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New similarity solutions of the thermocline equations with 
vertical variations of diffusion 

by Simon Hood’ 

ABSTRACT 
Three new classes of exact solution of the thermocline equations are obtained through use 

of an ansatz based method (Clarkson and Kruskal, 1989), which is related to the older 
Classical Lie Group Method used by Salmon and Hollerbach (1991) to obtain exact solutions. 
The newer method has not previously been applied to oceanographic problems. Our results 
are more general than those of Salmon and Hollerbach in two distinct ways: we obtain new 
classes of solution not obtainable by the older method and, in addition, we determine solutions 
in which the vertical temperature diffusion profile is an arbitrary function of depth. Applica- 
tion of the solutions to understand the control of the main thermocline is considered in a 
companion paper. 

1. Introduction 

In this paper we look for new classes of exact, analytic solutions of the thermocline 

equations (e.g. Pedlosky, 1986, Section 6.21). The paper builds on work done by 

Salmon and Hollerbach (1991) (here after referred to as SH). To determine such 

solutions we make use of symmetry reductions-which for the purposes of this paper 

are considered to be a special kind of similatity reduction,2 which we obtain by means 

of the Direct Method (Clarkson and Kruskal, 1989). 

1. Oceanography Laboratories, Department of Earth Sciences, University of Liverpool, Liverpool, 
United Kingdom, L69 3BX. 

2. There is some ambiguity in the literature regarding exactly what is meant by a similarity reduction or 
solution. For the purposes of this paper we consider a similarity solution (here these are obtained by first 
finding similarity reductions) of a PDE to be one obtained by aption’ assuming a specific form of solution. 
The method used here makes use of the symmetries of a differential equation and we suppose 
symmetry-based solutions are a special type of similarity solution. 
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Our results are more general than those obtained by SH for two distinct reasons. 
First, using the Direct Method we find new classes of solutions which cannot be 
found using the method used by SH. Second, SH assumed diffisuion, K, to be spatially 
uniform, while we consider reductions and solutions in which diffusion varies with 
depth, i.e., K = K(Z). We compute solutions in such a way that the diffusion profile 
may be prescribed a posteriori. 

This paper is the first of two: here we concentrate on determining symmetry 
reductions of the thermocline equations, while in the second (Hood and Williams, 
1996, hereafter ‘Paper II’) we consider how the associated solutions relate to the 
thermocline; velocity, pressure and temperature fields are computed, and boundary 
conditions imposed. These boundary conditions are satisified by placing conditions 
on arbitrary functions found in reductions determined here. 

2. Background 

The thermocline equations consist of the geostrophic and hydrostatic balances, 
continuity and a thermodynamic equation, and in nondimensional form are, 

(2.li) 

(2.lii) 

(2.liii) 

where u, v and w are the velocity components, + is pressure and 0 is temperature. 
These equations are used to model gyre-scale ocean flow and investigate the 
dominant process or processes which are responsible for the ubiquitous temperature 
profile found in many of the world’s oceans-the so called thermocline problem. (A 
detailed description of the thermocline problem is given by Pedlosky, 1986 (Section 
6.21) and 1987; see also Paper II). 

The model assumes steady motion, and inertial, friction and horizontal tempera- 
ture diffusion are neglected. As such it is assumed to be an adequate description of 
time-averaged, large-scale ocean circulation away from boundaries. Small-scale 
motion and surface forcing are parameterized here by K(Z). Clearly this is a crude 
parameterization, but it will allow us to examine the effect on solutions of the 
diffusion profile. No doubt more realistic choices for the r.h.s. of (2.liii) would give 
further behavior. 

a. Early work 

Several authors have considered exact, analytic solutions of the thermocline 
equations, including Robinson and Stommel (1959) Needler (1967), Welander 
(1959, 1971) and Killworth (1987). A review of the early work is given by Veronis 
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(1969). Robinson and Stommel consider a diffusive ocean and look for solutions 
recoverable from the similarity transformation Z = a”, 8 = ~~~+l@), w = x%@), 
where f, 6 and ti are new variables. Welander (1959) considers the purely advective 
case and derives an equation similar to (2.2) and then looks for solutions to this 
equation of the form M(x,y,z) = P&y)Q(y, z ), w h ere P&y) and Q(y,z) are functions 
to be determined. It turns out that Q(yz) simplifies so that Welander’s solutions are 
of the form M(x,y,z) = M&y)exp(z). Needler (1967) also considers the purely 
advective case. A significant weakness of all these solutions is that they assume the 
same vertical structure throughout the domain of solution. 

Welander (1971) takes a different approach. He again considers the purely 
advective limit (i.e., K = 0 and the flow is adiabatic) and shows that in this case 
potential vorticity, q, density, p and the Bernoulli functional, B, must be functionally 
related, i.e., q = F(pJI), where F is to be determined. This represents a first integral 
of the thermocline equations. Solutions of the form q = F(ap + bB + c), where a, b 
and c are constants, are sought. As with the solutions of Robinson and Stommel, 
Welander (1959) and Needler (1967), problems exist with matching of realistic 
boundary conditions. Killworth (1987) obtains three exact solutions of the thermo- 
cline equations, again in the advective limit, by making use of Welander’s functional 
relationship between q, p and B. These solutions are a significant advance over those 
mentioned above since density and Ekman pumping can be chosen as “fairly 
arbitrary” functions at the surface. 

The results of the work mentioned above illustrate two limiting cases: firstly, an 
advective case (K = 0) in which the effects of diffusion are assumed negligible and the 
thermocline is supposed to be an advective phenomenon, and secondly, the diffusive 
limit, in which upwelling of cold water balances downward diffusion of heat. Salmon 
and Hollerbach (1991) use an approach based on symmetry reductions of the 
thermocline equations in which one is not required to make strong assumptions a 
ptioti about the form of solution (cf. Welander, 1959 or Needler, 1967), nor is it 
necessary to choose between a purely advective or a strongly diffusive limit. In 
addition, solutions contain arbitrary functions and constants which can be used to 
match realistic boundary conditions. We use an approach similar to, though more 
general than, that used by SH. 

b. Previous work-Salmon and Hollerbach 

We outline the pertinent methodology and results from Salmon and Hollerbach 
(1991): 

In the case when K is a constant, the thermocline system (2.1) may be written with 
no loss of generality as 



190 

where 

Journal of Marine Research [54,2 

1 1 1 
u=--MYz v=-M, w=TM, 

Y Y Y 
(2.3i) 

+=M, 0=M,. (2.3ii) 

Salmon and Hollerbach (1991) reformulated the thermocline system in this way and 
used the Classical Lie Group Method (see below) to compute symmetries of the 
thermocline equation (2.2) and hence find transformations which reduce (2.2) to a 
partial differential equation (PDE) in just two independent variables. Sixteen such 
reductions were found. Simple solutions of the reduced equations were considered 
for some reductions and the associated velocity, pressure and temperature fields 
found using (2.3). (We explain the terms in italics below.) 

Two reductions are of particular interest; these are 

M&Y, 4 = NY) + =P(Y) + G(Y, 4, (2.4) 

M(x, Y, 4 = NY) + =“P(Y> + G(Y, 4, (2.5) 

that is, similarity forms Sr2 and S13-in the notation of SH, respectively. Based on 
these similarity forms, SH considered solutions of the form 

WE(Y) + WY, z), 

where G(y, z) satisfies 

WE(Y) T [(z’ - z,,z) G”’ + y(2z - z,)G; - 2yG;l = KGI~, 

we(y) = o(y)/y2 and W(y) = -p(y)/y2. By finding solutions to (2.6ii), exact 
analytical solutions of (2.2) were found and these solutions suggest that the thermo- 
cline is a front. This idea is supported by separate numerical experiments by Salmon 
(1990). 

c. The approach-Symmetly reductions 

Finding the general solution of the Thermocline System (2.1) is impossible, at least 
with current techniques, so we look for physically significant special solutions. A 
method which often proves useful for this is that of symmetry reductions. We contend 
that such reductions and their associated solutions are important. First, one can infer 
information about the physical system represented by the PDE, using such solutions. 
SH do this when they argue that the thermocline is a front. Second, the solutions may 
be directly used: for example, Cates, 1990 and Cates and Crighton, 1990, examine 
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such solutions for ocean acoustics. In addition, general solutions of PDEs often 
asymptote to symmetry solutions. 

Before going any further, we provide the unfamiliar reader with some background 
regarding symmetries of PDEs. Consider the general fourth order PDE in three 
independent variables, 

A&Y, z, M, M,, My, . . . > M,) = 0. 

Applying the transformation 

(2.7) 

i=,F(x,y,z,M), )?=j(x,y,z,M), f=e(x,y,z,M), k=A?(x,y,z,M), (2.8) 

to (2.7) yields 

L&&y, 2, ii, Ii&, A$, . . . ) ii-) = 0. P-9) 

If (2.7) and (2.9) are identical then (2.8) is a symmetry of the differential equation 
(2.7) which is invariant under that transformation. If the symmetry is a group and 
depends continuously on a single parameter, E say, then it may be used to reduce the 
number of independent variables in any PDE invariant under the transformation; 
the transformation is referred to as a one-parameter Lie group. It is often the case that 
the resulting reduced equation will be easier to solve than the original, whether 
analytically or numerically. 

Note that the general solution of the reduced equation does not yield the general 
solution of the original-in general applying symmetry reductions enables one to find 
only special solutions of PDEs; general boundary conditions cannot be met. Never- 
theless, it is often the case that sufficiently general boundary conditions for physical 
significance may be satisfied. 

The question remains, how to determine such transformations and how to use 
them? The standard method is usually referred to as the Classical Lie Group Method, 
which is based on a group-theoretic approach and this is the method used by SH to 
obtain their results. A good outline of the method is given in Section 3 of their work 
and we do not repeat the description here. In addition, Hill (1992) provides an 
excellent practical introduction to the subject. (Another accessible introduction by 
Stephani (1990) and Olver (1992) reviews the entire subject of exact solutions of 
nonlinear partial differential equations; many further references are given in the 
latter.) 

The Classical Lie Group Method does not in general find all point symmetries- 
and consequently reductions-of a given PDE. Certainly it does not for the thermo- 
cline equations and so we use a more general method, the so called Direct Method to 
compute new families of solution. This method is based on an alternative ansatz- 
based approach, where one makes an informed “guess” for a general form of 
reduction. 
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d. Generalization ofprevious work 

We build on the results of Salmon and Hollerbach in two distinct ways. First, by 
use of the Direct Method for finding symmetry reductions, which is ansatz based, i.e., 
one assumes a general form of reduction and proceeds to find conditions on that 
form from the given PDE. (The method is outlined in Section 3.) Second, by 
considering reductions in which diffusion varies with depth. The computations by SH 
are under the simplifying assumption that diffusion is spatially uniform, i.e., K is 
constant. In the computation of symmetry reductions of the thermocline equations 
this is neither necessary nor desirable: diffusion is not spatially uniform in the ocean, 
but rather it is larger nearer the surface or at boundaries. We address this point more 
fully in our second paper. 

In accord with this, we look for reductions of the thermocline equations in which 
diffusion is an arbitrary function of z, so that we may prescribe the diffusion profile a 
posterion’. With K = K(Z) then the thermocline equation becomes 

M&L+), PLMJzz - MyzjKzzI - Y2(‘++“fzzz), = 0 (2.10) 

(cf. (2.2) which h as a simpler final term). 
The remaining sections of this paper are organized as follows: in Section 3 the 

method used to determine solutions of the thermocline equations is introduced and 
then in Section 4 calculations and results are presented; finally, in Section 5 we 
compare our results to those of Salmon and Hollerbach, and include some discussion 
on the role of similarity solutions in physical oceanography. Note that much of 
Sections 3 and 4 is mathematical, so the reader whose interest lies more in the results 
than the method may care to skim these. (The results are summarized in Table 1.) 

3. The Direct Method 

We describe the fundamental features of the method here, although, as it is not 
fully algorithmic, it is best understood by considering the examples in the next 
section. A detailed description of the method is given by Clarkson and Kruskal, 1989. 

Given a partial differential equation in the three independent variables X, y and z 
(cf. 2.10) then inspired by the reductions which one can obtain by means of the 
Classical Lie Method one seeks a reduction to a PDE in just two independent 
variables in the form, 

M&Y, 4 = W,Y, 2, G(l;(x,~,~), ~XGY,-~)), (3.1) 

where the functions F(x, y, z, G), 6(x, y, z) and 5(x, y, z) are to be determined. This is 
the most general transformation which is not implicit, i.e., F and G are independent 
of M. In fact it is usually sufficient to consider 

M(x>Y>~ = P(~,Y,~)G(S(X,Y,~, W,Y)) + 4x,y,4, (3.2) 

which is a considerable simplification (and it is often straightforward to prove this). 
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First, M is now linear in the new dependent variable, G(<, 5) and second, only one of 
the new independent variables depends on all of the old independent variables. If it 
is not sufficient to consider (3.2) then this usually indicates that the given PDE can be 
written in a simpler form by a suitable transformation. One can also consider 
transformations which reduce the given PDE directly to an ordinary differential 
equation by supposing 

M&Y,-+ = f’(~,y,z, G(S(x,y,z))), (3.3) 

where, W,Y, ~0, G(t) and S(X,Y, > z are to be determined. As before, it is usually 
the case that F is linear in G, i.e., 

M(~,YJ) = P(x,y,4G(5) + ~x,Y,z). (3.4) 

Assuming that the linear ansatze are sufficient, the fundamental idea is to 
substitute (3.2) or (3.4) into the given PDE and require that the result be a differential 
equation in fewer independent variables. Thus the ratios of different products and 
powers of G and its derivatives must be functions of 5 and 5 only. This condition 
yields an over-determined, nonlinear system of determining equations for OL(X, y, z), 
p(x, y, z) and the new independent variable(s). 

It is convenient to make use of three freedoms in the ansatz (3.2) to make the 
method productive. Since (3.2) is linear in G(& 1;) then we may translate and rescale 
G(& 5) as convenient: 

Freedom (i): Given that c&y, z) has the form, (Y(x, y, z) = CX~(X, y, z) + 
P&Y, z)fi(t, t;), th en we may take CI(e, 5) = 0 by the translation 
G(S, 1;) + (35, 5) - W, 5). 

Freedom (ii): Given that P(x, t) has the form, p(x,y,z) = &,(x,y,z)fi(& C), 
then we may take Ln(& 5) = 1, by the resealing G(& 5) -+ G(.$, [)/ 
WEd 9. 

We may also redefine 5: 

Freedom (iii): Given that e&y, z) is given by an equation of the form, 
WE, 5) = SO(X,Y, -4, w h ere a($) is assumed to be an invertible 
function, then we may take 5 = to@, y, z) by transforming 6 -+ 
&l(t). We have of course the same freedom in 5. 

Each of Freedoms (i)-(iii) may be used once with no loss of generality. 
The Direct Method is very different from that due to Lie in both theory and 

practice. We mentioned above that the Direct Method is more general; equally 
important is the method’s flexibility: for the full ansatz, (3.1), the complexity of the 
thermocline equation, (2.10), yields a determining system which (at least presently) 
appears intractable (recall that it is nonlinear). However, we may choose to consider 
simplified ansatze and therefore a simpler determining system. In this way we are 
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able to find new reductions and corresponding exact solutions. In addition, the sheer 
quantity of algebra involved in obtaining and solving the determining system is an 
order of magnitude less than that necessary for Lie’s method-while the use of 
computer algebra systems for group-theoretic methods is a virtual necessity, it is not 
for this method. 

4. Application of the Direct Method to the thermocline equation 
We do not attempt to compute the full set of reductions of the thermocline 

equation, (2.10) obtainable by the Direct Method here (the full problem appears 
intractable). Instead we consider three simplified anstitze, each of which leads to a 
new class of reductions. These in turn lead to new solutions which we believe are 
physically significant. 

First we consider a simplified form of ansatz (3.4) in which we set p = 1, i.e., 

M&y,4 = G(S(x,y,z)) + @,Y,z), 

where G(5), S(X,Y, 4 and ~GY, > z are to be determined. The analysis in this case is 
tractable and while these reductions do not admit an arbitrary diffusion profile, they 
do illustrate how the Direct Method is more general than that due to Lie. We obtain 
a set of solutions which may not be found by using the Classical Lie Method. 

Secondly, we are particularly interested in reductions in which diffusion remains 
an arbitrary function of z. To admit such an arbitrary function, one of the “new” 
independent variables must be z itself. We therefore consider reductions obtainable 
from the two ansatze 

M(x,Y,z) = %Y)G(S(~,Y),Z) + ~x,Y,z), 

M(x,Y>z) = I%YYW + ~x,Y,z), 

where the functions p&y), G([, z) (or G(Z)), t&y) and o~(x,y, z) once more remain 
to be determined. 

Unless otherwise stated, the following notation is used: Ii, i = 1, 2 . . . , are 
functions of the given argument, which are obtained upon derivation of the determin- 
ing equations for a reduction, and are to be determined; often such functions are 
polynomial in 5 and we write I?,(c) = yia + yiic + . . . ; if the function is constant we 
write simply yi; Xi, i = 1, 2. . . , are constants introduced during computation of 
reductions, for example constants of integration, or upon separation of variables. 
Partial derivatives are denoted by subscripts; we reserve primes, f’, to indicate 
differentiation with respect to z, a/az. 

a. Reductions admitting only uniform difision: M = G(t) + cx(x, y, z) 

In this section we consider a class of reductions which lead to solutions in which 
the diffusion is uniform. These serve to show that the set of reductions obtained by 
SH is incomplete and to illustrate the power of the Direct Method. 
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Substituting (4.1) into (2.2) we find 
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(4.4) 

First order partial derivatives of 5 with respect to both x and z occur in (4.4); partial 
derivatives with respect to y occur only in mixed derivatives. This leads to the 
existence of four distinct cases to consider: (i), EXE, f 0, (ii), 5, = 0 with 5, f 0, (iii), 
& f 0 with S;* = 0 and (iv) & = cZ = 0. Since the main thrust of this paper is to 
compute reductions which admit an arbitrary dithrsion profile, we consider only Case 
(i) (the most interesting) here. 

Normalizing the coefficients of GIG”’ and (G”)2 against that of G’“, respectively, 
we find 

YW&) = 2Y(U, - E&,)7 (4.5a) 

Y25,2WS) = 5x5, +Yazsy - c&z). (4.5b) 

Adding (4.5a) to twice (4Sb) yields 

Y2W)z - c&x = 0, (4.6i) 

where 

w = vitrm + wm). (4.6ii) 

Note that I f 0 since, by assumption, 5, f 0 in this case. Integrating (4.6) we obtain 
the general solution 

z + 9m) = er;), (4.7) 

where .9 (5) is a function of integration and is to be determined. 
We note that from (4.7) it is readily deduced that 

26 = Y-$7 (4.8a) 

xtz = YQ (4.8b) 

and then from (4.7), after making use of (4.8) and using (4.5) that I, = 0 and I, = I. 
In order to determine t(x, y, z) it remains to consider the coefficients of G’G” and 
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(G’)*; the remaining coefficients yield an over-determined system for o(x,y,z). 
Normalizing the coefficient of G’G” against that of G’G” and using (4.8) we find 

axi) = 5227 (4.9) 

then integrating with respect to z, exponentiating and integrating again we obtain 

(4.10) 

where e&y) and c$(x, y) are functions of integration, to be determined. Next, 
applying Freedom (iii) we may write 

E&Y, t) = ‘w,Y) + 4&Y), (4.11) 

without loss of generality and consequently F, = 0 (cf. 4.9). Using (4.8b) it is easy to 
see that the coefficient of (G’)* vanishes. 

Finally, we return to (4.6): since & is linear in z and & is independent of z (cf. 
(4.11)), then it is clear that 

W) + YOlE + Yoo = 0, (4.12) 

and using this result in (4.7) we find 

F(C) = Al6 + ho; (4.13) 

hence eliminating .$ in favor of z in (4.7), using (4.11) and equating coefficients of like 
powers of z yields 

x,0 = 1 - ~o$y*e, (4.14a) 

AI+ + Lo = -XY*(YOI~ + YOO), (4.14b) 

from which it is straightforward to obtain 0(x, y) and +(x, y). 

Reduction 4.a.I. We have therefore computed the complete set of reductions for the 
case E,[, f 0 and these are given by 

Mtx, Y, 4 = G(5) + 4x, Y, 4, (4.15a) 

(4.15b) 

where OL(X, y, z) satisfies the system of PDEs, 

(1) 

(11) 

(III) 

(IV) 
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and G (5) satisfies 

KG’” + (yo& + yoo)G’G”’ - I?,(~)G”’ - r*(()G” - I’,(QG’ - r4(tJ = 0. (4.16) 

Notice that (III) is afirst order linear PDE for G; if G = 0 then (III) vanishes and (II) 
is a first order linear PDE for s. Hence there are three cases to consider: (a), % = 0, 
(b), (x linear inz and (c), cu, f 0. (Notice also that in the case yol = yoo = 0 (4.16) is a 
linear ODE.) Hence Reduction 4.a.l is in fact a set of reductions and gives rise to 
many solutions of the thermocline equations, (2.1). Each of these solutions is new, so 
we have illustrated that the set of reductions obtained by SH is incomplete. Recall 
that these solutions are for uniform diffusion, the case considered by SH-that extra 
solutions are found is attributable solely to the method used. Note also that Cases 
(ii), (iii) and (iv) will yield yet more new solutions. 

b. Reductions admitting on arbitrary difision profile, I 
In this section we consider the first of our two ansatze which yield reductions 

admitting an arbitrary diffusion profile, namely (4.2). 
Substituting (4.2) into the thermocline equation (2.10) we find 

-Y*PK(z)G’” + PP,GG”’ + f32&GcG”’ 

+ F(G;G”, G’G;, G,G”, GG,“, G,G’, GG,‘, GG”, GG,, GG’, G*, (4.17) 

G;‘, G;, G,, G”‘, G”, G’, G; a, p, e, K) = 0, 

where 5 is a known function which depends linearly on its arguments, G i G”, . . . , G, 
and on the derivatives of its parameters, (Y, . . . , K. We begin by comparing the 
coefficients of Gn’, GG”’ and G,G”‘. It turns out that & f 0 =. px = 0, so there are 
three cases to consider: I;, f 0, 5, = 0 with px f 0 and & = 0 with px = 0. 

Case I: 5, f 0. Normalizing the coefficients of G,G”’ and GG”’ in (4.17) against that 
of GIv we obtain 

PS, = us, w, (4.18a) 

P, = w, 4~2, (4.18b) 

and we may set I, = 1 without loss of generality through Freedom (ii); hence 
differentiating (4.18a) with respect tox yields px.& + PS, = 0, and if px f 0 we may 
eliminate px between this result and (4.18b) yielding 

k + rb(l;,z)& = 0. x 
Further, since 5 is independent of z then I,, = 0; hence, integrating (4.19) with 
respect tox twice we obtain I J v ” e*P ra(EddS2 1 dt, =x0(~) + 4(y), 
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where 0(y) and +(y) are functions of integration, to be determined, and using 
Freedom (iii) we may write 

EhY) = X0(Y) + 4(Y), 

without loss of generality; consequently p(y) = y*8-l(y), i.e., pX = PI = 0. 
Collecting results (4.17) becomes 

(4.21) 

y40-‘[GSG”’ - K(z)GI”] + Y~(~~O-~)~{GQG” - G’G;} + y2B-‘(% - Y*K’)G”’ 

+ y3e-l[(xey + 4y)~: - a;O]G; +y3e-1[a;e - (xe, + 49&‘]G; 

+ yg(y*O-‘),G” + y*cx’“G, - ya:((y20-‘),G’ 
(4.22) 

+ CT.$dnz + y[C$C$ - tX;ol;r] - y*K(Z)d” - y*K’d’ = 0. 

Normalizing the coefficient of GiG” and G’G[ against that of G,G”’ and G’” we 
obtain 2 - y0-%, = I?,(& z), and since the 1.h.s. is independent of bothx andz then To 
must be constant; hence we trivially integrate to obtain B(y) = hIy2-Y0, where Al is 
the nonzero constant of integration and consequently p(y) = h;‘yvo. 

Next, normalizing the coefficient of w”’ in the same way we find cl, - Y*K’ = 

I(.$ z)y2 and integrating with respect tox we obtain 

+,Y,Z) = ~ilYyO~r&,Z)dh +?Y*K’ + %(Y,Z), (4.23i) 

= j-%kz)dh + K’E I 
y24K’ - 7 + %(Y,Z), (4.23ii) 

where %(y, z) is a function of integration, to be determined. We may set the term in 
braces equal to zero through Freedom (i); hence cr, = 0, i.e., dropping the subscript- 
zero and absorbing the second term in (4.23ii) into the third, (x = o(y,z). Conse- 
quently (4.22) simplifies further and it is now straightforward to find the most general 
form of ol(y, z) for which we obtain a reduction to a PDE in G(& z). We obtain the 
following set of reductions: 

Reduction 4. b. 1. 

M(x,y,z) = A;‘yYOG(S,z) + cz (‘** 2 - Ez) JyvO-ldy + 06(y), (&Ma) 

5 = x*xy*-~o + 4(Y), (4.24b) 

where o,,(y), 4(y) and y. remain arbitrary, and G(& z) satisfies 

G,G”’ - K(z)G’” - K’G”’ + yo(G,‘G” - G’G,“) + G,” + y2Gg’ = 0. 

(4.25) 
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Reduction 4.b.l represents a second set of reductions not obtainable by the Classical 
Lie Method and hence not obtained by SH, and hence a second set of new solutions. 

Case 2: 5, = 0. Since & = 0 we may set 5 = y without loss of generality (cf. Freedom 
(iii)), i.e., we assume solutions of the form 

Wx>y>z) = P(x,Y)‘~Y,z) + ~x,YJ). (4.26) 

Substituting (4.26) into (2.10) we find 

- y2~@)f3G’” + Pf3,(GG”’ + yG’G;’ - yG;G”} + yqf3G;’ 

+ (C&J - y2~‘p)Gn’ - ycx;pG; + (a; pY - c~;~~)yG” + (cx;px - a;@)yG’ (4.27) 

+ cx”‘&G + CL~(Y’” + y[a; a; - a;~$] - y2K’dN - y2KdV = 0. 

There are two sub-cases to consider: (a), pX = 0 and (b), pX = 0 (cf. the coefficient of 
the terms in braces): 

Case 2a: pX f 0. Normalizing the first term in (4.27) against the terms in braces we 
find pX = T,(y) (ri = 0 necessarily as p’ = 0) and integrating with respect to x we 
obtain 

PCGY) = XratY) + PO(Y), (4.28) 

where PO(y) is a function of integration, to be determined. We may write p = r&x + 
PO), or p = po(xtO + l), where PO and f?a are defined in the obvious way; hence we 
may set exactly one of the functions ofy in the r.h.s. of (4.28) equal to 1 without loss 
of generality (cf. Freedom (i)), i.e., there are two further cases to consider: 

Case (i): /? = x + PO(y). Normalizing the coefficient of G’” we find cu, - y2K’ = Tb(y, z) 

and integrating with repect tox we obtain 

a(xyY~~) =x[Y2K’ + rdYJ)l + %(Y,z), (4.29) 

where o,,(y, z) is a function of integration, to be determined. We may use Freedom 
(i) to set rb(y, z) = -y2 K’, i.e., oX = 0 without loss of generality: translating c~( y, z) -+ 

%(Y~Z) - Po(Y)(Y2 K’ + rbty, z)) we may write 

~GY, Z) = 6 + PotYw(Y, 2) - Y2K’ - rbtY7 z)] + %(Y, Z>, 

and the result follows immediately. 

(4.30) 

Collecting results, i.e., pX = 1 and cxX = 0 and then (4.27) simplifies further, and 
normalizing the remaining coefficients and equating coefficients of like powers of x it 
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is now straightforward to obtain the following reduction: 

Reduction 4. b. 2. 

WX,Y,Z) = tx + Po(Y>MY>z) + Q2 + hz + W,(Y), (4.31a) 

where o&y), PO(y), X1 and A2 remain arbitrary, and G(y, z) satisfies 

GG”’ -y2KG'" +y[G'G; - G;G"] -y&'G"' = 0. (4.31b) 

Case (ii): /3 = x&(y) + 1. As for Case (i), normalizing the coefficient of G”’ we obtain 
(4.29); hence, translating c~(y, z) + c~(y, z) - r;‘(y)[y2~’ + Ib(y, z)] we may write 

M&Y, Z> = (XrdY) + wtY,Z) - wY)[Y2K’ + rb(Y,Z)i] + %(Y,Z) (4.32) 

so again it follows that we may set Ib(y,z) = -y2~, i.e., cl, = 0, without loss of 
generality through Freedom (i). Once more, normalizing the remaining coefficients 
and equating coefficients of like powers of x it is straightforward to complete the 
calculation. We obtain the following reduction: 

Reduction 4. b. 3. 

MtX,Y,z) = w,(Y) + i)G(Y,z) + A$ + hz + 060(Y), 
where o&y), I,(y), A1 and A2 remain arbitrary, and G(y, z) satisfies 

(4.33a) 

r,(y){GG”’ +y[G’G; - GiG”]] - Y’K’G”’ - Y~KG’” = 0. (4.33b) 

Case 2b: /Ix = 0. In this case &. = pZ = 0, i.e., l3 = p(y); hence resealing G(y,z) (cf. 
Freedom (ii)) we may set l3 = 1 without loss of generality. So (4.27) becomes 

-y2~G1” + (ax - Y’K’)G”’ + yq’GJ - y&‘G; 

+ CX&dn + )@;a;” - CX;Ct;] - y2K’d’ - y2KcY’” = 0. 

(4.34) 

Normalizing the coefficient of G”’ against that of Giv we find cu, - y2K’ = T,(y, z); 

hence integrating with respect tax we obtain 

+Y Z> = X[Y2K’ + racy, Z)] + %tY, Z>, (4.35) 

where c~(y, z) is a function of integration, to be determined. Translating G(y, z) + 
G(y, z) - c~(y, z) (cf. Freedom (i)) we may set cxa = 0 without loss of generality. 

Given (4.35) the coefficients of G’I, and G; are functions ofy and z only; hence it 
remains to consider just the terms not involving G in (4.34). Normalizing against the 
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other coefficients, using (4.35) (with % = 0) and equating coefficients of like powers 
of x we find 

y2K’“ro + r&F- y4KKv - J”Krfi” 

(4.36) 

which determines I,(y, z). 

Reduction 4.b.4. We have obtained the set of reductions given by 

M(x,Y,z) = G(Y,z) + x[Y2K’ + r,(YJ)i, 

where G( y, z) satisfies 

(4.37a) 

--Y~KG’” + r,( y, Z)G”’ + y(y2K” + r’,)G; - y(y2K”’ + r;)G; 0, (4.37b) 

and I,(y, z) is determined by (4.36). 
Reductions 4.b.2, 4.b.3 and 4.b.4 are not obtainable by using the Classical Lie 

Method except in special cases. In fact, the reductions used by SH to explore the 
structure of the thermocline (cf. Sections 6, 7 and 8, Salmon and Hollerbach, 1991) 
are special cases of Reduction 4.b.4. 

c. Reductions admitting an arbitrary difikon profile, II 

In this section we consider the second of our two ansatze which yield reductions 
admitting an arbitrary diffusion profile, namely (4.3), i.e., we assume 

M(x,Y,z) = P(~,Y)W + +,Y,z). (4.38) 

None of the reductions and corresponding solutions of the thermocline system, (2.1) 
were found by SH. Recall that Salmon and Hollerbach computed only reductions 
from an equation in three independent variables, (2.2), to an equation in two 
independent variables. Reductions to an equation in just one independent variable, 
i.e., and ordinary differential equation, were not considered. 

Substituting (4.38) and (2.10) we find 

P&GG”’ - Y~~K(z)G’” + p(q - JJ~K’)G”’ 

+ y(c@, - a,&)G” + y(cQ, - g&)G’ + cx”‘PxG (4.39) 

+ Cd&X”’ + y(&$ - Cd,@,!) - y2K’du - y2K(Z)dv = 0. 

From the coefficient of GG”‘, we see that there are two distinct cases to consider: (1) 
pX = 0 and (2) pX f 0. (From the first two terms in (4.39) it is obvious that setting pY 
= 0 - & = 0 and we then have a special case of (l).) 



202 Journal of Marine Research [54,2 

Case I: px = 0. Normalizing against the coeffiecent of Gi”, we obtain the following 
system of determining equations: 

-J”r,(Z) = CY.. - y2K’, (1) 

-YW&) = 4&o (11) 

YW3W = o%P,? (III) 

-y2pr4(Z) = Ct&!d” + y(cX&$ - a&X;) - y2K’CY” - J’2K(Z)dV, (IV 

and G(t) satisfies 

K(z)G’” + r&)G” + r&)G” + r&G’ + r&Z) = 0. (4.40) 

There are two sub-cases to consider: (a), & = 0 and (b), & f 0 (cf. (II) and (III)). 

Case la: 4 = 0. In this case we may set p = 1 without loss of generality (cf. Freedom 
(ii)); r2 = r3 = 0, and (II) and (III) vanish. Integrating (I) with respect tox we obtain 

+,Y, Z> = nY2tK’ + h(Z)) + %tY, z), (4.41) 

where c~(y, z) is a function of integration, to be determined. 
It remains to consider (IV). Substituting (4.41) into (IV) and equating coefficients 

of like powers of x yields the equations 

(KI” + ry)rl - (K” i- r;“)K = 0, (4.42) 

(K’ i- r&p y[(K” + r;)d,, - (Ku’ + r’;)&,} - Kb;- K(Z)G” = 0. (4.43) 

The former is an ODE for Ii(z), given K(Z) and the latter is a linear PDE for c~,,(y, z), 
given K(Z) and rItzI. 

Reduction 4.c.l. Solution of (4.42) and (4.43) for Ii(z) and o&z), respectively, 
yields a set of reductions where 

Mtx,Y, 2) = G(Z) + xY2tK’ + w) + %tY, Z), (4.44) 

and 

K(Z)@” + r,(z)G”’ = 0, (4.45) 

which is a first order linear ODE for G’“. 

Case Ib: 6 z 0. We may set I2 = 1 through Freedom (ii); hence differentiating (I) 
through with respect to z and eliminating cr, between the result and (II) we find 
-p =Y&,(K” - r ) ‘i ; separating variables yields 

K” - r; = xl, -P = hYP,> (4.46) 
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and integrating we obtain 

r,(Z) = K’ - A,z - AZ, P(y) = &y-l’*‘. (4.47) 

Differentiating (I) with respect to z twice and eliminating CX~ between the result and 
(1II)wefind 

pr&) = Y&(K”’ - r;), (4.48) 

and using (4.46) we see that the r.h.s. is zero; hence the equation vanishes and I3 = 0. 
Next, using (4.47) in (I) we findy2(A1z + A,) = o.. and integrating with respect to x 

we obtain 

c&Y, z) = v2(4z + A,) + %(Y, 4, (4.49) 

where c~(y, z) is a function of integration, to be determined. 
It remains to consider (IV). We may set I, = 0 without loss of generality through 

freedom of translation in G. Then substituting (4.49) into (IV) we find 

(h,z + A,&“+ Aiyc$, - (K(Z)C$)’ = 0, (4.50) 

which is a second order linear PDE for 4. We have obtained the following set of 
reductions: 

Reduction 4. c. 2. 

W~,Y,Z) = A,Y -l’*lG(z) + xy2(A1z + A,) + c~(y, z), 

where %(y, z) is determined by (4.50) and G(Z) satisfies 

K(z)@~ + (K(Z) - Aiz - A,)G”’ + G” = 0, 

which is a second order linear ODE in G”; K(Z) remains arbitrary. 

(4.51) 

(4.52) 

Case 2: & f 0. Normalizing against the coefficient of wi”, then from (4.39) we obtain 
the following system of determining equations: 

-Yw) = P,, (1) 

-y2r2(Z) = ax - y2K’, (11) 

-y2pr3(Z) = dyx, (III) 
-Ymdz) = 4~~ - 4~~~ (IV) 
-Ypw) = a;h - 4~~~ (VI 

-y2pr6(Z) = (yxd + y(&$ - $4) - y2K’d - y2K(2)dV, (VI) 
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and G(c) satisfies 

K(z)G’” + r&)GG” + r,(z)G”’ + r&C? + I’,(z)G’ + rj(z)G + r,(z) = 0. (4.53) 

Since p, = 0 then Ii is necessarily constant; we are free to rescale G(Z) (cf. 
Freedom (ii)) and so we may set Ii = 1 without loss of generality. Hence integrating 
(I) with respect tox we obtain 

PCGY) = PO(Y) - -KY29 

where p,,(y) is a function of integration, which remains arbitrary. 
Next, integrating (II) with respect tox we obtain 

(4.54) 

+, Y, Z> = %(Y, Z) + xY2tK’ - r2(Z)), (4.55) 

where %(y, z) is a function of integration, to be determined. We may use Freedom 
(i) to set cxX = 0, i.e., I2 = K’, without loss of generality: translating c~(y, z) + cyo(y, z) 
- po(y)(r2(Z) - K’) We Inay Write 

w&Y7 Z) = (PO(Y) - xY2)w) + r2(Z) - K’> + %(Y, Z), (4.56) 

and the results follows immediately. 
Substituting (4.54) and (4.55), with I2 = K’, into (III) and equating coefficients of 

like powers ofx we find I3 = 0 and consequently (Y[= 0. Hence, integrating we obtain 

%W) = %2(Yk2 + %l(Y)Z + %(Y)T (4.57) 

where o,,*(y), o,,i(y) and %a(~) are functions of integration, to be determined. 
It remains to consider (IV), (V) and (VI). Collecting results, then from (IV) we 

find I4 = 0 and consequently ~zcQ,~, + %ly = 0. We deduce that cyo2y = cvoly = 0 and it 
is then straightforward to show that (V) and (VI) yield only Is = I6 = 0. We have 
computed one more reduction: 

Reduction 4. c. 3. 

M&Y> -4 = (PO(Y) - v2)W> + Q2 + LIZ + %(Y), (4.58) 

where PO(Y) and O~O(Y) remain arbitrary; K(Z) also remains arbitrary and G(z) 
satisfies 

K(z)G’” + GG”’ = 0. (4.59) 

5. Discussion 

In this section we compare our results to those of Salmon and Hollerbach; the 
results are summarized in Table 1, for convenience. We also include some general 
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Table 1. Summary of results from Section 3. All parameters or functions are arbitrary unless 
indicated otherwise. Reduction 4.a.l is for uniform diffusion, all others admit an arbitraty 
diffusion profile. The reduction used by SH to yield frontal solutions is a special case of 
Reduction 4.b.4. 

Reduction Transformation and Reduced Equation 

4.a.l 

4.b.l 

4.b.2 

4.b.3 

4.b.4 

4.c.l 

4.c.2 

4.c.3 

M = G(t) + 4~ Y, 4, 5= 
Z-yo&V2-h, 

Yo1xy2 + Al 

KG’” + (& + y&G’G” - T,(t)G”’ - ~,(@I7 - r,(()G’ - r,(t) = 0 

M= h;‘yv”G((,z) + (ez2 - $z) j-y”-‘dy + q,(y) 

5 = App~O + 4(y) 

G,G” - K(z)G’” - K’G”’ + y,,(GiG” - G’G;? + 
hz -z 

( 1 
- G;+y2Gi=0 

Al 

M = (x + Po(Y))G(Y, 4 + Q2 + 4~ + W(Y) 
GC”’ - y2KG’” - K’G”’ + y(G’G;‘- G;G”) = 0 

M = (.%(Y) + l)G(~,z) f A$’ + AIZ + %(Y) 
ra(y){GG”’ - G’,;,- G;G”] -yzK'Gll) -yzK'G'" = 0 

M = G(Y, Z) + x[Y’K’ + r,(Y, Z)] 
r,(y, z)G” - y2Kg’” + y(y’K” + r;)G;‘- y(y’K”’ -I- $)G; = o 

M = G(Z) +-KY’@ + h(Z)) + %(Y, 2) 

K(Z)@” + r,(z)G”’ = 0 

(cyo(y, z) satisfies (4.43).) 

M = A,y-“AIG(z) + xy2(AIz + A,) + a&y, z) 

K(z)G’” + (K(Z) - A,z - A2)G”’ + G” = 0 
(~(y, 2) satisfies (4.50).) 

M = (PO(Y) - xu2YW + Q2 + AIZ + %(Y) 
K(z)G’” + GG” = 0 

discussion of the role of similarity solutions in physical oceanography and speculate 
on some future work. 

a. Comparison with the results of Salmon and Hollerbach 

Salmon and Hollerbach (1991) use the Classical Lie Method to obtain a class of 
symmetries of the partial differential equation, (2.2), which with no loss of generality 
represents the thermocline system, (2.1), and hence determine special, exact solu- 
tions to this system. Their results include a similarity form discovered by Young and 
Ierley (1986) which is itself a generalization of one given by Robinson and Welander 
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(1963). We have generalized these results further and the results are summarized in 
Table 1. Firstly, we have used a more general method, the so called Direct Method, 
due to Clarkson and Kruskal(l989). As a demonstration of the power of the method, 
in Section 4.a we determined a new, large class of reductions of (2.2), viz. Reduction 
4.a.l. These are for the case considered by SH, in which diffusion is spatially uniform. 
The reductions are to an ordinaly differential equation and in the case y. = 0 this 
ODE is linear, so the general solution is easily determined. Secondly we have 
considered classes of reductions to both partial and ordinary differential equations 
where diffusion is required to be an arbitrary function of z. SH considered only 
solutions in which diffusion is spatially uniform. Reduction 4.b.4 contains the 
similarity forms used by SH to infer a frontal structure of the thermocline (cf. 
Sections 6, 7 and 8, Salmon and Hollerbach, 1991) as special cases. In fact this 
reduction remains more general than that obtained by SH even after setting K’ = 0, 
i.e, assuming K is uniform. The other reductions in Section 4.b, namely 4.b.1, 4.b.2 
and 4.b.3, are completely new, as are those in Section 4.~. 

In the companion paper (Paper II) we impose various diffusion and vertical 
velocity profiles which are consistent with Reduction 4.b.4 in order to carry out a set 
of analytic experiments. By this means we investigate the process of front formation 
in the density/temperature field when vertical diffusion is small. This investigation 
follows directly from that of SH. We also construct a ventilated model, by using 
Reduction 4.b.1, in which a diffusive surface layer overlies an adiabatic interior. The 
remaining reductions and their associated solutions are left for future analysis. 

b. The rde of similarity solutions in physical oceanography 

We outlined previous work which obtained exact solutions of the thermocline 
equations in Section 2. Recently, with the exception of the work by Salmon and 
Hollerbach, a change of direction, away from the use of similarity solutions, seems to 
have taken place, led by the layered work of Luyten et al. (1983). However, it seems 
too early to dismiss the similarity approach as a useful method in physical oceanogra- 
phy. Pedlosky (1986, 1987) discusses similarity solutions to the thermocline equa- 
tions found by Robinson and Stommel(1959), Needler (1967) and Welander (1971). 
His criticisms of these solutions are firstly, that the vertical structure of the solution is 
the same everywhere (as in the work of Robinson and Stommel, and of Welander); 
secondly, that the same form of solution is required to hold throughout the entire 
domain of flow, and also that physical understanding has not advanced very far as a 
result of using similarity solutions, in particular that similarity solutions do not allow 
us to ask the kind of physical questions we would like to. Our solutions address these 
criticisms. First, we do not make the assumption that the vertical structure is the 
same everywhere-indeed we explicitly use the fact that it is expected not to be by 
requiring that the diffusion, K(Z), remains arbitrary in our reductions. Secondly, there 
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is no reason why a similarity solution must have the same form throughout the ocean. 
As a simple example, consider Reduction 4.b.l: one can envisage, say, two different 
solutions, M, and Mb, in which < = hi#*-~~ + I+,(Y) and 5 = Xibxy2-ym + &,(y), 
respectively, holding in distinct parts of the ocean-the solution may evolve continu- 
ously from one to the other. Finally, we have explicitly constructed the method so 
that we can ask the kind of physical questions we would like to, namely, what effect 
do different diffusion profiles have on the thermocline (see Paper II)? In fact the 
strength of the similarity approach lies in this: one obtains local solutions and uses 
them to examine the physical processes in such a locality-there is no reason why a 
solution should be valid throughout the ocean in order to obtain useful information 
from it. 

Some remarks on the boundary conditions that solutions found from our reduc- 
tions can satisfy is in order. The method used here to determine solutions of the 
thermocline equations does not take account of boundary conditions in the usual 
way. Rather one hopes that at least one of the many solutions found will satisfy those 
conditions deemed necessary. In multidimensional problems, such as this, it is 
unlikely that solutions of this nature can satisfy the full set of conditions that one 
would wish to apply. However, if one wishes to investigate a particular physical 
process, rather than determine a global solution, then this need not be important. 

c. Symmetries and conserved quantities 

Finally, we speculate on some ideas for future analysis of the reductions deter- 
mined here. The last 25 years have seen something of a renaissance in the study of 
special solutions, symmetries and conservation laws of differential equations and we 
might fruitfully apply these ideas. 

It is possible to recover the symmetries of the thermocline equation, (2.10), to 
which the new solutions correspond and perhaps the conserved quantity associated 
with each. In addition, one might recover the conserved quantities associated with 
the solutions found by SH. We speculate that these quantities may have physical 
significance-recall that “conservation of potential vorticity” is a consequence of a 
symmetry of the governing equations (see Salmon, 1988, Section 4 and references 
contained therein)-and be useful in modeling. Salmon (1983, 1985), White (1987) 
and Ames et al. (1992) have all considered such ideas and their work indicates that 
symmetries can play a useful role in solving real problems. It is therefore reasonable 
to suppose that the conserved quantities of Eq. (2.10) can also play a fruitful role in 
the investigation of the properties of its solutions. Indeed, preliminary results from 
the author’s current work on conserved quantities indicate that this is so. 
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