given by 

7(Bi) = 1 - Bi[l + exp (-p)]/2 + O(BF). (4.12) 

Because b starts very close to zero, when it reaches the CA threshold, a(T(Bi)) is very 
close to one and it is given by 

F(Bi) = 1 - Bi[l + exp (- p)] + O(Bf). (4.13) 

Intuitively one would assume that because F(B,) is close to one, the time, r2, taken by 
a to reach the CA threshold is very short. However, this is not the case when p > 2. 
This time is given by the implicit relation 

72 = 1 - F(B,)[l + exp (-PT~)]/~. (4.14) 
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Figure 6. Same as Figure 5, except that l3 = 3. Now the return map is discontinuous at the 
origin, which is still unstable. For values of l3 I 2 the return map is qualitatively similar to 
that of Figure 5. For l3 > 2, the return map is similar to that of Figure 6. In all cases there is 
a globally attracting limit cycle such that the even and odd grid-points exchange their value 
periodically. At any given time, the salinity, S, oscillates in space with wavelength IZ = 2. 

This equation can be solved graphically by plotting F(Bi) as a function of r2 

F(Bi) = 2(1 - Tz)[l + exp (-l372)]-l, (4.15) 

as shown in Figure 7 for three values of p: 1,2 and 3. For all values of p, F(Bi) is equal 
to one at r2 = 0 and for p < 2 it is a monotonic decreasing function of TV. However, 
for p > 2, F(B,) first increases to a value larger than one and then decreases after 
reaching a maximum, so that the intersection of the curve (4.15) with (4.13) occurs 
for r2 of order one, even if F(Bi) is infinitesimally smaller than unity. In summary, the 
spatially homogeneous solution in (3.1) is unstable to the grid-mode for all values of 
the coupling coefficient p = 4oN2. 

5. Numerical suppression of the grid-mode 

The conclusion in the previous section applies to the semi-discrete system in (2.2) 
and it must be qualified when discussing the fully discrete implementation of (2.2) on 
a computer. The fully discrete system is defined by (3.2) and (3.3). In the course of 
applying the test in (3.3) there may be a subtraction of two numbers which are equal 
to within machine precision. The roundoff error will result in the “numerical 
suppression” of the grid mode. This numerical suppression occurs most easily when 
p is very large. 
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Figure 7. Agraph of F(BJ in (4.15) as a function of 72 for three different values of the coupling 
coefficient f3 (solid line). The dashed line is the constant F(Bi) = 0.975. F(Bi) is the value of 
the even grid-points at the time of the first CA for the odd grid-points initially at Bi. r2 is the 
time it takes the even grid-points to reach the CA threshold. The intersection between the 
solid and dashed line gives 72. This graph illustrates the change in qualitative behavior as p 
goes through 2. For p I 2, r2 is a continuous function Of F(Bi). For p > 2, r2 is discontinuous 
at F(Bi) = 1. 

When p s 1 the value of b after one full cycle is 

Bi+l = 1 - e-Pi2 - pe-P/2 + Bi(l + p/2)e-B(3-Bi)/2 + 0 (e-P(2-Bi/2))e 
(5.1) 

In (5.1) the difference between Bi+i and 1 is O[exp(-P/2)], which becomes very 
small when l3 becomes large. In a time-stepping code the error in calculating the 
distance of S,(t) from the CA threshold is of the order of the time-step. This error 
might easily exceed exp( -p/2) when N is large (recall that p = 4f12). When an 
error brings Bi+l above 1, the odd and even grid-points adjust simultaneously, a = b, 
and the uniform solution (3.1) is obtained. Figure 8 shows two time-series of 
a(t) - b(t), obtained by solving (4.2) with p = 12, using the same scheme as (3.2) and 
(3.3) (Euler forward) but two different time-steps. The dashed line shows a computa- 
tion with dt = [exp(-P/2)1/2 and in this case the grid-mode is accurately captured. 
The solid line shows a computation with dt = 2 exp(- p/2) and in this case the 
grid-mode is suppressed, eventually a(t) = b(t) and the uniform solution (3.1) is 
obtained. Notice that the time-step for the “inaccurate” solution in Figure 8 (solid 
line) satisfies the criterion for computational stability 

exp (--p/2) < dt < p-l, (5.2) 
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Figure 8. Two time series of the difference a(t) - b(t), obtained by solving (4.2) numerically, 
using the scheme defined in (3.2) and (3.3) i.e. the grid-points are all advanced in time with 
Euler forward, and then tested for static stability. The integration shown with the dashed- 
line used a time step dt = [exp(-P/2)1/2, which accurately captures the grid-mode. The 
solid line shows an integration with dt = 2 exp(-P/2): with this larger time-step the 
grid-mode is suppressed and the uniform solution (3.1) is obtained. 

but it is not small enough to resolve the exponentially small correction in (5.1) which 
prevents the emergence of the uniform solution and establishes the grid-mode. As 
mentioned earlier roundoff errors, due to the finite representation of numbers in 
computations can also lead to spatial homogenization. If the machine precision is E, 
then homogenization occurs for 

E > exp(-p/2). (5.3) 

For example, using double-precision variables, E is of order lo-l6 and “homogeniza- 
tion” occurs for oN2 > 35. 

The preceding discussion emphasizes the distinction between an algorithm and its 
numerical implementation. We have shown that an accurate numerical implementa- 
tion of CA leads to a grid-scale instability. The generation of structure on the 
smallest resolved spatial scale is an undesirable feature of convective adjustment. It 
is ironic that an inaccurate numerical representation of the CA algorithm can result 
in the suppression of the grid-mode. 

6. Discussion 

The reason why, at least in principle, the grid-mode emerges regardless of the 
grid-size, h = l/N, and the diffusive coupling, (Y, is clear. Even if two neighboring 
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grid-points are both very close to the CA threshold, as long as one of them reaches it 
before the other, a large gradient will be generated instantaneously. Thus we 
conjecture that this generation mechanism of grid-scale gradients operates also in 
models more complex than the one examined here. Specifically, the grid-mode 
formulation (4.2) applies exactly in two additional cases: 

(1) When advection by a constant velocity, U, is added in (2.2) using upstream 
differencing for the advection term, (4.2) still holds with a different definition 
of the constant B (B is now given by 4oiVz + 21UlN). 

(2) If (2.2) is generalized to two dimensions (with isotropic diffusivities), then 
(4.2) is obtained when considering a and b to be the values of the salinity S at 
alternating grid-points in a regular checker-board pattern. 

Presumably, if the duration of CA were finite, say rcA, gradients could be sustained 
against diffusion on a scale larger than &A = O(G); however the physical 
significance of 1 cA is obscure. A finite duration of convective adjustment is used in 
implicit schemes that enhance the vertical diffusion when unstable density stratifica- 
tion is detected (Cox, 1984). 

In our opinion, the grid-mode is an unwanted artifact of the instantaneous CA 
procedure. We have shown that it can be suppressed by a combination of finite 
time-step, dt, and roundoff error, E. Because this grid-scale modulation is the result 
of the CA algorithm and not a computational mode, it is when dt and E are sufficiently 
large that the grid mode is suppressed. In any event, it is unfortunate that dt and E 
acquire the status of adjustable parameters. 

The presence of the grid-mode is important because it has a large scale, averaged 
salinity very different from that of the spatially uniform solution. It is possible that 
the spatially uniform solution (3.1) is unstable to other grid-scale perturbations, each 
with its own spatially averaged salinity distribution. Thus suppression of the grid- 
scale instabilities and the development of parametrizations of convective processes 
that are grid-mode free and correctly capture the effect of unresolved scales is not 
merely an aesthetic issue. 
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