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Analysis of the barotropic model of the subtropical gyre 
in the ocean for finite Reynolds numbers. Part II. 

by V. A. Sheremet’-*, V. M. Kamenkovich1,3 and A. R. Pastushkov’ 

ABSTRACT 
This paper is a continuation of Part I of the suggested study of the barotropic model of the 

subtropical gyre for finite Reynolds numbers. The statement of the problem, the motivation of 
the analysis, and the description of the general properties of the solution are presented in Part 
I (Kamenkovich et af., 1995). Here, in Part II of the study, the detailed investigations of the 
peculiarities of the solution are offered. The most striking feature of the solution is the 
formation of a recirculation gyre in the northwest corner of the basin. To study the gyre 
structure for various Reynolds numbers the time-averaged fields of the stream function, and 
that of the relative and potential vorticity are thoroughly examined. The role of the eddies, 
appeared within the boundary layer, in the transfer of positive vorticity from the west coast is 
clarified. The analysis of the energy characteristics of the system is presented and the vorticity 
balance both integral and regional (within a closed streamline) is elucidated. Finally, the 
consistent discussion of the process of the formation of the recirculation gyre for different 
Reynolds numbers is suggested. 

1. Introduction 

This is Part II of the presented analysis of the barotropic model of the subtropical 
gyre for finite Reynolds numbers R. The statement of the problem and motivation for 
its investigation was given in Part I of the analysis (Kamenkovich et al., 1995; 
hereafter will be called KSPB) and will not be repeated here. In KSPB the general 
properties of the solution of the problem and the dependence of the solution on the 
value of the Reynolds number are described. The basic result of such a study is the 
proof of existence of two critical values of the Reynolds number Rc and RL 
(RC = 0.38, RL = 1.6). Some evidence was presented that the steady boundary-layer- 
type solution of the problem is unstable for Rc < R < RL and does not exist at all for 
R > R,.. It was shown also that for finite R the permanent intensive recirculation gyre 
is formed. Two regimes in the evolution of the solution were identified: the spin-up 
and quasistationary regimes. During the quasistationary regime the periodic appear- 
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Figure 1. The isoline patterns of time-averaged stream function T for several Reynolds 
numbers: R = 0.1; 0.4; 0.5; 0.8; 1; 1.5; 2; 3. For R < Rc = 0.38 the time averaged solutions 
are almost exactly the steady solutions. The contour interval, CI = 0.1 for R = 0.1 - 1; CI = 
0.2 for R = 1.5; 2; 3. 

ante of the northward moving eddies in the boundary layer was observed. The 
detailed analysis of the structure of these peculiarities of the solution and physical 
mechanisms responsible for their formation is highly needed to better understand 
the dynamics of the western boundary current. Such analysis is presented in this 
paper. In Section 2 the time-averaged fields of the stream function, of relative and 
potential vorticity are thoroughly examined. In Section 3 the characteristics of eddies 
in the western boundary current are discussed. The energy and vorticity balance is 
studied in Sections 4 and 5 respectively. Finally, Section 6 is devoted to the analysis of 
the formation of the recirculation gyre. 

For the explanation of all notations used in the paper see Part I of the study 
(KSPB). The description of the finite-difference scheme and numerical experiments 
to validate the model are given in the Appendix of KSPB. 

2. The analysis of the time-averaged fields 
The most remarkable feature of the problem is the formation of a recirculation 

gyre in the northwest corner of the basin. Figure 1 shows the time-averaged 
streamline patterns for several Reynolds numbers R = 0.1, 0.4,0.5,0.8, 1, 1.5, 2, 3. 
For small R the pattern of circulation is very close to that given by the Munk solution 
(Munk, 1950). However, the effect of nonlinear terms breaks the symmetry relative 
toy = 0.5, so that the maximum of the stream function is displaced to the north 
(R = 0.1). When the Reynolds number approaches 0.4, the role of advection of the 
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relative vorticity is increased. This leads to the formation of the separate gyre in the 
northwest corner of the basin. The size of the gyre is of the order of O(E), the width 
of the boundary current. 

We know from the experiments with larger E (than specified in this study) that for 
the same R the solutions are more stable, and the recirculation gyre has a tendency of 
increasing its size with increasing Reynolds number while E is fixed (Kamenkovich et 
al., 1985). However, when R exceeds R c, the solution becomes unstable and the 
eddies appear in the boundary current. These eddies generate Reynolds stresses that 
change somewhat the balance of terms in the momentum equations. As a result some 
broadening of the northern part of the averaged boundary current appears (Fig. 1, 
R = 0.5, 0.8) at y = 0.7 - 0.8. The eddies also enhance the flux of positive vorticity 
from the western wall to the interior part of the boundary current; therefore less 
amount of negative vorticity is transported to the north. As a result the size of the 
recirculation gyre is greatly reduced. In fact, for the Reynolds number R = 0.8 the 
local maximum of the stream function, corresponding to the recirculation gyre, is 
even less than that for R = 0.4. At the same time the local maximum of $ in the 
western boundary current neary = 0.7 - 0.8 caused by the Reynolds stresses is very 
prominent for R = 0.8. 

A different regime appears when R exceeds the second critical value RL = 1.6. At 
such R the steady solution of the boundary layer type ceases to exist at all. The 
time-dependent solution can no longer be treated as a departure (even not small) 
from the steady solution. Alternatively, the time-averaged solution should be consid- 
ered as a reference. It appears also that the eddies in the western boundary layer 
have limited efficiency in enhancing the flux of vorticity from the western wall. As the 
Reynolds number approaches RL this eddy flux of vorticity saturates. Therefore, for 
R > RL nothing can stop the growth of the recirculation gyre for increasing Reynolds 
number, and the recirculation gyre becomes especially noticeable; the size of the gyre 
and characteristic velocities of circulating particles substantially increase (Fig. 1, 
R = 2,3). 

The appearance of the recirculation gyre leads to the intensification of the 
countercurrent located within the boundary layer to the east of the main north-going 
boundary current. This is clearly seen in the profiles of the meridional velocity V 
(Fig. 2, R = 1,3). In the southern part of the basin (y < 0.5) the profile of V is well 
described by the theory of an inertial-viscous boundary layer (Kamenkovich, 1966). 
For R = 3 the splitting of the current into inertial part, with exponential velocity 
profile V(X) N exp (--x/e), and a viscous sublayer of width E/@ is easily seen. The 
countercurrent exists in the northern part of the basin (y > 0.5) only; it is weak near 
y = 0.5, but its intensity increases neary = 0.7 - 0.8. Correspondingly the maximum 
value of the meridional velocity in the main part of the boundary current does not 
decrease immediately after y exceeds 0.5. Remember that in the open ocean the 
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Figure 2. The profiles of the meridional velocity V(x) in the western boundary layer aty = 0.1; 
0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.95 for R = 1 and R = 3. The scale for V for all graphs 
remains the same; 0.1 units ofy corresponds to 50 units of V. 

velocity is O(1) whereas in the boundary layer the meridional velocity is 0(1/e). 
Therefore along every line y = const the meridional velocity decays when one moves 
off the coast. 

We now introduce the total transport of the boundary current 

Q(Y) = r%y) h (1) 

where the integral is taken from the western coast (x = 0) toxa, the first zero of V(x), 
x0 f 0. Figure 3 shows the graphs Q = Q(y) for several R. For such a definition of Q 
the Munk solution (R -=z 1) gives QMUnk(y) = (1 + exp (-IT/&)) sin ny = 1.16 
sin ny, which slightly exceeds the Sverdrup transport QsV(y) = sin q. However, for 
R = 0.1, when the nonlinear terms are small, the total transport fory < 0.5 is still 
close to the Sverdrup transport, QsV(y). When R increases a new maximum of Q 
appears near y = 1, QRG, due to the formation of the recirculation gyre. With the 
appearance of eddies in the western boundary current for R > Rc the Reynolds 
stresses result in some increase of the averaged stream function and accordingly 
Q(y) near y = 0.7 - 0.8 (Fig. 3, R = 1). In the interval of Reynolds numbers Rc 
< R < RL the maximum due to Reynolds stresses dominates the maximum QRG due 
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Y 
Figure 3. The total transport of the western boundary current Q as a function of latitudey for 

several values of R = 0.1; 0.5; 1; 2; 3. The solid line corresponds to R = 1; the dashed lines 
correspond to R = 0.5; 2; the dot-dashed lines correspond to R = 0.1; 3. The curves for R = 
2; 3 have prominent maxima near y = 1 due to the formation of recirculation gyre. The 
dotted line shows the Sverdrup transport, QsV = sin ny. 

to the recirculation gyre, but as the Reynolds number exceeds RL the recirculation 
gyre becomes very prominent (Fig. 3, R = 2, 3). For R = 3 the maximum QRc is 
substantially larger than the maximum Sverdrup transport at y = 0.5. Note that, 
according to observations, the ratio of these maxima Q&Q,(O.5) is approximately 
equal to 3 (Ierley, 1990). We stress that Q(y) is close to Q&y) for all R wheny < 0.5. 

One’s first impression is that the total transport of the recirculation gyre QRG 
should increase monotonically with increasing R. However, as we have already 
mentioned, the eddies in the western boundary current produce the Reynolds 
stresses that significantly influence the size of the recirculation gyre. Thus, a 
complicated behavior of QRG(R) (Fig. 4) occurs. When R exceeds Rc = 0.38, QRG 
even slightly decreases. In the interval Rc < R < RL the eddies in the western 
boundary layer efficiently fight the growth of the recirculation gyre. We see that a 
noticeable growth of QRG starts only when R > RL. This means that the rapid growth 
of the recirculation gyre with increasing Reynolds number and the breakdown of the 
boundary layer type solution at R = RL are two closely related phenomena. 

Figure 5 shows the distribution of the averaged relative vorticity 0 for R = 1 and 2. 
We see that strong gradients of W exist near the western coast only. There are 
moderate gradients (compared to those near the western boundary) of 0 near the 
northern boundary, even in the region of the recirculation, despite the presence of 
the strong currents there. It is interesting to note the existence of the extremum of 0 
in the recirculation gyre, though it is displaced north relative to the gyre center. 

-- 
Let us consider the isolines of the averaged potential vorticity q, q = y + EF, and 
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Figure 4. The transport of the recirculation gyre Q ~c. The dashed line shows the estimate if 
the solution were stable and eddies did not form in the western boundary layer. 

isolines of the averaged stream function q simultaneously. In this way the regions, 
where the effects of vorticity diffusion and external forcing are of substantial 
influence, are easily identified. Figure 6 shows the isolines of 4 and Tin the boundary 
layer and in the recirculation zone for R = 1 and 2. In the open ocean the relative 
vorticity &i is small which is why the isolines of 4 are very close to linesy = const. In 
the inertial part of the boundary layer the isolines of 4 and Fnearly coincide because 
of the conservation of the potential vorticity 4. Within the viscous sublayer near the 
coast the diffusion of 23 is substantial. It causes the intersection of isolines of 4 and 
q a fluid particle moving along a $-isoline increases its potential vorticity. It is worth 
noting that the density of q-isolines near the coast differs for different y, which 
indicates a latitude-dependent rate of diffusion of G from the coast (Fig. 6). The 
maximum density of q-isolines is observed at y - 0.5. However, in the northern part 
of the boundary layer, there are several extrema of the q-isoline density (minimum at 
Y - 0.81, maximum at y - 0.91, (Fig. 6, R = 2)). This is due to the influence of the 
recirculation gyre on the structure of the currents in this area. Near y - 0.91 the 
recirculation gyre forces the boundary current to press more strongly against the 
western coast thus sharpening the gradient of 4 in this region (see also Section 5). 

Figure 6 shows very clearly those regions in the recirculation gyre when the 
vorticity diffusion and/or external forcing are important. It is apparent by eye that, in 
the central part of the recirculation gyre and in the vicinity of the northern boundary, 
the isolines of 4 and qcoincide. The motion there is therefore inertial, i.e., each fluid 
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Figure 5. The relative vorticity EF of the time-averaged solution for R = 1 and R = 2 within 
the western boundary layer. The negative isolines (dashed) are drawn with the contour 
interval, CI = 0.025; the positive isolines (solid)-with CZ = 0.1. The dotted isolines show 
the typical time-averaged streamlines F = 0.1; 0.5; 1; 2. 

particle conserves its potential vorticity.4 The diffusion and forcing are substantial in 
the western near-coast part of the gyre and near its southeast edge. In the latter 
region the fluid particles move along messy loop-like trajectories. It is worth 
remembering that the isolines of the time-averaged stream function $ do not 
coincide with the trajectories of the particles in the time-dependent motion. 

It is useful also to consider scatterplots of 2j vs. G (Fig. 7). Each point of our 
nonuniform grid generates one point (&, 2j) in the scatterplot. The region 0 < q < 
sin ~if in the scatterplot corresponds to the Sverdrup (interior) solution; the points 
near 5; = 0 that have increased values of 4 correspond to the western boundary 

4. The inertial character of the motion within the recirculation gyre was noted also by Baning (1986) in 
a series of numerical runs with slip boundary conditions at the coasts. 
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Figure 6. The potential vorticity if = E% + y of the time-averaged solution within the western 
boundary layer (CZ = 0.1) and in the recirculation gyre zone (CZ = 0.05) for two values of R. 
The typical time-averaged streamlines T = 0.1; 0.5; 1; 2 are shown by dotted lines. 

current. The points (G, q), corresponding to the recirculation gyre, have a tendency 
to be located along a straight line. For R = 1.5 this tendency is not yet very clearly 
revealed, but for R = 2 (Fig. 7) it is quite distinct already. Thus, for R = 2 we find 
approximately 

Zj=a+bJI, a = 0.92, b = -0.033. (2) 

The functional relation of 4 with q gives one more evidence that the movement of 
particles in the main part of the recirculation gyre is predominantly inertial. 
However, the small effects of vorticity diffusion and the external source of vorticity 
are crucial to determine the sign and magnitude of b or, more generally, dqldT(see 
also Marshall and Marshall, 1992). Indeed, integrating the time-averaged vorticity 
equation (see (12) of KSPB or (28) from Section 5) over the region enclosed by the 
isoline j; = const and neglecting for simplicity the contribution of the eddy motion 
into the vorticity diffusion gives 

ss r(y3Aij+Vx+xdy=0. (3) 
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Figure 7. The scatterplot of 4 vs. F for the time-averaged solution for R = 2 and R = 3. To 
produce the scatterplot 4 and &are evaluated simultaneously in all grid points. 

If we assume that the T-isoline is so chosen that it encloses the inertial part of the 
recirculation zone we can insert relation (2) in (3) to obtain 

ss 5; (r3bA5;+ V x ~)dudy = 0. (4) 

For the recirculation gyre the relative vorticity W = Aq is negative (Fig. 5). Thus, to 
balance the negative V x T we must have b < 0. If we use numerical values of Aqand 
V x T for the center of the recirculation gyre it results from (4) that b is close to the 
value given in (2). 

It should be noted that for R = 2 we do not have, strictly speaking, the 
homogenization of the potential vorticity 4 in the recirculation gyre: b is small but it is 
not equal to zero. Besides, there is a noticeable blurring of the (q, 4) relation in the 
recirculation gyre indicating redistribution of potential vorticity from one part of the 
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gyre to another. All this means that for R = 2 both viscosity and external forcing are 
important in the dynamics of the recirculation gyre. For R = 3 however the situation 
changes. The role of eddies in comparison to explicit viscosity increases (see Section 
5) and the homogenization of potential vorticity becomes more prominent, and the 
line representing the (&, 4) relation becomes more horizontal (Fig. 7). 

3. Eddies in the boundary current 

The formation of eddies in the western boundary current is a characteristic 
property of our solution (Fig. 1, KSPB). Similar eddies have also been observed in 
the numerical experiments of Bryan (1963). They are formed near the pointy = 0.5 
where the Sverdrup transport reaches its maximum. Then they move northward with 
the current and eventually are absorbed by the recirculation gyre. In this section we 
will examine some of the quantitative characteristics of these eddies more closely. 

First, it is useful to look at the eddies on an enlarged scale. Figure 8 shows the 
instantaneous field IJJ at time t = 10000. (Recall that the averaging of IJJ in the 
experiment RlM (KSPB, Table 1) was performed over the time interval (5000, 
lOOOO).) Figure 8b shows the time-averaged field T whereas Figure 8c gives the 
deviation from & +’ = ~JJ - &. Although we can see in Figure 8a anticyclonic eddies 
only, Figure 8c shows clearly both positive and negative deviations from the averaged 
field, with negative deviations corresponding to the troughs between the eddies. The 
eddies considered are evidently highly nonlinear since their amplitudes are compa- 
rable with the characteristic velocities of the mean current. 

To check that these eddies are not due to some kind of numerical instability we 
present the potential vorticity, q = E*W + y, in Figure 8d. One can see that q inside the 
eddies remains within the physical limits. Note that the potential vorticity is 
increased near the boundary at approximately the same latitude y as the position of 
the eddy center. We can also see that the tongue of increased potential vorticity is 
swept to the inertial part of the boundary layer by the circulation within the eddy. By 
this mechanism the eddies enhance the transfer of positive vorticity from the 
boundary. 

The velocity of eddy translation c = dyldt can be determined, for example, visually 
by following the translation of the eddy center. However, when the Reynolds number 
R approaches RL eddy movement becomes noticeably chaotic and it becomes 
somewhat difficult to trace each individual eddy. Alternatively, one can determine c 
by computing the time-lagged correlations between the time records of the stream 
function at different points in the boundary layer. (The time records of the stream 
function were discussed in KSPB, Section 4.) For our purpose it is convenient to 
consider the time-lagged correlation C&T) = I@,, 0.7, t) * +(x,-, 0.8, t + T) between 
points with y = 0.7 and y = 0.8 (xc = 5.1530. 10-2). In this formula the overbar 
means time averaging and 7 is the time lag. (In computing the correlation it is 
necessary to remove the mean from the time records.) If it takes an eddy the time 
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Figure 8. The eddies in the western boundary current in the experiment RIM shown on the 
expanded scale. (a) The instantaneous field JI at time t = 10000, the contour interval, 
CZ = 0.1; (b) The time-averaged field @, CI = 0.1; (c) Departures from the mean field 
$’ = $(t = 10000) - p, CZ = 0.1; (d) The potential vorticity field 4 = & + y at time t = 
10000, CZ = 0.1. The typical time-averaged streamlines @ = 0.1; 0.5; 1; 2 are shown by 
dotted lines. 

71 = Ay/c to cover the distance Ay = 0.1 between the two points, then the correlation 
function C&T) will have a maximum at T = TV. In Figure 9a we present the 
correlation C,*(T) obtained in the experiment RUM by averaging over the time 
interval (5000, 10000). The first maximum (T > 0) appears at T = q = 152, which 
gives the eddy translation speed c = 6.58 - 10M4. 

Periodicity of the eddy formation T, (a, = 27r/T,) can be determined by taking the 
Fourier transform of the time records of the stream function in the boundary layer 
(as in KSPB) or, alternatively, by computing the autocorrelation function. Figure 9b 
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Figure 9. The correlation functions of the time records of the stream function in the 
boundary layer in the experiment RlM. (a) The time-lagged correlation 
C&T) = $(x,, 0.7, t) . $(x,, 0.8, t + r)between points with y = 0.7 and y = 0.8 (xc = 
5.1530 . 10-2). (b) The autocorrelation function C&T) = $(xc, 0.8, t) . 31(x,, 0.8, t + r)for 
the point xc,y = 0.8. 

shows the autocorrelation function C&T) = rJr(+, 0.8, t) * +(xc, 0.8, t + T) for the 
point xc, y = 0.8 in the experiment RlM. Since the eddies cause the dominant 
perturbations of the stream function in the boundary layer the function C&(T) has a 
prominent maximum at r = T, = 294 corresponding to the periodicity of eddy 
formation. Knowing c and T, allows us to determine the averaged spacing between 
eddies k, = CT,. 

Applying the same method to the time records of the stream function from other 
experiments RO.BM, ROSM and summarizing the results gives the following character- 
istics of eddies: R = 0.5, c = 7.57. 10e4, T, = 233, a, = 2.70. 10m2, X, = 0.177; R = 0.8, 
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c = 6.94. 10-4, T, = 268, a, = 2.34. lo-*, A, = 0.186; R = 1, c = 6.58. 10-4, T, = 294, 
a, = 2.14 . 10e2, A, = 0.193. For R exceeding RL the motions in the boundary layer 
become substantially more chaotic and the determination of the above quantities 
becomes ambiguous. 

It is worth noting that the eddy centers move near the line of vanishing O,, i.e. near 
the inflection point of the velocity profile of the current. This is a critical point 
according to the theory of stability (Drazin and Reid, 1981). At this point the velocity 
of the time-averaged current itself is close to the speed of eddy translation c. 

It is reasonable to assume that the appearance of the eddies in the boundary layer 
is a result of an instability of the boundary current. The analysis by Ierley and Young 
(1991) of the stability of the Munk boundary current by idealizing it as a parallel flow 
shows that the slip case should be more unstable than the no-slip case. However, as 
mentioned earlier, the eddies in the boundary layer do not appear when the slip 
boundary conditions are specified at the coasts (Fig. 3, KSPB). This result is 
supported by altnernative experiments (see Boning, 1986) as well. One may specu- 
late that the onset of the recirculation gyre strongly alters the basic state of the 
stability problem and thus corresponding stability conditions of Ierley and Young 
(1991). Another point is that one should make a distinction between convected 
instability and absolute or non-convected instability (see, for example, Drazin and Reid 
(1981)). In Cessi and Ierley (1993) it is suggested that with the Munk profile in the 
no-slip case the group velocity of disturbance cs is close to zero, and the disturbance 
can grow very efficiently (absolute instability), while in the slip case the group 
velocity is sufficiently large, and the perturbation (though convectively unstable) will 
move away from the unstable region. Detailed exploration of the 2D stability 
problem is considered in SIK. 

4. The energy balance 

The energy equation is derived in the usual way by multiplying the 
equations (l)-(2) from KSPB scalarly by the velocity v = (u, v) to obtain 

momentum 

(5) 

aE a 
dt+ax ~~E+p-2y3~ u-y au) 3(g+$)v] 

+f&7+p-2y3$)v-y3(~+~)u] 

where E&y, t) = 1/2(V+)2 = ‘/2(u* + v*) is the density of kinetic energy. On the 
right-hand side of (5) we have viscous dissipation D(x,y, t) and work of the wind 
stress W(X, y, t) per unit time. The Coriolis force does not perform any work. 

Integrating (5) over the basin and taking into account the boundary conditions 
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((4) (5) from KSPB) gives 

d(E)(t) 
- = -(D)(t) + W)(t) dt 

where 

(E)(t) = i’x’ E ak dy; 

(D)(t) = s,‘s,’ D dxdy; 

(w)(t) = J’s, Wdxdy. 

(6) 

(7) 

It is helpful to start with the consideration of the energy balance for the steady 
linear Munk solution. The solution in this case can be represented as the sum of the 
Sverdrup solution (SF’) in the interior and the boundary layer solution (BL) 

X 

h4@,Y) = dJsv(X,Y) + *EL - 
i i 
y YY + O(Y) 

*&,Y> = (1 - 4 sin ny 

Gsl. N = -emEi2 
i 

8 1 fi cos 2 5 + - sin y 5 sin rry, 
fi 1 

no-slip ?y(O,y) = 0 

I)~[. s = -em5’* 
i 

fi 1.8 cos y E - - sin - 5 sin v, 
6 2 i 

slip ff$qo,y)=o (11) 

where we have introduced the stretched variable 5 =x/y, y +z 1. The structure of the 
western boundary layer current depends on the type of dynamical boundary condi- 
tion (the subscripts N, S). It is very easy to show that the major contribution to the 
total kinetic energy (E) is due to the western boundary layer only which is why we do 
not consider here the boundary layers near the eastern, southern, and northern 
boundaries 

@)[I),] = is,’ &(3*B;~y)~d~dy + O(1) 

I l/(87) + O(l), no-slip 
= l/(47) + O(l), slip . 

(12) 

We see that (E)[+,,], h’ h w  tc is actually the kinetic energy of the boundary layer 
current, in the slip case is two times bigger than in the no-slip case. It seems that this 
fact can explain why in the nonlinear case for the same Reynolds number the 
recirculation gyre is larger in the slip case as compared to the no-slip case. Indeed, 



19951 Sheremet et al.: Barotropic model analysis: II 1009 

the larger the energy of the boundary current, the higher absolute velocities of the 
fluid particles, the larger inertia of the boundary current in the nonlinear case, the 
less efficient are the viscous forces in decelerating the current, the stronger the 
current impinges on the northern boundary, and finally the larger the recirculation 
gyre which forms in the northwest corner. It is worth noting that the splitting of the 
inertial-viscous boundary current into an inertial part and a viscous sublayer of width 
E/@ also takes place in the slip case, but the change of velocity in the viscous 
sublayer is not so substantial as in the no-slip case. Recall that in the slip case the 
vorticity is equal to zero at the western boundary. 

Similarly, the major contribution to the dissipation is also due to the western 
boundary current 

(D)[$,,] = I’JT,” 9 3 dc dy + O(y) = i + O(y). (13) 

Dissipation is the same both in the no-slip and slip cases. 
On the other hand, the energy input, which is due to the work of the wind stress, is 

determined by the Sverdrup solution 

wmJM1= - s,‘s,’ F T@) dxdy + O(y) = f + O(y). (14) 

We see that, for the steady Munk solution, the energy equation (6) is trivially 
satisfied. 

When R +C 1 the solution of the problem (l)-(6) from KSPB is very close to the 
Munk solution. Thus, we can conclude that the level of the total kinetic energy for 
R c 1 is determined by the width of the viscous boundary layer y = 4%. Using 
energy considerations we can obtain the estimate for the time of the formation of the 
boundary layer for R -=z 1 

(15) 

It is useful to compare this with the result of the linear theory for an accelerating 
boundary layer (see, for example, Kamenkovich, 1977, Section 6.7): the width 8~ of 
the nonstationary boundary current decreases with time during the spin-up regime, 
6T - l/t, until 8r becomes comparable with y and the viscous effects arrest further 
thinning of the boundary layer. 

The total kinetic energy is a useful global characteristic of time variability of the 
system. However, not all the modes manifest themselves equally. Let us give this 
question a closer look. It is helpful to consider the oscillations of the total kinetic 
energy in the following way. We start with R -=z 1 and represent the solution of the 
problem to a certain approximation as a sum of the Munk solution &&, y) and a 
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basin mode $,,(x,y, t) (see (16) from KSPB). We have 

Consider each term on the right-hand side of (16) separately. The first term gives the 
kinetic energy of the steady Munk solution and does not depend on t. For the inviscid 
problem the second term, representing the kinetic energy of the basin mode, would 
not also depend on t. But in the presence of small dissipation this term slowly 
decreases. The third term, the cross term, causes the oscillation of the total kinetic 
energy with the eigenfrequency, a,,,,, of the basin mode if the corresponding 
expression is not identically zero. In the problem considered we use a very special 
wind stress distribution with only one Fourier harmonic, sin ITS, therefore the Munk 
solution also has the form IJ,,,, - sin rry. Thus all basin modes with m f 1 are ortho- 
gonal to the Munk solution and hence the cross term for these modes equals zero. 

It follows from the energy balance equation (6) that the energy oscillations are 
connected with variation of the rate of dissipation and variation of the rate of energy 
input. Scale analysis shows that the variation of the rate of energy input is the leading 
factor. With the same approximation, we have 

(17) 

We see that it is the second term on the right-hand side of (17) that causes the 
oscillation of energy with the frequency of the basin mode a,,. 

In considering the total energy oscillations due to basin modes we have made the 
assumption that R +X 1. However, the same arguments hold also for finite R if the 
time-averaged solution does not differ substantially from the linear one. For ex- 
ample, we present in Figure 10 the time variations of(E), d(E)/&, (D), (W) for R = 1. 
It is seen that in the experiment RlZ (with zero initial conditions) (Fig. 10a) the 
amplitude of the basin mode $r, becomes prominent after the spin-up, which is why 
the oscillations of d(E)/& and (W) are in phase and have the dominant frequency ull. 
The oscillations of (D) and (W) take place around the levels approximately deter- 
mined by (13) and (14). Note that the amplitude of variation of dissipation is small. 
Figure 10b gives the time variations of the same quantities but in the experiment 
RIM (started from the time-averaged field). The basin mode +,r has been already 
filtered out, and after reaching the quasistationary regime the oscillations take place 
at different frequencies characterizing the periodicity of the eddy formation in the 
boundary layer. For R > 1, when the time-averaged circulation differs noticeably 
from the Munk solution, the cross term in (17) is not identically zero form f 1, hence 
all basin modes can manifest themselves in the variation of the total kinetic energy. 

Let us consider now the general nonlinear case when the problem (l)-(6) from 
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Figure 10. The time variation of the terms in the energy equation (6) in the experiments with 
R = 1: (a) RlZ; (b) RlM. The uppermost curve is the total energy, (E)(t), the scale is given at 
the left. The other three curves (scale is given at the right) are the work of the wind (w)(t) 
(oscillating around 0.23, the time derivative of the total energy d(E)(t)/& (oscillating 
around 0), and the viscous dissipation of energy -(D)(t) (oscillating around -0.25). 

KSPB cannot have a steady solution. It is natural to analyze the energy balance for 
the time-averaged current and also the energetics of “eddies” or “pulsations” 
determined as departures from the time-averaged fields. Keeping this in mind, we 
introduce the kinetic energy of the time-averaged current E, = ‘/$U* + V*), 
the averaged energy E = %(u* + v*), and the “eddy” kinetic energy E, = 

‘/z((u’)2 + (v’)*). 
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In the usual way we obtain the following equations 

a 
ax 

= -D, + W,,, 

where 

I e=- - 
+p v + z (vr3 + ~‘5’) -G= -D, 1 

(20) 

w, = is). 

In these relations it is implied that dE,ldt = 0, aE,/dt = 0, and E = E,,, + E,. We 
have introduced also the following notations: G is the density of the energy flux from 
the averaged motion to the eddy or pulsation motion, D, is the density of dissipation 
in the averaged motion per time unit, D, is the density of dissipation in the eddy 
motion per time unit, and W, is the work performed by the wind stress in the 
averaged motion (per square and time units). 

Integrating relations (18) and (19) over the basin gives the following balances: 

W’m) = (Qn) + ((3 (21) 

(G) = (De-) (22) 

where the values integrated over the basin are introduced similarly to (7). Relation 
(21) means that the total energy input into the system by the wind, (W,), is balanced 
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200 

Reynolds number R 

Figure 11. The partitioning of total energy (E) (dash-dotted line) in the quasi-stationary 
regime between the energy of the mean flow (E,,,) (solid line) and the energy of eddies (E,) 
(dashed line) for various Reynolds number R in the experiments with E = 0.01, no-slip. The 
dotted line shows the energy of the Munk solution (E,+,,,,,k ) = 1/(8y) for the corresponding 
viscosity y = ~1%. 

by the total dissipation in the mean motion, (D,,J, and total transfer of energy from 
the averaged motion to the eddy motion (per time unit), (G). Eq. (22) states that the 
total energy transfer from the averaged motion to the eddy motion is balanced by 
total dissipation in the eddy motion, (De). 

Let us discuss now what is observed in the numerical experiments. Figure 11 shows 
the partitioning of the averaged kinetic energy of the system between the mean 
current and eddy motion as a function of Reynolds number. The kinetic energy of the 
linear Munk solution (EMunk ) = 1/(8-y) for the corresponding viscosity y = 4% (see 
(12)) is shown by the dotted line as a reference. Figure 12 presents a summary of 
variation in the energy fluxes as the Reynolds number increases. 

ForR s 1, VLA (w,), (kd are very close to the quantities calculated from the 
Munk solution. For R < Rc the steady solution is stable thus (E,) = 0. When R 
exceeds Rc the steady solution becomes unstable and the eddies in the boundary 
layer appear. The energy of the eddy motion (E,) grows with increasing R - Rc. The 
linear extrapolation of (E,) (or even better (De)) as a function of R - Rc in the vicinity 
of Rc gives the estimate of the critical value of Reynolds number, Rc = 0.38. With the 
growth of eddy intensity for R > Rc the total flux of energy from the averaged motion 
to the eddy motion, (G), also increases as well as the total dissipation in the eddy 
motion (De). The total dissipation in the averaged motion (&) decreases. 

An interesting feature to note is that the kinetic energy of the mean current (E,) 
stays close to (EMuMunk) in a wide range of Reynolds numbers, 0 < R < 1.5, not only for 
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Figure 12. The variation of energy fluxes with Reynolds number R. The solid line is the 
dissipation of energy in the mean flow (&). The dashed line is the dissipation of energy by 
eddies (De). The dash-dotted line is the energy input by the wind (IV,,,) = (Dm) + (De). The 
value ( WMUnk) = 0.25 corresponding to the Munk solution is shown by the dotted line. 

R -=z 1. (E,) deviates from (EIMunk ) for R > RL. This is associated with the growth of 
the recirculation gyre and an increase of its energy. 

The appearance of another regime as R exceeds RL is also conspicuously seen in 
the behavior of (Dm) and (De). These curves have noticeable bending points near RL. 

Another feature to note is that the energy input (Wm) remains practically un- 
changed (Fig. 12). This holds even for R > RL when the solution of the problem 
differs significantly from the Munk solution and the Sverdrup interior solution is 
distorted by the growing recirculation gyre (Fig. 2 R = 2, R = 3). The increase of the 
recirculation gyre energy and the energy of eddies causes the substantial increase of 
the total kinetic energy of the system and, correspondingly, the noticeable increase of 
the time Ts needed for reaching the quasistationary regime 

T, = 
the total kinetic energy of the system 

the rate of energy input in the system per unit time ’ (23) 

The energy of the eddy motion (E,) grows with increasing R and becomes 
comparable with the energy of the mean current (E,) near R = 1 but as the 
recirculation gyre becomes prominent for R > RL their ratio becomes roughly 
constant (Fig. 11). 

The arguments based on the analysis of the energy characteristics of the system 
support the idea that the breakdown of the steady solution of the boundary layer type 
happens at RI,. 
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5. Balance of vorticity 

a. Integral balance ofvorticity. Integrating the vorticity equation ((12) in KSPB) over 
the basin we have 

dR 
-= 
dt y3 

fi;dr + s,‘s,’ V x ro!xdy (24) 

where R is the total vorticity of the basin, I is the boundary of our basin, and n is the 
outer normal. In deriving (24) we assumed that the integral effect of advection of the 
relative and planetary vorticity is equal to zero. Thus, the variation of R is caused by 
the external source of the vorticity and viscous diffusion of the relative vorticity 
across the boundary. (Recall that we consider no-slip boundary conditions at the 
western and eastern coasts.) In this case R equals the velocity circulation along the 
northern and southern boundaries 

R = 1” [u(x,y = 0, t) - u(x,y = 1, t)] dx. (25) 

For the steady linear Munk solution (8), (9), (10) fi = -IT + O(y). When R 
increases the recirculation gyre grows, resulting in an increase of the velocity along 
the northern boundary and therefore in an increase of fi of the time-averaged 
current. For example, a = -3.28 for R = 0.5; fi = -3.73 for R = 1; n = -16.7 for 
R = 2; R = -37.7 for R = 3. 

The total input of the vorticity due to the wind stress curl does not depend on t and 
equals (-2/n). As follows from (24), in the steady and quasistationary regime this 
amount of negative vorticity should be balanced by diffusion of positive vorticity 
across the boundary. The peculiar character of our problem is that this diffusion 
takes place mainly across the western boundary of the basin where the intensive 
boundary current forms. It is useful to consider a y-dependence of the diffusion flux 
across the western boundary (Fig. 13). In the linear case, when advection of the 
relative vorticity is absent, the balance similar to (24) should be applicable at eachy. 
Therefore for small Reynolds numbers we have 

aw 
7” dx x=” - - 1 J- 0 ‘VxrdY=sin7ry. (26) 

When Reynolds number R increases (R = 0.5; 1; 3) the eddies appearing in the 
western boundary current and growing recirculation gyre influence the diffusion 
across the western boundary (Fig. 13). In the northern half of the boundary current 
(y > 0.5) the diffusion flux for these R is oscillating around the function sin 9, with 
the amplitude of this oscillations decaying fory + 0.5. One of the maxima is caused 
by the increased eddy activity near y = 0.7 and another maximum near y = 0.9 is 
caused by the recirculation gyre pressing the boundary current to the western wall. 
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Figure 13. The diffusive flux of vorticity across the western boundary -y” aG/axl &y) as a 
function of latitude y for the time-averaged solution: R = 0.5 dashed line; R = 1 solid line; 
R = 3 dash-dotted line. The dotted line shows the flux for the Munk solution, sin ny. 

No significant departures from sin q dependence are seen in the southern half of 
the boundary current (y < 0.5). 

However, the total diffusion flux of the relative vorticity across the western 
boundary is nearly constant for all R considered (R < 3). Indeed, calculating the 
diffusion flux of relative vorticity across the northern boundary, we see that it is 
substantially smaller as compared to the corresponding flux across the western 
boundary (Fig. 14). The corresponding fluxes across the southern and eastern 

Figure 14. The diffusive flux of vorticity across the northern boundary -r3(aGl$) lY=t(x) for the 
time-averaged solution: R = 0.5 dashed line; R = 1 solid line; R = 3 dash-dotted line. 
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boundaries can evidently be ignored. Thus, we have 
- 

s 
2 - ,,‘y3$dy = ;. 

b. Vorticity balance within a closed streamline. In the preceding subsection we 
considered the vorticity balance for the whole basin. In view of the impermeability 
condition at the boundary the integral effect of nonlinear terms is equal to zero. 
However, nonlinear terms transfer vorticity from one region to another and there- 
fore play an important role in the local dynamics. This transfer is accomplished by 
both averaged and pulsation motions. The effect of advection by averaged currents 
can be excluded if one considers the vorticity balance in the region enclosed by an 
isoline of the averaged stream function. Indeed, if we average the vorticity equation 
((12) from KSPB) in time and then integrate it over such a region we obtain after 
simple transformations 

- ss z~2J($‘, co’) a!x dy + y3 C$~ds + s&V x Takdy = 0 P-9 

or 

(29) 

where n is the outer normal to the contour $ = const. Note the appearance of a term 
on the left-hand side of (28) that describes the divergence of the vorticity flux owing 
to eddies (pulsations). 

Figure 1.5 shows different terms in (28) as a function of q, a magnitude of 
G-isoline enclosing the region. For better seeing the relative importance of the terms 
in a whole range of Twe divided all the terms by the areaA of the region enclosed by 
\cl = const. In addition to these three curves, A as a function of G is also present in 
Figure 15. In the case when q = 0, this isoline coincides with the basin boundary and 
A(0) = 1, fieddles(0) = 0. Th e vorticity balance in this case was considered in the 
preceding subsection. It should be stressed again that the vorticity transfer across the 
boundary in this case is accomplished by diffusion only. In view of the impermeability 
condition, the vorticity transfer across the boundary of the basin, caused by pulsa- 
tions, equals zero. 

For small R < Rc, when the steady solution establishes, there are no pulsations. 
That is why for any closed q-isoline the balance between the wind stress input and 
the effect of diffusion takes place: &SC(F) + &ind($) = 0. 

When the Reynolds number increases (accordingly the coefficient of viscosity 
decreases) the integral effect of the viscous diffusion of positive vorticity into the 
interior of the basin decreases. Therefore, in the quasistationary regime the effect of 
pulsations in transferring the vorticity becomes noticeable. For example, for R = 2 
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Figure 15. The terms in the averaged vorticity equation (29) as functions of the magnitude of 
the time-averaged stream function $ in the experiments with (a) R = 2; (b) R = 3. The 
dotted line is the area A (\cl> enclosed by the isoline q = const. The solid line is the input of 
vorticity by the wind (with negative sign and divided&y the-area) -K&$)/A(F)); the 
dashed line is the vorticity brought in by eddies c.ddies ($)/A ( IJJ); the dash-dotted line is the 
diffusion of vorticity due to viscosity Eisc($)/A (tj~). 

the transport of positive vorticity to the basin interior, 0.2 < q < 0.8, is performed 
mostly by eddies (Fig. 15). 

For & > 1.2 we have essentially the balance within the recirculation gyre. Here the 
area bounded by T = const depends approximately linear on &mm - q, A = r2 = 

GLX - \cl), r is the radius from the center of the gyre. Therefore, the contribution of 
the wind divided by the area Kind( +)/A (;i;> is app roximately constant. For R = 2 the 
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Figure 16. The spatial distribution of the divergence of the eddy vorticiiy flux -e2Jm in 
the western boundary layer for the time-averaged solution in the experiments with R = 1 
and R = 3. The positive and zero isolines are shown by solid lines, the negative - by dashed 
ones. The contour interval, CI = 20. The dotted isolines show the typical time-averaged 
streamlines, F = 0.1; 0.5; 1; 2. 

role of viscosity, as we see, is still significant. But for R = 3 the balance between the 
negative input of the wind curl and positive vorticity brought in by eddies becomes 
dominant within the recirculation gyre. The explicit viscosity plays a secondary role. 
The dominant role of eddies results in the homogenization of potential vorticity 
within the gyre, which is seen in Figure 7. 

It is appropriate here to consider the spatial distribution of the term -e2J($‘, o’) 
(Fig. 16). This field is somewhat noisy because of higher order spatial derivatives 
involved in its evaluation, but the regions of positive and negative values can still be 
reliably identified. There are two extrema of this term in the northern part of the 
western boundary current where the maximum of eddy activity is observed. We see 
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the minimum near the boundary and the maximum to the east of this minimum. This 
indicates that the eddies in this region do intensify the transfer of positive vorticity 
from the near boundary region (viscous sublayer) into the inertial part of the 
boundary current. This is equivalent, in some sense, to increasing the “effective” 
viscosity which provides the feedback necessary for constraining the growth of the 
recirculation gyre happening in the interval of Reynolds numbers Rc < R < RL (as 
we have seen in Fig. 4). 

We note that the typical value of -e2J(+‘, w’) grows from 0 for R = Rc to 0(1/e) 
for R = R,, and then it saturates for R > RL. This indicates that the eddies in the 
western boundary layer become nonlinearly saturated near R = RL. Since the size 
and velocities within eddies become independent of viscosity and the thickness of the 
viscous sublayer (e/a) decreases for increasing Reynolds number, it becomes more 
and more difficult for these eddies to transfer the positive vorticity from the near-wall 
area to the inertial part of the boundary layer. As a result the significant growth of 
the recirculation gyre appears for R > RL. 

6. Recirculation gyre 

Within this and the previous paper (KSPB) we repeatedly focused on the descrip- 
tion of the recirculation gyre. In this section we collect all the basic points together to 
consistently discuss the process of the formation of the recirculation gyre for 
different Reynolds numbers R. The formation of the recirculation gyre starts at the 
spin-up stage already. Consider the case R = 1 once again when the recirculation 
gyre is sufficiently well pronounced in the time-dependent patterns (KSPB, Fig. 1). 
At the very early stage dynamics are linear and inviscid, and long Rossby waves are 
generated under the action of suddenly appeared wind (ibid.; Fig. la, b). The 
westward propagation of these waves leads to the formation of the time-dependent 
boundary layer at the western coast of the ocean. The width of this layer decreases as 
time proceeds. When the boundary layer becomes sufficiently narrow the role of 
nonlinear terms and viscosity increases and the solution ceases to be symmetric 
relative toy = 0.5 (ibid., Fig. lc). The closed +-isolines in the vicinity of the west coast 
are stretched along the coast and instead of one maximum two maxima appear (ibid., 
Fig. Id). The north maximum can be considered as an embryo of the recirculation 
gyre. Moving to the north it reaches the northwest corner of the basin taking this 
position as a permanent one (ibid., Fig. le). After reaching this location the gyre 
continues to evolve; its size and intensity are eventually determined by the balance 
between viscous and inertial effects. It is worth noting that the anticyclone going 
behind is absorbed in the northwest corner by this stalled gyre (ibid., Fig. lf, g, h). 
Simultaneously a new anticyclone appears in the vicinity of y = 0.5 which will move 
northward and be absorbed by the standing gyre afterwards and so on (ibid., Fig. lh). 
One can reason that the system has reached the quasistationary regime: the spin-up 
stage is over and the recirculation gyre has been formed. 
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The described picture of the formation of the recirculation gyre appeared to be 
typical for other Reynolds numbers also. However, as has been shown already 
recirculation gyres with noticeable intensities and sizes are formed at R > RL only 
(Fig. 1) with the time of the gyre formation depending strongly on R. It should be 
stressed that the eddy chain formed in the boundary layer generates the oscillation of 
the recirculation gyre intensity with a rather small amplitude merely (about 15%). 
The formation of the recirculation gyre is not caused by these eddies. In the slip case, 
when the chain of moving eddies is absent altogether, the formation of the recircula- 
tion gyre is still observed with stages (a)-(d) being very similar despite the difference 
in boundary conditions (KSPB, Fig. 1 and 3). 

What physical mechanism is responsible for the formation of the recirculation 
gyre? For finite Reynolds numbers advection of the relative vorticity l 2ti plays a 
significant role. At the spin-up stage, diffusion of the relative vorticity is small outside 
the region very near to the western coast and the absolute value of the relative 
vorticity l 2 ] o ] increases when fluid particle moves northward (especially within the 
inertial part of the boundary layer where q = E~W + y is conserved by fluid particles). 
Meanwhile the relative vorticity in the interior Sverdrup region remains small as 
compared to the planetary vorticity y. Thus, to join the interior the particles moving 
in the boundary layer should somehow diminish the absolute value of the relative 
vorticity l 2 ] w ] . That is why the particles tend to be within the boundary layer (under 
the action of diffusion of the relative vorticity) as long as possible causing a stretching 
of the closed streamlines along the coast. However a group of fluid particles exists 
that carry a substantial amount of the negative relative vorticity northward and for 
this reason cannot join the Sverdrup interior. These particles remain in the north- 
west corner of the region forming an embryo of the recirculation gyre. However the 
eddies in the boundary layer still play some role in the formation of the recirculation 
gyre. We recall that for R < RL these eddies enhance the flux of positive vorticity 
from the western coast while for R > RL the eddy flux of vorticity saturates. Thus the 
amount of the particles forming the recirculation gyre has to be substantially 
increased when R exceeds the critical value RL. 

What is the evolution of the embryo of the recirculation gyre? We note only that 
the dynamics of the gyre with closed trajectories of the fluid particles and negligibly 
small diffusion of the relative vorticity is rather peculiar. What will be a limit state of 
this evolution? We will try to crudely estimate a dependence of the intensity and the 
size of the quasistationary recirculation gyre on the Reynolds number R only. To do 
this we will assume that in the quasistationary state the permanent influx II of the 
negative relative vorticity to the gyre from the south within the inertial part of the 
boundary current is balanced by the diffusion of the positive relative vorticity through 
the western coast (neglecting in a first approximation the diffusion through the southeast 
boundary of the gyre and the effect of eddies). Introducing a scale LG of the gyre and 
estimating the total flux of the positive relative vorticity to the gyre through the 
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western coast as y3(wGILG)LG we have 

y3w<; = n (30) 

where wc is a typical value of the relative vorticity of the gyre. Taking into account 
that within the gyre the relative and planetary vorticity are of the same order we 
obtain 

E2WG = L,. (31) 

Combining (30) and (31) and recalling the definition of R (see (8) and (9) in KSPB) 
gives 

qG = R”; L, 1: R (32) 

where Vr, is a scale of the stream function for the gyre. The estimate (32) is very 
crude but it gives some explanation of the growth of the intensity and size of the 
recirculation gyre found in our computations for increasing Reynolds number R(for 

R > Rd. 

7. Summary 

This paper is Part II of the suggested study of the barotropic model of the 
subtropical gyre. The wind stress is assumed to be steady and zonal. The boundary 
conditions are no-slip at the eastern and western boundaries and slip at the northern 
and southern boundaries. The solution is characterized by the two nondimensional 
parameters: the width of the inertial boundary layer E and the Reynolds number for 
the boundary current R. 

A series of numerical experiments with fixed E = 0.01 (typical for the subtropical 
gyre in the ocean) and varying R have been carried out. In Part I of the study (KSPB) 
the two critical Reynolds numbers R c = 0.38 and RL = 1.6 were identified. For R > 
RC. the time-dependent solution does not stabilize as time proceeds, and the steady 
solution appears to be unstable. For R > RL the breakdown of the boundary layer 
happens (the steady solution of the boundary layer type ceases to exist). 

In this paper we have carefully analyzed the time-averaged fields of various motion 
characteristics, properties of the eddies, energy and vorticity balances in order to 
study different regimes of the motion for a broad range of Reynolds numbers. 

For R < Rc the viscous effects are dominant and the solution is close to the linear 
Munk solution. When R exceeds Rc the eddies in the western boundary layer appear 
due to the instability of the steady motion. These eddies cause a broadening of the 
northern part of the boundary layer and enhance the transfer of positive vorticity 
from the western boundary, that is equivalent to incorporating the increased 
effective viscosity in the system. Therefore in the interval Rc < R < RL the patterns 
of the time-averaged circulation do not significantly change. 
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The value of the Reynolds number RL marks the appearance of another regime in 
the behavior of solution. For R > RL the dynamics of the western boundary layer 
becomes predominantly nonlinear. The eddies in the western boundary current can 
no longer enhance the effective viscosity. As a result the rapid growth of the size and 
the intensity of the recirculation gyre in the northwest corner of the basin appear. It 
is worth noting that the formation of the recirculation gyre leads to a significant 
increase of the total transport of the boundary current. 

The energetics of the motion is analyzed in detail. The variation of the total energy 
is considered and a certain explanation of its spectrum is suggested. To analyze the 
quasistationary regime of the flow, the motion is split into the sum of the time- 
averaged and eddy (pulsation) motions. The total energy of the eddies E, continu- 
ously increases with increasing R for R > Rc, while the total energy of the 
time-averaged flow E, remains close to the value determined from the linear 
problem EMU,+ However when R exceeds RL the quantity E,,, significantly increases 
due to the growth of the energy of the recirculation gyre. The rate of the total 
time-averaged energy input into the system by the wind remains practically un- 
changed when R is increasing. Therefore, the time needed for reaching the quasi- 
stationary regime substantially increases for large Reynolds numbers R > RI,. 

The analysis of potential vorticity distribution and vorticity balances shows that the 
dynamics of the recirculation gyre is predominantly inertial in the central part of the 
gyre and the vicinity of the northern boundary. The recirculation gyre is formed 
because of the advection of the extreme amount of negative vorticity by the inertial 
part of the western boundary current TI. Thus a group of recirculating fluid particles 
appears that cannot join the Sverdrup interior, since the region is characterized by 
negligible magnitudes of the relative vorticity. The limit size and the intensity of the 
recirculation gyre is determined by the balance between fI and the vorticity diffusion 
(for R > R,,). For Rc < R < RL the eddies in the western boundary layer 
incorporate a noticeable amount of diffusion into the system. For large R > RL the 
integral eddy vorticity transfer in the recirculation zone becomes small and the 
homogenization of potential vorticity within the recirculation gyre appears. 
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