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On frontal and ventilated models of the main thermocline 

by Simon Hood’ and Richard G. Williams’ 

ABSTRACT 
A new similarity approach is applied to the thermocline equations in order to examine 

contrasting frontal and ventilated models of the main thermocline. The method of solution 
involves reducing the number of independent variables of the controlling partial differential 
equation, leading to a particular form for the solutions which satisfy appropriate boundary 
conditions. 

A frontal model of the thermocline is obtained following the study of Salmon and 
Hollerbach (1991). When the vertical diffusivity becomes vanishingly small, an interior front in 
the subtropical gyre appears at the depth where the vertical velocity changes sign. The front 
separates downwelling warm water in the subtropical gyre from the underlying upwelling of 
cold, deep water. These solutions appear to be robust to changes in the vertical diffusivity 
profile, as long as there is a small, nonzero value in the interior. However, when there is 
uniform diffusivity, there is no implied surface heat flux and surface isotherms are coincident 
with streamlines. As the diffusivity increases toward the surface, the surface heat input 
increases in magnitude and the temperature field becomes more plausible. 

A ventilated model of the thermocline is formed using the similarity approach with a 
diffusive surface boundary-layer overlying an adiabatic interior. In this case, the temperature 
and velocity fields are solved for in the limit of uniform potential vorticity. There is now a more 
plausible cross-isothermal flow in the surface layer with a polewards decrease in temperature, 
and the implied surface heat input increases equatorwards. Fluid is subducted from the 
surface boundary layer into the adiabatic interior and forms a continuous thermocline. 

In conclusion, the contrasting frontal and ventilated solutions arise from modeling different 
aspects of the circulation, rather than depending on the type of model employed. The 
ventilated solutions form a thermocline by advecting the surface temperature field into the 
interior of a subtropical gyre, whereas the frontal solutions create a thermocline from the 
interaction of the wind-driven gyre and the underlying thermohaline circulation. These 
thermocline solutions might occur separately or together in the real ocean, although both 
solutions might be modified by higher-order processes or more complicated forcing. 

1. Introduction 

A striking feature throughout the ocean is a persistent thermocline with a large 
vertical temperature gradient over the upper 1 km, which overlies relatively homoge- 
neous, deeper water. Explaining the presence of the thermocline requires solving the 
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steady, thermodynamic equation: 

u . V0 = B. (1.1) 

The thermodynamic equation, (l.l), is nonlinear, as the temperature field 6 influ- 
ences the velocity field, U, through the thermal-wind balance; here, B represents the 
thermodynamic forcing. Consequently, solution of this problem is not trivial and has 
been examined for some time-see reviews of previous work by Pedlosky (1986) and 
Rhines (1986). 

Early thermocline work used a similarity approach with a continuous stratification 
and advocated two opposing limits: diffusive control by Robinson and Stommel 
(1959) and advective control by Welander (1959). However, these and subsequent 
similarity solutions have been criticized in being over complex and unable to satisfy 
general boundary conditions. 

Recent theoretical studies have employed simplified layered models designed to 
focus on the controlling physical processes in the advective limit. Rhines and Young 
(1982) (henceforth RY) have emphasized the role of geostrophic eddies in homogeniz- 
ing properties over ocean gyres using a quasi-geostrophic model. Luyten et al. (1983) 
(henceforth LPS) have instead argued for the ventilated control of the thermocline 
using a layered model over the interior of the subtropical gyre. However, neither of 
these simplified models provide a complete representation of the global ocean, as the 
thermohaline circulation is not properly included with RY imposing the background 
stratification and LPS only solving for a thermocline over a motionless abyss. 

In contrast, Salmon (1990), using numerical experiments, and Salmon and Holler- 
bath (1991) (henceforth SH), using a similarity approach, argue that the main 
thermocline is an internal front. In the limit of vanishingly small vertical diffusivity, 
the front appears as an internal boundary layer over the subtropical gyre, but not 
over the subpolar gyre. The front is located at the depth where the vertical velocity w  
vanishes and changes sign. The front results from the downwelling of warm, surface 
water meeting the upwelling of cold, deep water; hence, it is due to the interaction of 
the wind-driven gyre and the underlying thermohaline circulation. However, these 
solutions are unrealistic in showing no implied surface heat flux and surface 
isotherms coincident with streamlines, rather than there being a more plausible 
poleward decrease in surface temperature. 

Each of these theoretical models have different attributes, but understanding the 
crucial differences in them has been hampered through the contrasting choices in 
model formulation. In this study, we examine the LPS and SH limits using the same 
similarity approach to solve the thermocline equations over a subtropical gyre away 
from the lateral boundaries. Firstly, we discuss in more detail the physical assump- 
tions made in the LPS and SH models, and secondly we describe the rationale for this 
work. 

LPS solve for the structure of the main thermocline using a layered model after 
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imposing the Ekrnan pumping and the surface temperature field. The main thermo- 
cline results from the surface temperature field being advected into the interior by 
the circulation induced by Ekman pumping in a subtropical gyre. The flow is assumed 
to be adiabatic in the interior with streamlines coincident with isotherms, i.e., 

ue, + ve, + we, = 0, (1.2) 

here u, v and w  are the velocities in thex,y andz directions. The LPS solutions require 
an implicit surface boundary layer, which is included in the mixed-layer extensions by 
Pedlosky et al. (1984) and Williams (1989). Over a vertically-homogeneous mixed 
layer, (1.1) becomes 

2T 
ue, + vey = -. 

fq ’ (1.3) 

here 2 is the surface heat flux, h is the mixed-layer depth, p is a reference density 
and C, is the heat capacity. The diabatic forcing drives a cross-isothermal flow in the 
surface boundary layer and subduction of fluid from the mixed layer into the 
underlying thermocline; subduction ceases in the limit of no heat being supplied to 
the geostrophic flow in the mixed layer (see Nurser and Marshall, 1991). 

Salmon (1990) recently cast doubt on the LPS solutions arguing that the surface 
temperature field should be solved for rather than imposed. Accordingly, SH employ 
a similarity approach to solve for the entire flow field and temperature field. The 
thermodynamic forcing is simply represented by a vertical diffusion of heat with a 
Constant diffusivity, K, i.e., 

Ue, + V8, + We, = Ke,. (1.4) 

In the limit of vanishing diffusivity, an internal front is found to appear in the 
subtropical gyre where w  changes sign, which SH interprets as the main thermocline. 

In this study we examine the contrasting frontal and ventilated models of the main 
thermocline in an idealized subtropical gyre with uniform Ekman pumping. The 
sensitivity of the solutions to different choices in the vertical velocity and diffusivity 
profiles is examined. Following SH, we parameterize the diabatic forcing in terms of a 
vertical diffusion of heat, but allow the vertical diffusivity to vary in the vertical. This 
leads to the modified thermodynamic equation 

ue, i- Ve, + We, = (Kc),),. (1.5) 

The right-hand side may be interpreted in terms of a vertical divergence of a heat flux 
(cf. 1.3) with the heat flux given by 

2 = &,Kf&. (1.6) 

The diffusivity profile is allowed to range from a constant value throughout the 
domain to a spatially-varying case with large K at the surface and zero value in the 
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interior. Our choices in diffusivity are stimulated by the observed bias in the diabatic 
forcing over the ocean. The surface heat fluxes into the seasonal boundary layer 
reach the order of 100 W m-2, whereas the diffusive heat fluxes are several orders of 
magnitude smaller in the ocean interior. Likewise, the turbulent mixing reaches the 
order of lop3 W m-3 in the surface convection layer, whereas it decreases to lO-‘j W 
m-3 in the thermocline (see review by Woods, 1984). 

The paper is structured in the following way. The controlling thermocline equa- 
tions, model domain and boundary conditions for an idealized subtropical gyre are 
described in Section 2. New thermocline solutions for the frontal and ventilated 
limits are obtained using a similarity approach in Sections 3 and 4; the method is less 
restrictive than that employed by SH and is fully described in the companion paper by 
Hood (1996)-hereafter ‘Paper I’. The sensitivity of these thermocline solutions is 
examined by modifying the vertical velocity boundary conditions and the diffusivity 
profile. Finally the main results are discussed in Section 5. 

2. The thermocline equations 

The controlling thermocline equations may be written in nondimensional form as 

fi = -py, fi = pm 8 = P,, (2.la) 

u, + vy + w, = 0, (2.lb) 

Uf& + Vt$ + W@, = (Kt& (2.lc) 

where P is pressure and f = y is the Coriolis parameter. These equations are used to 
model the steady, gyre-scale flow away from lateral boundaries; time dependence, 
inertia, friction and temperature diffusion in the horizontal are neglected. Following 
Welander (1959) and SH, we define a “potential,” M(x, y, z), to satisfy 

1 1 1 
u = - -My=, 

Y 
v = -M,, 

Y 
w=,M x> 

Y 
(2.2i) 

P = M,, 8 = M, (2.2ii) 

and then with no loss of generality (2.1) are represented by the single equation for 
the thermodynamic equation: 

MMZZZ + Y@%M,, - M,Mnz) = Y2(‘d’& + Kj%zzz). (2.3) 

The advection of heat is represented by the left-hand side of the equation (in the 
order of WE+, v0, and ~0,) and the vertical diffusion of heat by the right-hand side (K,o, 

and Ke,). Note that the first term on the right-hand side vanishes when K is uniform, 
as assumed by SH. For future reference, also note that potential vorticity, q, is given 
by 

q = ~0, = yMz. (2.4) 
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From (2.3) it is easy to see that we have the freedom to translate bothx and z, and 
freedom to rescale X, y and z (by resealing M if necessary). Therefore, since y = 0 
corresponds to the equator, we may consider the solution domain 

(4 Y, 4 E [O, 113, (2.5) 
without loss of generality; to see this formally, consider transformations vl, v2, v3, v4, 
and v5 in Table 1 of SH. 

We consider an idealized subtropical gyre and solve for the flow below the surface 
Ekman layer. The following boundary conditions are applied: 

(i) vertical velocity decreases to zero in the deep ocean, i.e., w  -+ 0 as z -+ 0 
(although this condition is relaxed in one of our frontal cases); 

(ii) there is a uniform Ekman pumping at the base of the surface Ekman layer, i.e., 
w  = wE atz = 1. 

In reality, the Ekman pumping should vary in space and define the domain of the 
subtropical gyre. However, we have simplified the forcing so as to focus on the role of 
the diabatic forcing; consequently, the solutions close to the equator are not 
physically relevant, as there should be different dynamical balances there. 

(iii) There is no net flow through the entire eastern boundary, i.e., 

1 1 ss 0 0 
u(x = 1, y, z)dydz = 0. (2.6) 

Note that (iii) is a weaker constraint than that used by SH who impose the condition 
of no depth-integrated flow at all latitudes, i.e., JU(X = 1, y, z) dz = 0. The western, 
northern and southern boundaries are assumed to be passive and supply whatever 
volume flux is required by the interior; this assumption is frequently applied in 
thermocline models. 

Neither the surface temperature or surface heat flux are imposed as explicit 
boundary conditions, but instead are solved for according to the pattern of flow and 
form of diabatic forcing. However, the heat flux through the sea floor is always set to 
zero. A family of solutions may satisfy these applied boundary conditions. Our 
approach is to show how the character of these thermocline solutions changes 
according to different physical assumptions, rather than try to isolate a definitive 
solution for the real ocean. 

3. Frontal solutions 

In this section the frontal model of the thermocline advocated by SH is examined 
using new similarity-based solutions obtained in Paper I. The sensitivity of the frontal 
solutions is examined to different choices in the vertical velocity boundary conditions 
and the diffusivity profile. 
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Our similarity approach to determining solutions of (2.3) follows that of Clarkson 
and Kruskal (1989) and is more general than the method, due to Lie, used by SH, 

though it is also based on the use of symmetry reductions. * The essential idea is to find 
a transformation which reduces the number of independent variables in (2.3) from 
three to two which, at least in principle, simplifies the problem of solution. General- 
ity of solution is lost, but experience suggests that physical solutions are still retained. 
The details of computation of such transformations are presented in Paper I and we 
simply quote the results here. In this paper we consider solution of the reduced 
equation (see Section 1, Paper I) and application of the results. 

a. Frontal solutions of Salmon and Hollerbach 

In this section we recover the main results obtained by SH by choosing diffusivity, K, 

to be uniform and applying a Reduction computed in Paper I; this is extended in the 
following sections. We also demonstrate that the method used here is more general 
than that applied by SH. 

First, recall Reduction 3.2.4, from Paper I, in which the potential, M(x, y, z) is 
given by 

M&Y, z) = G(Y,z) + X[Y*Kz + ~,(Y,z)], (3.la) 

where the unknown functions G(y, z) and I,(y, z) satisfy 

ra(y, 4Gzz + Y(Y*% + L,X,, - Y(Y*‘%z + Th,&z= Y*K%~ (3.lb) 

Y *Kzzra + mkzI - Y4KKmz - Y *a,- + Y [Y *Kubyu + 2Y b&z (3.lc) 

+ ra,rra,yu - 2Y%ra,z - Y2h&,yz - ra,yrra,ul = 0. 

Next, recall that SH chose the diffisivity, K, to be uniform. In this case (3.1) 
simplifies to 

Mx, y, z) = G(Y, 4 + xr,(Y, 4, (3.2a) 

[~J%z + Ycz,zG,, - Yra,zzGyzl = KY *Gzm (3.2b) 

r&,, - KY*r,,- + Y[ra,zra,yz - ra,&d = 0. (3.2~) 

(3.2a) and (3.2b) should be compared with Eqs. (8.1) and (8.5), respectively, in SH. 

The main result of SH can be recovered by making the special choice, 

mY,z) =Y% ‘2 , 
i 1 0 

(3.3) 

where z. is the depth at which w  vanishes. However, this solution has only one 

2. For the purposes of this paper, the reader may consider symmetry reductions to be a special type 
similarity solution. More details are given in Paper I, and details of the method used by SH is given in 
Sections 3 and 4 of their work. 
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arbitrary function and therefore cannot be the general solution of (3.2c), since the 
general solution of an nth order PDE contains n arbitrary functions. Therefore the 
solution of SH corresponds to a special solution of (3.2~) and more general solutions 
do exist, which are recoverable using the method of Clarkson and Kruskal. 

Following SH, we choose a simple solution of (3.2b), which yields the general 
character of the temperature profile. To obtain this, set Gy = 0 and then the solution 
is given by 

(3.4) 

where C, is a constant of integration. In the limit K + 0 SH find 

G, = (z - Z&H@ - za), (3.5) 

where C, is related to Ci and H(s) is the Heaviside step function. This solution may 
be generalized by use of the transformation v1 (see Table 1 and Section 2 of SH) 

yielding 

G, = (2 - zo)@-G - 20) + (2 - ZO)Y(Y), (3.6) 

and consequently using (2.2ii) and (3.6) one obtains 

W7Y~Z) = - (1 _ z”) 52wE (1 - x) + C,H(z - z,J, (3.7a) 

and the corresponding velocity field is 

u=2wE(1-x)(~), “=yw,(%), w=wt(zS). (3.7b) 

The vertical velocity changes sign at the depth z = zo. The temperature and velocity 
fields are illustrated in Figure 1 (reproduced from Fig. 2, SH). 

The temperature profile shows a front at z = z. with vertically uniform values 
above and below. The front separates downwelling warm water in the subtropical 
gyre and the underlying upwelling of cold, deep water. This frontal solution is 
controlled by a local convergence of characteristics, which is discussed further in 
Section 3.b. 

From scale analysis of the temperature field, (3.7) we find: 

2&Y 2 e, = ~ 
1 - zo 

-O(l), oy=-llz -$I -x) - O(l), li&r$= ;’ ;;:Aise 
L (3.8) 

Hence the thermodynamic equation effectively separates into two independent 
balances: a purely vertical balance between advection and diffusion at z = zo, 

We, = Kf&,,, (3.9) 
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x=0 x=1 

Figure 1. Schematic of the frontal solution corresponding to (3.7), reproduced from Salmon 
and Hollerbach (1991). A front (dashed line) separates regions of vertically uniform 
temperature. The vertical velocity (profile at left) is negative throughout the upper layer, 
positive throughout the lower layer, and zero at the bottom. The horizontal velocities 
change sign midway through the lower layer. 

and elsewhere a horizontal, adiabatic balance, 

ue, + vq’ = 0. (3.10) 

Thus streamlines are coincident with isotherms in the horizontal plane. 
The frontal structure leads to warmer fluid to the west and cooler fluid to the east 

in the upper layer, so as to provide the anticyclonic circulation in the subtropical 
gyre. The surface temperature field reflects this underlying frontal variation, as 0, is 
zero away from the front. Consequently the surface temperature field appears 
unrealistic and does not show a polewards decrease (Fig. 1). The implied surface 
heat flux, A? = pC,,~0~,, is exactly zero, since 0, is zero. 

b. Sensitivity to the vertical velocity projile 
SH shows an interior front appearing at the mid-depth at which w  vanishes and 

dwl& < 0. In this section we examine the control of the front by considering 
different choices of awl&z using piece-wise linear vertical velocity profiles. 

We consider the ansatz 

M&Y, 4 = G(Y, 4 + XY~Y(Z), (3.11a) 

where 
, 
w.& - 20) 

Y(Z) = ’ 
1 - 20 - EY ZOlZIl 

%ot(ZO - z) 
(3.11b) 

\ zo 
- E, 0 s z I zo, 

0 5 E -K lwEl andw,,, is the vertical velocity at the bottom of the solution domain. In 
the limit of constant diffusivity, w(z) = y(z) (see (2.2ii)). Figure 2 illustrates the 
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Figure 2. Schematic of the frontal solutions for different velocity boundary conditions: (a) w 
changes sign at z. and (b) the magnitude of w is a minimum at zo. The vertical velocity 
profile, characteristics in the yz-plane and the fIz profile are shown in the left-hand, middle 
and right-hand columns respectively. A front or boundary layer is formed whenever the 
vertical velocity profile leads to a local convergence of characteristics. In each case 1 wE 1 = 
1 WbOt 1 = 1 and z. = 0.5; In case (a) C1 and C2 are chosen such that 0, is continuous at zo. 

vertical velocity profile in the cases wE = - 1, WbOt = 1 with E = 0, and wE = &,t = - 1, 
with E > 0; z. = 0.5 for each. 

The bottom boundary conditions is now altered to w = WbOt at z = 0, although the 
upper boundary condition remains as w = wE atz = 1, and we ensure that the eastern 
condition at x = 1 is satisfied by using the method employed in Section 3.~. We have 
T,(y, z) = y2-y(z) and again (3.2~) is identically satisfied. Hence to ensure that (3.11) 
is a solution of the thermocline equation, (2.3), it remains to satisfy (3.2b). As before, 
we set GY = 0; the general character of the temperature profile is unaffected (see 
Appendix A). (3.2b) becomes 

r(z)Gzz = ~Gzizz, (3.12) 

which represents a vertical balance between advection and diffusion of heat. Hence 
integrating we obtain, 

where C, and C2 are constants of integration. 
SH argues that the position of the internal front is controlled by both the position at 

which w vanishes and the condition aw/az < 0; this second condition implies, from 
linear vorticity balance, that the geostrophic flow is equatorwards in the interior. 
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This control of the front is illustrated by considering these two different profiles in 
vertical velocity. 

Firstly, when there is surface Ekman pumping with upwelling from the bottom 
Ekman layer (Fig. 2a), there is equatorward flow throughout the interior. The 
characteristics map the mean streamlines in theyz-plane and reveal how information 
propagates into the domain from the boundaries. In this case, the characteristics 
emanate from the upper and lower boundaries and converge at the mid-depth z = zo. 
This leads to a front in any passive tracer at z = z. unless either the boundary 
conditions for the tracer are uniform, or diffusion is sufficiently large to smear out the 
feature. The profile in t3, shows the front located at z = z. with 8 elsewhere being 
relatively uniform in the vertical (Fig. 2a). 

Secondly, consider the less realistic case of surface Ekman pumping with down- 
welling in the bottom Ekman layer (Fig. 2b). Again there is equatorward flow 
between the surface and mid-depth z = zo, but now polewards flow from there to the 
seafloor. Consequently, characteristics emanate from the upper boundary and 
converge just above z = zo, which leads to a front in 0 lying just above z = zo. However, 
below z = zo, the characteristics diverge and spread out to the lower boundary. As SH 

argue, this leads to 0 having a boundary layer at the seafloor. The temperature profile 
now is more complex and shows an asymmetrical front lying just above z. together 
with a lower boundary layer at the seafloor (Fig. 2b). These examples illustrate how 
the front is controlled by the local convergence of characteristics and it is not 
necessary to have convergence from both upper and lower boundaries (although this 
later case is more plausible). 

SH show the control of a front in the more realistic case of the wind-stress curl 
varying with latitude with Ekman pumping occurring in a subtropical gyre and 
Ekman suction in a subpolar gyre. The characteristics for this case are reproduced in 
Figure 3, again with them representing the streamlines of the mean flow in a 
meridional section. There is a convergence of characteristics at the mid-depth z. in 

.Z=l 

z = 20 

z=o 
y=o Y = YO y=l 

Figure 3. A north-south section showing the characteristic lines corresponding to a subtropi- 
cal and subpolar gyre solution reproduced from Salmon and Hollerbach, 1991. These 
characteristic lines are streamlines for the velocity field projected onto the yz-plane; the 
arrows indicate the direction of flow. There is a local convergence of characteristics at z = zo 
in the subtropical gyre, whereas a divergence occurs at z = 20 in the subpolar gyre. 
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the subtropical gyre (0 I y < yO), whereas there is a divergence at that depth in the 
subpolar gyre (yO < y < 1). Consequently, the SH solutions show an internal front 
occurring over the subtropical gyre and not over the subpolar gyre, which is broadly 
in accord with observations showing a stronger main thermocline over a subtropical 
gyre. Their solution shows how the frontal character results from the interaction of 
the anticyclonic wind-driven gyre with the underlying thermohaline circulation. 

c. Sensitivity to the difisivityprojile 

The sensitivity of the frontal solution to diffusion is now examined by allowing K to 
vary with depth. The diffusivity is chosen to be 

K(Z) = AZ3 (3.14) 

where A is positive and remains to be set; this form automatically leads to zero heat 
flux on the seafloor (1.6). This choice extends the case considered by SH and, more 
realistically, allows an increase in diffusivity toward the sea surface, while it is still 
analytically tractable. The case is used to analytically prove the existence of a front; 
see Appendix B. 

We use the same reduction as in Section 3.a, i.e., (3.1). Choosing Ta(y,z) to be 
quadratic in z, i.e., 

r,tY? -4 = Y2tY2nz2 + YlaZ + %kA (3.15) 

as before (cf. (3.3)) ensures (3.2~) is identically satisfied, and generalizing (3.la) by 
using v1 again (see (3.5) and (3.6)) we obtain 

M(~>Y,z) = W4 + y2(x + x,t~))[(3A + 7~2)~~ + Y~IZ + ~a& (3.16) 

wherex”(y) is the arbitrary function introduced by vl. 
We now apply our three boundary conditions: w  + 0 as z -+ 0, hence yao = 0; 

w-,WE,asz~l,hencey,,=wE-3A- yaz. Computing u from (2.2i) and (3.16) 
substituting into (2.6) and performing the z integration, our eastern boundary 
condition becomes 

s o1 (YXO,~ + &O(Y) + 2)4 = 0. (3.17) 

We may choose any function,xo(y), which satisfies (3.17). 
Again we set GY = 0. The velocity and temperature fields are now straightforward 

to find from (2.2) and (3.16), and are as follows: 

u = (YXO# + 2x,(Y) + Wt~za + 3A - WE - 2~(3A + yza)), (3.18a) 

V = [w + Y&Z + (WE - 3x - YdY, (3.18b) 

w  = (3A + y&’ + (w, - 3X - y&)z, (3.18~) 

0 = e. + $ G,dz + 2(3X + Y~,)Y*(x + x0(y)). (3.18d) 
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We now address the problem of determining the temperature profile, i.e., of 
computing G, (cf. 3.18d). 

Firstly, to help physical interpretation of the results it is convenient to introduce zo, 
the depth at which the vertical velocity goes to zero. From (3.18~) we find 

With GY = 0 (3.lb) simplifies to 

(2 - ZO)WE 3h 

(1 - ZOY 
- ; G, = XG,, 

which has solution, 

G,(z) = Cl exp , 

(3.19) 

(3.20) 

(3.21) 

where C1 is a constant of integration. The resulting 8 and 0, profiles are shown in 
Figure 4; the plots are nondimensionalized with C1 = 1 - the dimensional value of 
C, depends on the surface and bottom temperatures, i.e., ebot and f)Surf, and is given by 

This integral appears intractable except in the case where ~~lh is an integer. 
The temperature and surface velocity fields corresponding to the choice 

are now discussed. 

yxQ + 2x,(y) = -3cos (Tr[y - 0.111) (3.23) 

Thermocline solutions are shown in Figure 4, for this variable diffusivity case, K = 

AZ”, with three different choices in A. As expected, the t3 profile is relatively smooth 
and continuous for high A, whereas the frontal character reappears for small X 
(compare Fig. 4a and c). This is more clearly shown in the accompanying 61, profile 
and reveals how the maximum gradient is always centered around z = zo. 

These thermocline solutions are compared with those for constant K in which the 
constant value is set to K = A& which is the same value at z = z. as for the previous 
variable cases. The similarity between the f3, profiles in these variable and constant 
cases in Figure 4 suggests that the frontal solutions are controlled by the local value 
of K at z = zo, rather than by the surface value or depth-mean value. Consequently the 
frontal character of these solutions appears robust to these changes in diabatic 
forcing away from the depth z = zo. 

However, the surface 0 field is sensitive to these choices in K, as revealed in Figure 5. 
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(a) high diffusion 

e 

i z 
0 1 

(b) intermediate diffusion 

0 1 

(c) low diffusion 

0 1 

:/‘ p\ E 
0 1 0 1 

0 1 

Figure 4. The 0 and t3, profiles for a depth-varying diffusivity, K(Z) = Az3, are shown in the 
left-hand and middle columns, respectively. The magnitude of the diffusivity decreases from 
(a) to (c), with the following values: (a) A = 1.0, (b) A = 0.1 and (c) A = 0.02. The interior 
front is clearly seen by the mid-depth maximum in O,, occurring at z = zo. The corresponding 
8, profile with the same uniform value of K as in the previous case at z = z. is shown in the 
right-hand column. In each case we have set w s = - 1, z. = 0.5 and, for convenience, Ci = 1; 
although in reality C, depends on A. 

In the low diflksivity case, in Figure 5a, the isotherms and streamlines are nearly 
coincident. In the high dillkivity case, in Figure 5b, there is more cross-isothermal flow 
and the 0 field shows a more plausible polewards decrease. Consequently, while the 
variable K does not appear to alter the frontal character when K(z,J becomes small, 
the near surface values of K do alter the surface temperature fields. The implied 
surface heat flux into the ocean, A? = &,~0~,, is effectively zero in the small K case 
due to the form of 0, (see Fig. 4(c) and the SH case). The surface heat flux increases in 
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Figure 5. Surface streamlines and isotherms (continuous and dashed respectively) for vari- 

able diffusivity, K(Z) = Az3, with (a) a low diffusive value of A = 0.1 and (b) a high diffusive 
value of A = 1.0. The cross-isothermal flow increases in the more diffusive case. Physical 
choices ofx”(y) (from (3.23)) and constant parameters are made with wE + yk + 3X < 0 
and 3h + yh < 0. 

magnitude in the larger K cases and remains spatially uniform due to 0, being 
independent ofx andy in these solutions (see 3.25~). 

One can infer the physical processes controlling the formation of the thermocline 
by determining the relative sizes of the terms in the thermodynamic equation (2.1~): 

Z&i, + Ve, + W@, = (Kt$)Z. (3.24) 

From (3.18d) we find, 

6, = 2(3h + Y~)Y~, (3.25a) 

C$ = 2(3X + yk)y(2x - 3~0s (~[y - O.ll])), (3.25b) 

0, = G,, = Cl.z~dh exp 

Since we have nondimensionalized the Thermocline System, then terms on the 
right-hand side of (3.18a), (3.18b), (3.18~) (3.25a) and (3.25b) are O(l), hence so are 
~6, and I$, the first two terms in (3.24) - one can exclude ‘pathological’ cases of the 
x,(y) for realistic solutions. Determining the size of ~0, is more difficult, since the 
size of 8, depends strongly on the size of h. The analysis in Appendix B shows that if 
A = O(1) then 0, = O(l), whereas as X + 0 then 0, + O(1) at z = zo, i.e., a front is 
formed. 

From these similarity solutions we conclude that there are still frontal solutions 
even with a variable diffusivity profile and that the vertical advection and diffusion of 
heat are always comparable in magnitude, or larger than, the horizontal advection 
terms. 



19961 Hood & Williams: Frontal and Ventilated Models 225 

The potential vorticity balance is given by 

wx + vqy + wz = (K4)m (3.26) 

where q = ye,. As 8, is spatially uniform in the horizontal (cf. 3.25c), then qx is zero 
and (3.26) simplifies to 

vqy + wz = (E?)zz. (3.27) 

This two-dimensional balance is the same as that obtained by SH in the variable 
Ekman pumping case, which is used to plot the characteristics along a meridional 
section in Figure 3.3. 

In the next section we examine the alternative limit in a ventilated model where 
the vertical advection balances horizontal advection, rather than vertical diffusion in 
the interior. 

4. Ventilated solutions 

a. Methodology 

Ventilated models emphasize the role of the surface boundary in setting the 
structure of the underlying thermocline. LPS impose the surface temperature field 
and solve for the underlying stratification using a layered model. In contrast, Salmon 
(1990) casts doubt on the LPS solutions and argues that the surface temperature 
should be solved for, rather than imposed. In this study we wish to obtain ventilated 
solutions using the similarity approach. To make analytical progress we choose the 
limit of moving fluid having uniform potential vorticity, q = yt3, (cf. Marshall and 
Nurser, 1991) which replaces the previous choice of GY = 0 in the frontal solutions in 
Section 3. The diabatic forcing is chosen to be confined to a surface layer overlying an 
adiabatic interior. While these ventilated solutions automatically avoid the frontal 
limit through the choice of q, they do illustrate how a continuous thermocline may be 
formed with appropriate diabatic forcing and boundary conditions. 

We consider a solution which we obtain from Reduction 3.2.1, Paper I. This 
reduction is given by 

yro-l dy + %(y) + Az2, (4.la) 

(4.lb) 

where $(y), yo, yz and Xi remain arbitrary, and G($, z) satisfies 

G,Gm - +)Gzzu - d%zz + ro(G,Gz - GGJ 
(4.lc) 

G, + y2Ge = 0. 
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Note that we have in fact generalized Reduction 3.2.1 slightly by the transformation 
M + M + ,4z*, i.e., v7, (Table 1, SH) where A is an arbitrary constant (cf. the note on 
vl, in Section 3.a, above). Further, we set ~6 = 0 since it plays no physical role. 

Assuming potential vorticity, 4 = yM, (cf. (2.4)), is uniform and substituting 
(4.la) into (2.4) leads to the requirements, 

yo = -1, G(z, t) = Z3G3(E) + Z*G2(5) + G(5) + Go(S). (4.2) 

Given that G([, z) is cubic inz (cf. (4.2)) then from (4.1~) we see that K(Z) is at most 
quartic, i.e., 

K(Z) = k,p + k3z3 + k2z2 + k,z, (4.3) 

where k,, . . . , k4 are to be specified. In the real ocean diffusion varies by several 
orders of magnitude between the surface boundary layer and interior, and (4.3) does 
not admit such variation. Hence we split out solution domain into two regimes (Fig. 3): 
an upper swface bowldaly layer, in which diffusion is given by (4.3), and a deeper ocean 
in&rior in which diffusion is assumed to be negligible and we set K = 0, i.e., 

M(x, Y, 4 = 

ti(x, y, .?), zi 5 Z < 1, K f 0; 

M’(x,y,z), OIz Iz;, K=o. 
(4.4) 

Then substituting (4.2) and (4.3) into (4.1~) and equating coefficients of like 
powers of z yields the system, 

G,, - 4k4 = 0, (4Sa) 

24k,G2 = 18k3G3 - 12y&, + 24k&‘, (4Sb) 

6GlG.k = l2k2G3 - 6A;‘X,G3,t + 2(A,’ - ~2)G2,[, (4.5s) 

GGo,, = W2 - YZ)%S - 2(G1 + X;‘A2)G2,< + 6k,G3. (4.5d) 

Superscripts are omitted here, since the system applies to both the upper and lower 
layers. FOP generic values of the parameters, kI, . . . , kq, yo, A, and AZ, we have an 
exactly-determined system of equations for Go([) . . . G3(1;), so the solution has no 
arbitrary functions with which to match boundary conditions. However, we choose 
nongeneric values, based on our physical prejudices (Fig. 6). 

Ocean interior. In this layer K = 0 (so G = g = g = # = 0) so G: is necessarily 
constant, (4.5b) vanishes, and (4.5~) and (4.5d) become 

2[(A;)-’ - A;]G&, = 0, (4.6a) 

[G: + (A;)-lA;]G;,e + (A; - 2G;)G;,@ = 0, (4.6b) 

respectively. 
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ocean surface 
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z=l 

surface boundary layer K = kLp4 + k3z3 + i&z2 + lc@ 

---------mm------------------ z = xi 

ocean interior KG=0 

z=o 

Figure 6. Schematic showing the assumed diffusion profile: in the surface boundary layer, 
diffusion varies with depth and is significant, while in the ocean interior it is zero 
everywhere. A solution is obtained in each layer and we require that w and 8 match at the 
interface. 

Surface Boundav Layer. If we choose 

e=ig=o, (4.7) 

then Gi is necessarily constant, (4.5b) vanishes and integrating (4.5~) we obtain 

G;(C?) = s;o - 63k2ts 

(W - Y2 

= do + ii&S, ; - y; f 0, (4.8) 1 
where we have introduced i2 which is defined in the obvious way. It remains to obtain 
G;(r) from (4.5d) which becomes 

G; = do + L s I6ksd + P%?) - ~2lG;,~ 
6gs 

-Wf(Es) + (~;)-l~%&I &, 
(4.9) 

where go0 is a constant of integration and G:(e) is determined by surface boundary 
conditions. 

Boundaries and the intetiace. Using (2.2ii) and (4.la), and evaluating at z = 1 we find 
the surface temperature field to be 

8 surf = MUILZl = +j [6& + 2’3%) - $1 + 2AS, (4.10) 
1 



228 Journal of Marine Research 15472 

so G;(c) (which is given by (4.8)) is constrained by t&-the functional form of 
c(x,y) and therefore the choice of 4(y) (cf. 4.lb) is important here-and our 
remaining arbitrary function in the surface boundary layer, Gc(tS), is determined by 
our other surface condition, the Ekman pumping, where 

WE@, Y) = Y-*M,,,=l = G& + G& + G;,, 

(using (2.2i) and (4.la)). 

(4.11) 

At depth, i.e., asz + 0, we assume w  + 0, and since w  + G& then G’, is necessarily 
constant. 

At the interface between the two regimes, i.e., at z = zi, we require that w  and 0 be 
continuous, i.e., 

M,f(x7 Y7 zi) z M.$, Y, &), (4.12) 

j@&, Y, zi) s ML(x, Y, zi)* (4.13) 

The simplest way to satisfy these interface conditions is to choose identical similarity 
variables in each regime; hence 

A; = Ai, NY) = 4+(Y) (4.14) 

and we drop the superscripts on these variables. (4.12), (4.13) together with (4.6), 
then becomes a coupled system of ODES for G:(c) and G:(c). It is an over-determined 
system. However, if we choose 

1 - x,y; = 0, (4.15) 

(4.6a) vanishes; the system is still over-determined, but less strongly. Even though the 
system is over-determined, there is a family of solutions that satisfy the applied 
boundary conditions. 

Finally we consider the eastern boundary condition (cf. (2.6)). This becomes Z=Zt y=l s s z=o y=o u’(x = 1, y, z) dydz + 
z=l 

s s Z=Zi ,‘==o’ z&x = 1, y, z) dydz = 0 (4.16) 

and determines one of the parameters in our solution in terms of the others. 

b. Example of a subtropical gyre 

These similarity solutions are computed for an idealized subtropical gyre with 
uniform Ekman pumping, as well as assuming a simple form for +(y): 

W&Y) = WE0 < 0, (4.17a) 

NY) = A*40Y4, (4.17b) 

where +. is a constant and is to be determined. The derivation of the resulting 
velocity and temperature fields is straightforward and shown in Appendix C. The 
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Table 1. The temperature and velocity fields for the ventilated solutions with uniform Ekman 
pumping over the subtropical gyre (4.17). Variables in the surface boundary layer and 
interior are identified by a superscript S or I respectively. There is no diffusion in the 
interior, so the streamlines and isotherms coincide; hence, we omit the horizontal velocity 
fields in this case. 

0s = 2&y* + &y3) + 2AS + $ (6zgS + 2g& - 7;); 

6’ = & (6g;z + Cl) + 2C&y2 + $oy3) + 2A’ 
1 

us = -(2x + 34l,y){w,, + i,(2 - 1 - 2&)] 

6g; + 2gio - 7; = 0, 

relations for the velocity and temperature fields are shown in Table 1. These 
solutions satisfy our imposed surface and bottom conditions, as well as the require- 
ment that w  is continuous across the interface at z = zi. It remains to ensure that 
temperature is continuous across this interface and that our condition of no net flow 
through the eastern boundary is satisfied. The former condition requires 

t3GgS + %&I - 32i$,) = 2G$& + zi(wE - k2 - Q&A) + W&O7 (4.18) 

and the latter, expressed mathematically by (4.16), simply places another algebraic 
constraint on the various parameters in the system and affects only the details of the 
flow. 

Note that in order to avoid a singularity at the surface asy + 0 we have chosen to 
impose the algebraic constraint 

6& + 2gio - y; = 0. (4.19) 

All temperature contours, t3a = tI(x,, y, z) now tend to a point immediately below the 
surface. 
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Finally, it is simple to ensure the continuity of the pressure field over the interface 
by choosing the free parameters in the model appropriately, for exampleAS andA’. 

c. Temperature field and thermodynamic balances 

Surface and interior temperature field. The surface temperature field is obtained by 
setting z = 1 in the expression for OS in Table 1, 

0 surf = &kY2 + $oY3) + 2AS, (4.20) 

and imposing the conditions 

R, < 0, $0 >O? (4.21) 

means that surface temperature decreases both northward and eastward. Further, 
the potential vorticity is piecewise constant within each layer and by definition is 
positive 

d qs = 6 c > 0, d 
1 

q’ = 6 x, > 0. (4.22) 

The components of Vf3 in the seasonal boundary layer and interior are given by 

0,” = 2&y2, 0; = ti,(2xy + 3+,y2) - 6 (62gS + 2gio), 0,” = ET (4.234 
1 1 

0; = 2czy2, 0; = 2C2GW + 3+ov2) - $ (t&z + Cd, 
1 

0; = E, (4.23b) 

where C1 and C2 are constants defined in Table 1. Scale analysis of the thermody- 
namic equation shows that all the terms from (4.23) are relevant in the surface 
boundary layer, 

Cd, + Vt$, + We, = (K$),, (4.24) 

whereas there is a balance between the horizontal and vertical advective terms in the 
adiabatic interior, 

ue, + v8, + we, = 0. (4.25) 

These thermodynamic balances are broadly in accord with those used in ventilation 
models (although the 0, term is zero in a mixed layer). They are in contrast to those of 
SH, where vertical advection balances vertical diffusion at the front (3.9) and 
elsewhere there is a horizontal, adiabatic flow (3.10). 

d. Discussion of result 

The structure of the thermocline is shown as a meridional section across the 
subtropical gyre in Figure 7. The thermocline is automatically continuous through 
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z=l 

z = .q 
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Figure 7. North-South section of the temperature field corresponding to the similarity 
solutions given in Table 1 for a subtropical gyre with uniform Ekman pumping. There is a 
diabatically forced surface boundary layer (above thin dashed line at zi), which overlies an 
adiabatic interior. Fluid is subducted from the surface boundary layer and forms a 
ventilated thermocline (above thick dashed line), which overlies moving fluid in an 
unventilated thermocline. 

the choice of uniform potential vorticity. The diabatically forced flow is confined to 
the surface boundary layer above z = z, and there is adiabatic flow below in the 
interior. The potential vorticity is chosen to have a higher value in the interior, than 
the surface boundary layer, which leads to the change in slope of the isotherms across 
the interface Zi. Conservation of potential vorticity along streamlines within the 
adiabatic interior leads to the equatorwards reduction in the spacing between 13 
surfaces. This meridional structure is similar to that obtained by Welander (1971), 
although the singularity at the equator is probably an unphysical consequence of 
assuming uniform Ekman pumping and potential vorticity. The adiabatic thermo- 
cline is separated into a ventilated regime, where fluid is subducted from the surface 
boundary layer into the interior, and an unventilated regime, where fluid is insulated 
from the diabatic forcing within the subtropical gyre; this separation also occurs in 
the extension of the LPS model by Huang (1988). 

The resulting surface 8 distribution appears more realistic in this ventilated limit, 
than in the previous cases (compare Figure 1 with 8a). There is now a poleward 
decrease in surface temperature throughout the subtropical gyre with a strong 
cross-isothermal flow (Fig. 8). The implied surface heat flux into the ocean, A? = 
pCp~flz, is inversely proportional toy and is independent ofx (see form of 8, in (4.23) 
and Fig. 8b). The heat flux drives both the cross-isothermal geostrophic flow and the 
vertical downwelling of heat. This supply of heat originates from the atmosphere or 
the horizontal convergence of the Ekman heat flux, as there is an implied Ekman 
layer overlying the model domain. 

These similarity solutions broadly capture the dynamical balances emphasized in 
ventilation models, even though the flow and 8 distributions are solved for, rather 
than imposed (albeit with uniform 4). Consequently, ventilated solutions appear to 
be relatively robust to whether a layered or similarity approach is applied. 

In practice, it is unrealistic to expect the surface boundary conditions to con- 
veniently supply uniform potential vorticity into the interior of the subtropical gyre, 
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Figure 8. (a) A plan view of the surface steamlines and isotherms (continuous and dashed 
lines respectively) corresponding to the ventilated solutions given in Table 1. (b) The 
meridional variation of the implied surface heat flux directed into the ocean. The heat flux 
increases equatorward and is independent of x (the exact value can be tuned in the 
solutions). 

although, this limit can easily occur for some 8 surfaces using mixed-layer boundary 
conditions from the end of winter (see Williams, 1991). Therefore, we would expect a 
more realistic model to provide a range in the value of potential vorticity subducted 
into the interior, which would modify the structure of the ventilated thermocline. 

5. Discussion and conclusions 

The ubiquitous feature of the main thermocline in the ocean has stimulated an 
extensive debate with different models invoking advective or diffusive balances in the 
thermodynamic equation. In particular, Salmon and Hollerbach (SH) suggest that the 
thermocline is an interior front in the subtropical gyre in the limit of vanishing 
diffusivity, whereas Luyten et al. (LPS) argue that the thermocline is controlled by 
advection sweeping the surface temperature field into the ocean interior. Reconcil- 
ing these explanations has been made more difficult through each study employing 
different model formulations and making different physical assumptions. 

In this study, a similarity approach is used to solve for the entire velocity and 
temperature field in an idealized subtropical gyre away from the lateral boundaries. 
The diabatic forcing is chosen to be represented simply by a vertical diffusion of heat 
with the diffusivity varying with depth. Our main results are discussed here in terms 
of solutions broadly corresponding with the SH and LPS limits together with interme- 
diate cases. 

In the SH limit, an interior front appears over the subtropical gyre as the vertical 
diffusivity becomes vanishingly small. The front occurs at mid-depth where w  
changes sign and separates an upper regime of downwelling, warm fluid from a lower 
regime of upwelling, cool fluid. Consequently, the front is due to the interaction of an 
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anticyclonic gyre and the underlying thermohaline circulation. The resulting surface 
temperature field appears though unrealistic with isotherms coincident with stream- 
lines and the implied surface heat flux is exactly zero. 

The frontal solutions are found to be relatively robust to our changes in the vertical 
velocity and vertical diffusivity. The front is formed through a local convergence of 
characteristics occurring where w  -+ 0 and awl&z < 0 in the limit of small diffusivity, 
K. Modifying the vertical diffusivity profile elsewhere is found not to significantly alter 
the frontal solution. However, a surface increase in K and corresponding increase in 
implied surface heat flux leads to more plausible surface fields with streamlines 
crossing isotherms, rather than being constrained to be coincident. It is unclear 
though whether these frontal solutions are still sensitive to a different parameteriza- 
tion of diabatic forcing, such as one representing the stirring by geostrophic eddies 
(Rhines and Young, 1982; Gent et al., 1995). 

In the contrasting ventilation limit, the same similarity approach is applied, but the 
diffusivity is chosen now to be large in a surface layer and zero in the underlying 
interior; this choice crudely represents how the diabatic forcing is observed to be 
concentrated at the surface. As in LPS and other ventilation models, the deep waters 
are crucially assumed to be motionless. The similarity solutions show that a continu- 
ous thermocline is formed through the circulation sweeping the surface temperature 
field into the interior. This ventilated thermocline is not restricted to the diabatically- 
forced surface layer and does not have a frontal character. There is now a more 
realistic surface temperature field with a polewards decrease in temperature, than in 
the SH case. In the underlying interior, there is adiabatic flow with a balance between 
horizontal and vertical advection of heat. Consequently, this similarity solution has 
similar dynamical balances to that in LPS, which suggests that the ventilated solutions 
are robust to different model formulations and in how the surface boundary 
condition is applied. 

In conclusion, the contrasting ventilated and frontal solutions differ because of the 
physical processes represented, rather than due to their exact formulation. The 
ventilated thermocline is formed by the advection of the surface temperature field 
into the interior of the subtropical gyre. The frontal solution is instead formed by the 
vertical convergence of warm and cold water resulting from the interaction of a 
subtropical gyre and the thermohaline circulation. Both of these solutions might be 
relevant to the real ocean, although we have been unable simultaneously to combine 
them in our study. Recently, Samelson and Vallis (1996a, b) have numerically 
integrated a modified thermocline equation set with Rayleigh friction and tempera- 
ture diffusion included. They show the formation of two thermoclines within a 
subtropical gyre, which might correspond to these ventilated and frontal limits. 
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APPENDIX A 
In this section we substantiate the claim that setting GY = 0 does not change the 

general character of the velocity or temperature fields (cf. Sections 3.a and 3.b). To 
do this we assume 

raty, 4 = f (YMZ), (A.li) 

WY, 4 = d~)utz), (A.lii) 

where f (y>, dyh Y( 1 z an u z are to be determined. From (3.2~) it immediately d ( ) 
follows that f(y) = fOy2, where fO is constant and then to avoid obtaining an 
over-determined system of ODES for y(z) and a(z), from (3.2b) we find g(y) = g#, 
where bothga and n are constant. Assuming y(z) is given by (3.11b) a(z) satisfies 

[(WE - %ot)Z + %&o’=zzz + gent% - “‘tmtbu = Kuzzm (A.4 

which is solvable in terms of parabolic-cylinder (Weber-Hermite) functions 
(Abramowitz and Stegun, 1972, Section 19) viz., 

u(z) = Cl9a, exp 
I 
t [(WE - %ot)Z2 + %,t4 + c292, 

I 
(A.31 

where C, and C2 are constants of integration, and 9 r and L? 2 are known polynomials 
in z. In the limit in which K -+ 0 the exponential part of the first term on the r.h.s. of 
(A.3) dominates and we have recovered (3.13). 

APPENDIX B 
In this section we show that the maximum value of t3,, z E (0, l), for the 

intermediate frontal case (cf. Section 3.c, Eq. 3.25~) is small if diffusion is significant, 
and becomes unbounded as diffusion becomes vanishingly small. That is to say, 
mathematically speaking, we show that A = O(1) =. 0, = O(1) and X + 0 =. 0, Z+ 
O(1) at z = zo. To do this we require items (i)-(v), below, each of which are 
straightforward to show: 

(9 

lii {G,) = 0, VA. (B-1) 

(ii) Nearz = 1, 

0, = Cl exp (8)[1 + (g - 8)(z - 1)) + O((z - l)“), (B-2) 

where 

8 
8= 

y’& + 3x - WE 
zo=-, 

9 P.3) 
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(iii) Near z = zo, 

ez=Cl g exp(W l+282 (“iy [ c(z-~i’)+O((z-~i’i, (J3.4) 

(iv) G, has a single local extremum, at z = z. say, and two points of inflexion. For 
physical solutions the extremum should be maximum in the interval z E (0, 1). Hence 
we require 

c* > 0, 0 < 
y& + 3x - WE 

< 1. 
%a P.5) 

s 0 
’ Gzz dz = ‘&urf - ebot, P.6) 

which is independent of A. 
That A = O(1) * 0, = O(1) follows immediately from (i), (ii), (iii) and (iv). To see 

that A + 0 * 8, Z+ O(l), it is enough to note the following corollaries to (ii) and 
(iii): if 8 < 0 (and therefore from (B.5) ~3 < 0), then 

and near z = zo, G, approximates a parabola, which narrows as A decreases in 
magnitude. (The conditions 8 < 0 and (B.5) are necessary for physical solutions.) 
In other words, we have a graph, under which is a constant area, both ends of which 
go to zero, which does have the shape indicated by Figure 4, and the maximum is 
narrowing. Hence the maximum must increase as A + 0. We have therefore shown 
that G(0,) increases without bound as A -+ 0 - a front forms! (Our “proof’ is not as 
straightforward as we would like! It would be enought to show that limx -* o (C1(A)f3,(z0; 
A)} = ~0, but as we have mentioned, the computation of Cl(A) appears intractable. 
One can show that limb +. {tZlZ(zo)/t3,( 1) ) = 03, p rovided yti In z. + wE > 0, but this 
shows only that O,(zo) remains finite.) 

APPENDIX C 
In this section we derive the results quoted in the example considered in Section 4. 

Recall that we consider a simple case in which we have constant Ekman pumping and 
have chosen a particular, simple form for +(y) (cf. (4.lb) and (4.17b)). We compute 
G,(c), G,(c) and Gz(e) for the surface boundary layer and the ocean interior, in turn: 

Surface Boundary Layer 

It is convenient to introduce 

H(S) = G;(E) + G&) + G;(S), (C-1) 
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then 

wE = G& + G& + G& = H5, 

and integrating we obtain 

H(S) = ~~05 + ho 

and eliminating G:(t) in favor of H(t) in (4.9) we find 

ki -r; + 2G;(W& - 2G;,&%S) = k 
where i, is defined by 

& = c&o - YWEO - 12,) -2i2(X,1X; + ho -gio), 

which is trivially integrable to obtain 

cc.3 

(C-3) 

(C.4i) 

(C4ii) 

G&t) = [f&i - r; + 2G;(E)lt$o - $- 3 
2 

(C.5) 

where &, is a constant of integration. 
We have now completely determined out solution in the Seasonal Thermocline. 

Collecting results we find, 

W&Y, 4 = w-‘k $” + z2G;(0 + z’%(5) + G%J 
(C.6a) 

where 

1 - $A; f 0, Iz, f 0, 

G;(t) is given by (4.8) and is related to f&r by (4.10), G:(k) by (C.5) and 

(C.6b) 

G;(S) = (WEO - /i2 - 2&,)5 -g&(6& - y; + 2do) + ho - ggo + $- . (C.7) 
2 

Ocean Interior 

To satisfy the condition on w  at the interface (cf. (4.12)) we require 

~fG;g + ZiGfc + Gi,c = ZIG& + ZiGi,< 

and integrating this and (4.6b) we obtain, respectively, 

ZIG; + ZiGf + Gi = z,?G~ + ZiG{ + &, 

G: = d,W;(5) - r:> - 2 7 

W-9 

(C.9a) 

(C.9b) 
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where y&, and &, are constants of integration. Eqs. (C.9) are an exactly-determined 
algebraic system for G:(c) and G:(E), and have solution 

G;(S) = 
F’S(E) + 8’, 
Z&i + 2g:,> ’ 

G’(c) = 2g’o(gss(5) + ‘) _ r’(g’ + ), ) 
1 

Z&i + &do) 
2 10 29 

(C.lOa) 

(C.lOb) 

where 

.Fs = $G;(Q + z,G;(Q + G;(E), (C.lOi) 

(We assume that Zi + 2gj, # 0 as the singular case does not yield physical solutions.) 
To ensure that 8 is continuous across the interface (cf. 4.13) we require 

(3Z& + 2& - 3Z&) = 2(Z,2g& + Zi(W, - rZ2 - &Liz) + 2&&. ((IT.ll) 

Finally we consider the eastern boundary condition (cf. (2.6)). This becomes 

f=; &’ u’(x = LY, z) dydz + j-;.l&l 12(x = 1, y, z) dydz = o (c.12) 
1 

and determines one of the parameters in our solution in terms of the others. 
We have now completely determined our solution in the Main Thermocline; 

collecting results we find 

M’(x,y, z) = (hly)-1[$3~3 + z2Gi(Q + zG:(Q + $0 + [hi - !&z]z} + A’z’, (C.13a) 

where 

Zi f 0, Zi + 2g:O f 0, (C.13b) 

and G{(E) and G:(t) are given by (C.10). 
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