
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



Journal of Marine Research, 53, 897-928,1995 

Descent of dense water masses along continental slopes 

by Scott A. Condie1%2 

ABSTRACT 
The formation of dense water over the continental shelf and its descent along the 

continental slope have been investigated both theoretically and experimentally. Models have 
been developed for slope fronts and dense filaments, with emphasis on the role of the bottom 
boundary layer. 

An analytical, two-layer, two-dimensional model is first presented for the development of 
dense slope fronts near the shelf-break. The effects of vertical viscosity are explored and two 
behavioral regimes identified. The most relevant regime is determined by the parameter F = 
(U,/gw)(f3/v)“2 where UQ is the flux of newly created dense water per unit length of 
coastline, g is the gravitational acceleration, E is the density anomaly, s is the bottom slope, f is 
the Coriolis parameter and u is the vertical viscosity. In both cases, the alongslope velocity in 
the lower layer increases away from the coast during geostrophic adjustment, with an 
accompanying growth in the downslop Ekman flux. When F is small, dense water production 
near the coast can be balanced by transport within the boundary layer, which extends down the 
slope as a shallow intrusion with an alongslope speed of ger/f. However, when F is large this 
type of flow cannot provide sufficient downslope transport. Dense water then accumulates, 
causing the front to steepen while diminishing the influence of the bottom slope. There is a 
corresponding increase in alongslope speed, which eventually plateaus at (2f/v)1’2/UQ where 
the Ekman flux balances the production of new dense water. These behaviors are strongly 
supported by results from laboratory experiments and are consistent with the limited available 
observations of the Antarctic Slope Front. 

After moving off the shelf, the dense water mass may continue to move down the slope 
within the bottom boundary layer, or alternatively, form an isolated filament with a front on 
both sides. Theoretical solutions are developed for dense filaments both with and without an 
active upper layer. In the latter case, the influence of dissipation is investigated beginning with 
a simple bulk parameterization. This produces a filament which broadens as it moves down the 
slope, while its mean alongslope velocity increases with bottom slope and its horizontal shear 
decreases. More realistic boundary layer dynamics have also been incorporated using a similar 
approach to that described for slope fronts. The solutions compare well with results from 
laboratory experiments on relatively stable filaments. Implications of the study for deep water 
formation around Antarctica are discussed briefly. 
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(a) (b) 

Figure 1. Schematic representations of (a) a slope front and (b) a dense filament bounded by 
a front. 

1. Introduction 

A major component of the ocean thermohaline circulation is the formation of 
dense water over the continental shelf and its descent down the continental slope 
into the deep ocean (Killworth, 1983). These processes may be initiated by sea- 
surface cooling, evaporation, ice formation or an influx of suspended sediments. The 
resulting flows take an important role in biogeochemical cycles by removing dissolved 
gases, nutrients, organic particles, sediments and pollutants from the coastal environ- 
ment and replenishing deeper waters. Because it can take decades or more for the 
subducted water to resurface and interact with the atmosphere, such flows also 
provide a buffer to long term climatic variability. However, the convective processes 
responsible for deep and intermediate water formation along the continental margin 
are complex and poorly understood. They represent a source of major uncertainty in 
ocean circulation and coupled climate models, where they are usually represented by 
extremely simplistic parameterizations. To remedy this we must first develop an 
understanding of the fundamental fluid dynamical processes including the roles of 
bottom friction, mixing and shear instability. This study uses a combination of simple 
analytical theories and laboratory experiments to address some of these issues. 

Deep water production along continental margins can be divided into three stages 
of development. The first is the production of dense water over the shelf which often 
results in the formation of a slope front separating dense shelf water from lighter 
water over the continental slope (Fig. la). If this occurs over a relatively large 
horizontal scale (- 10 km), the influence of the earth’s rotation will stop the dense 
fluid from cascading directly down the slope. Instead a geostrophic flow develops 
along the shelf, with downslope motions restricted to the bottom boundary layer. 
Further downstream, dissipation and topographic variations may cause the front to 
move off the shelf and down the continental slope. It then takes the form of a dense 
filament, separated from the environment by a bounded front (Fig. lb). Eventually 
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Figure 2. A vertical section of density (Us + 32, density relative to 1000 dbar) across the 
continental shelf and slope of the Ross Sea along 175W. Adapted from Jacobs (1991). 

the filament reaches its own density level, where it may drive deep or intermediate 
circulation (Kawase, 1987; Condie and Kawase, 1993). 

Examples of the features described in the previous paragraph are evident in many 
coastal regions where dense water is produced over the shelf at both large (Killworth, 
1983) and smaller scales (Symonds and Gardiner-Garden, 1994). For example, 
subduction of newly formed Circumpolar Deep Water near the Antarctic shelf-break 
generates dense fronts in the Ross Sea (Jacobs et al., 1970; Jacobs, 1991), further to 
the west off Wilkes Land (Carmack and Killworth, 1978) and along the Adelie Coast 
(Gordon and Tchernia, 1972). The Ross Sea example (reproduced in Fig. 2), has the 
general form of the surface-to-bottom slope front in Figure la, while the latter two 
have characteristics similar to the bounded front in Figure lb. If these structures are 
typical of each of these locations, then they may represent the downstream develop- 
ment of a common subducting water mass. 

Models of fronts near the shelf break have traditionally focused on the case of 
shelf water with density lower than that offshore. However, simple two-dimensional 
models for the formation of fronts of the form shown in Figure la have been 
developed by Hsueh and Cushman-Roisin (1983) and Ou (1983) for step and finite 
sloping topography respectively. They considered the inviscid geostrophic adjust- 
ment of a vertical front located at the shelf-break. A major limitation of this 
approach is the exclusion of any continuous sources of dense water production. 
Hence, there is no provision for the front to develop with time or distance down- 
stream. However, these features have recently been included in an analytical frontal 
model with light shelf water (Condie, 1993) and can be extended to the case of dense 
shelf water. 

The transition from a dense slope front into a filament is not well understood. 
Geostrophy should continue to be the dominant cross-stream balance throughout 
the transition and during the longer term development of the dense filament 
(Griffiths, 1986). However, inertia, bottom stress or mixing may be important in the 
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alongstream balance. Nof et al. (1991) retained inertial terms in their inviscid 
asymptotic theory of a bounded front. They explored the alongstream migration of 
the idealized front up and down the slope in response to varying topography and a 
planetary vorticity gradient. 

A balance between bottom stress curl and vortex stretching also allows a front to 
migrate down the slope. This was first demonstrated by Smith’s (1975) stream-tube 
model (solutions restricted to cross-stream integrated quantities) which has recently 
been applied to sedimentation problems (Wright et al., 1990) and outflows with 
entrainment (Price and Baringer, 1994). Shaw and Csanady (1983) and Csanady 
(1988) also included bottom friction in a barotropic model based on Burger’s 
equation, describing the spread of a dense blob on a sloping bottom. This was 
extended by Wright and Willmott (1992) to include baroclinic effects in a periodic 
domain, for application to the circumpolar ocean. The horizontal structure of dense 
filaments has also been resolved using a reduced gravity numerical model (Jungclaus 
and Backhaus, 1994) which gave good agreement with the earlier stream-tube 
results. The vertical cross-stream structure has been investigated numerically by 
Ezer and Weatherly (1990) using a two-dimensional primitive equation model. This 
study provided valuable insights into the detailed structure and influence of the 
bottom boundary layer. 

Once a filament reaches its own density level, it forms a deep boundary current 
such as the Deep Western Boundary Current in the North Atlantic. This was first 
modeled by Stommel and Arons (1972) and recently extended by MacCready (1994) 
to explicitly include the dissipative effects of the bottom Ekman layer. MacCready 
(1994) neglected any interior stratification within the boundary current, which can 
generate buoyancy forces which oppose Ekman pumping down the slope (Mac- 
Cready and Rhines, 1991, 1993; Garrett et al, 1993; Gawarkiewicz and Chapman, 
1992; Chapman and Lentz, 1994). This effect should be less important for the flow 
geometries analyzed here (Fig. 1). With the possible exception of the upslope edge of 
the filament, buoyancy forces should act in the same direction as the Ekman 
pumping. 

Both slope fronts and dense filaments may be modified by shear instability. This 
was first demonstrated by the laboratory experiments of Smith (1977) which 
revealed flow regimes ranging from quite viscous flow with large downslope flux, to 
meandering filaments which broke-up immediately into a string of eddies. Griffiths et 
al. (1982) later found that bounded fronts with an inertial alongstream balance are 
always linearly unstable and demonstrated this with laboratory experiments on the 
break-up of a light filament at a free surface. Thompson and Young (1989) and Nof 
(1990) then calculated the characteristics of similar eddy fields formed by the 
break-up of inviscid bottom filaments. 

The present study uses analytical layered models to investigate the dynamics of 
dense fronts along the continental margins. The theoretical approach is similar to 
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that used previously by Stommel and Arons (1972), Griffiths (1986) and others. 
However, the current work uses two active layers and explicitly incorporates Ekman 
layer dynamics. Laboratory experiments have been used to substantiate the viscous 
scaling and identify additional effects associated with shear instability. An inviscid 
theory is developed for slope fronts in Section 2a. Ekman layer dynamics are 
included in Section 2b and compared to results from laboratory experiments in 
Section 2c. This sequence is then repeated for dense filaments in Section 3. Finally, 
some preliminary comparisons are made with observations over the Antarctic 
continental slope. 

2. Slope fronts 

The analysis of slope fronts begins with the geostrophic adjustment of a front 
separating two active layers of uniform potential vorticity. It will be demonstrated 
that in the inviscid case, the front responds to dense water production by migrating 
further offshore and increasing the lower layer velocity without limit. In Section 2b, it 
is shown how viscosity constrains the alongslope velocities and drives downslope 
transport within the Ekman layer. These ideas are then tested using simple labora- 
tory experiments in Section 2c. 

a. Geostrophic adjustment. Consider the slope front shown schematically in Figure la. 
The system rotates with angular velocity R and the topography has a bottom slope 
S(X) wherex is the offshore coordinate. Analytical solutions have been found for s, = 
0. This includes not only the constant slope case (sX = 0), but also slopes which 
increase in proportion to the distance offshore (sX = OL where (Y is a constant). The 
latter provides a good model of shelf-slope topography with continuous slope and is 
easily reproducible in the laboratory (Condie, 1993). The shore is located at x = x1, 
where for simplicity it is assumed that the horizontal shear is negligible. A front 
separating immiscible fluids of densities p and p* intersects the free surface at an 
outcropping point x2 and the bottom at the leading edge x3 The vertical momentum 
balance is hydrostatic, the cross-shelf balance is geostrophic and there are no 
along-shelf gradients. 

The momentum equations in the dense lower layer are 

fi = 0, - ~1 (Xl < x < x2), 
fi = g[h, + (1 - c)h; - s] (x2 < x < x3), 

and in the lighter upper layer 

fi* =g[h,+h,*-s] (x2 <x <x3), 

(1) 
(2) 

(3) 

where h and h* are the depths of the lower and upper layers, v and v* are the 
respective along-shore velocities in these layers, f = 2Q is the Coriolis parameter and 
E = (p - p*)/p is the density anomaly. 
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The boundary conditions are 

h(4 = HI, 

h(d = ‘A 

(4) 

(5) 

h*&) = 0, 

h*(xd = 4, 

(6) 

(7) 

VW = Vl, (8) 

v”(x3) = 113, (9) 

with h and v continuous at x2. The depth and velocity at the coast are denoted by Hi 
and v1 and at the offshore anchor point by H3 and v3. If the values of these quantities 
are given, then the values ofx, andx4 form part of the solution. Alternatively, ifx3 and 
x4 are given, then either the coastal or offshore conditions form part of the solution. 

Outside the bottom boundary layer, the frontal dynamics will be determined 
mainly by geostrophic adjustment. We can obtain solutions in the inviscid limit using 
potential vorticity conservation. If the dense fluid is formed near the coast where the 
depth is Hi, then this implies 

If we define a characteristic depth H* such that ligher layer fluid columns first enter 
the frontal region with potential vorticityf/H, , then 

The examples described below assume & = h*(q), so that upper layer fluid enters 
the frontal region with zero horizontal shear. However, H.+ can be chosen to give any 
desired offshore shear. 

It is convenient to first non-dimensionalize Eqs. (1) to (11) by scaling depths by Hi, 
cross-shelf distances by the barotropic deformation radius (gHl)1’2/f, velocities by the 
barotropic wave speed (gHl)1’2, and s by f(Hl /g)lj2. This gives 

v=h,-s (Xl < x < x2), 

v* - v=ch* x (x2 < x < x3), 

v*=h,+h,*-s (x2 < x < x3), 

v,=h-1, 

(12) 

(13) 

(14) 

(15) 

h* 
v,* = H, - 1, (16) 
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where Eq. (2) has been replaced by the Margules relation (13) obtained by 
combining Eqs. (2) and (3). Non-dimensionalization of (4) gives 

heI) = 1, (17) 

while the form of the remaining boundary conditions, (5) to (9) is unchanged. For 
later reference it is also noted that if the upper layer velocity is negligible, then Eqs. 
(13) and (14) combine to give geostrophy in its reduced gravity form, 

v = E(hx - s). (18) 

All quantities referred to in the remainder of the paper are non-dimensional unless 
otherwise stated. 

Within the region (x1 < x < x2) relations (12) and (15) give the hyperbolic 
equation, 

h,-h=s,- 1, 

which has the general solution 

h = cleX + c2e” - s, + 1, 

v = cleY - c,e-” - s, 

remembering that s, is constant. Boundary conditions (17) and (8) then yield 

cl = 1/2e-X1[sx + s(q) + VI], 

c2 = ?heX1[sx - s(xI) - vl]. 

Within the region (x2 < x < xg) relations (13) to (16) give 

h=;-&; * 
and 

Eh& - (1 + H,-‘)h; + H;‘h* = -s, + 1. 

Eq. (25) has the general solution 

h* = c,ekp + c4emk” + c5ekg + c,e -kp - H* (sx - l), 

where 

k& = $ ((1 + H,-1) + [(l + H,-l)2 - 4eH.&?]“2}. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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It then follows from (24) that 

h = K,(c,e kp + c4ebky) + Ks(csekp + c6epkg) - s, + 1, (28) 

where K3 = H,-’ - eki and KS = Hy;l - &z. We now have expressions for the layer 
depths throughout the domain. 

When (26) and (28) are substituted into (14) we obtain 

v* = k3(K3 + l)(c3ekY - c4e-kP) + k,(K, + l)(c,ekY - c,edkF) - s, (29) 

and then from (13) 

v = k3(K3 - E + l)(c3ekg - c4emk3”) + k,(K, - E + l)(c5ek” - cgpky) - s. (30) 

Applying boundary conditions (5) and (6) to (26) and (28) produces two linear 
equations for c3 to cg, while continuity of h and v at x2 using (20) and (28) and (21) 
and (30) yields two more. The solution can be written in the matrix form 

I ’ c3 ekjr2 e-kw ekw e-km -1 

c4 K3ekyj K3emkw3 K5ekg3 K5ewkp3 CT 
cs K3ekv2 K3e-k” K5eks2 K5emkp2 

ic6 \k3(K3 - E + l)ekp2 -k3(K3 - E + l)e- k~2 k,(K, - E + l)eky2 -k,(K, - E + l)eekp2/ 

6x - l)H, ’ 
(% - 1) 

clex2 -I- c2emx2 ’ (31) 

clex2 - c2emx2 

The offshore flow conditions can then be obtained by applying boundary conditions 
(7) and (9) to (26) and (29) 

H3 = (1 - s,)H, + C3ekp3 + c4eeky3 + C5eksr3 + c6ekp3, (32) 

v3 = k3(K3 + l)(C3ekP3 - c4epky3) + k,(K, + 1)(C5ekSx3 - c6emkg3) - s(+). (33) 

In principle, if the coastal and offshore boundary conditions are given, complete 
solutions including the values of x2 and x3 can now be determined numerically. 
However, it is much more convenient to specify x2 and x3 and calculate say the 
offshore conditions. c3 to cg can be determined from (31) and substituted into 
relations (20), (21), (26), (28), (29) and (30) to provide explicit expressions for the 
layer depths and velocities throughout the domain. 

Example solutions are shown in Figure 3 for shelf-slope topography characterized 
by s = (yx. The fronts tend toward an S-shape, with both layers characterized by 
anticyclonic shear due to the compression of fluid columns. The conditions are 
identical in 3a and 3b except that the front in the latter has been forced further 
offshore. This might occur in response to dense water production near the coast. As 
the front migrates offshore, lower layer velocities near the anchor point increase in 
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Figure 3. Inviscid slope front solutions for E = 10-4, (Y = 103,x1 = 0, v1 = 10e3 and (a) v3 = 
- 10m4, H* = H3 = 1.2, (b) v3 = 5 x 10m3, H* = H3 = 2.0. The horizontal axis can be changed 
to units of internal deformation radii by multiplying by E- 1/Z = 100. Note that the lower layer 
velocity near the anchor point increases in magnitude as the front moves further offshore. 

magnitude. The Margules relation (13) then requires larger negative velocities in the 
upper layer. However, if v3 is independently set by offshore processes, then the 
inviscid front is effectively trapped at a location consistent with this value. Eventually 
this solution must break down with the production of additional dense water. At this 
point ageostrophic processes such as vertical viscosity become important and must be 
incorporated into the solution. 

b. Effects of viscosity The increase in velocity magnitudes associated with the 
production of new dense water (Fig. 3) clearly cannot continue indefinitely. As we 
approach the leading edge where the lower layer thins, vertical viscosity becomes 
increasingly important and potential vorticity conservation ceases to be a good 
approximation. Velocities are then determined by the dynamics of the Ekman 
boundary layer, which pumps dense fluid down the slope. In particular, if the flow is 
steady and the dense water production rate is constant, then the Ekman flux which 
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builds up over the sheared geostrophic adjustment region must ultimately balance 
the flux of newly created dense water. 

The structure of the viscous region of the flow is dependent on the local layer 
depth. If this is much greater than the Ekman boundary layer thickness and the 
bottom slope is less than the slope of the front, then the Ekman layer structure is 
essentially the same as that over flat topography (Pedlosky, 1987, p. 266). The 
downslope Ekman transport, non-dimensionalized by (gHf)1’2, is then given by U, = 
-(E/2) l12v where 

E=z 
H?f’ 

(34) 

is the Ekman number and v is the vertical viscosity coefficient of the lower layer. 
While v continues to represent the velocity outside the boundary layer, the down- 
slope velocity (scaling as uE = lJ,&) is concentrated within a boundary layer of 
non-dimensional thickness & = (=)‘I2 (Pedlosky, 1987, p. 192). Equating U, with 
transport from the source U,, then yields alongslope and downslope velocity scales of 

2 112 

vE=-2&=- - u,, 0 E (35) 

where U, has also been non-dimensionalized by (gHi)li2. 
Since the alongslope velocity is outside the boundary layer, it will continue to be 

geostrophic. In principle therefore, Eq. (35) could replace potential vorticity conser- 
vation in the lower layer (Eq. 15) allowing viscous solutions to be obtained for the 
two-layer system. However, the role of viscosity can be more easily investigated using 
the simpler reduced gravity system in which the upper layer velocity is assumed to be 
small. It is then straightforward to derive the geostrophic adjustment part of the 
solution from Eqs. (15) and (18). Eq. (18) can also be combined with (35) to obtain 
an expression for the layer depth in the viscous region, 

wherex = xE is the offshore distance at which the viscous solution takes over from the 
geostrophic adjustment solution and h(xE) is given by Eq. (28). 

Solutions (35) and (36) for the viscous region of the slope front can easily be 
matched with geostrophic adjustment solutions, which are represented by the solid 
curves in Figure 4. The viscous solutions represented by the dashed curves were 
obtained as follows. If U, and E are known, then matching VE with the geostrophic 
adjustment velocity, gives the point xE at which vertical viscosity becomes important. 
Eq. (36) then defines h for the region offshore of xE. Figure 4a demonstrates how 
viscosity limits the alongslope velocity in the lower layer and extends the leading edge 
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Figure 4. Slope front solutions with negligible upper layer velocity, E = 10m4 and (Y = 103. The 
dashed curves represent deviations from the inviscid geostrophic adjustment solutions 
associated with vertical viscosity characterized by vE = -(2/E)1’2UQ = -6 x 10m3 and F > 
1. The boundary conditions for the geostrophic adjustment part of the solution are v = 0 at 
x = 0.01 and (a).q = 0.03, (b)xs = 0.04. 

downslope. However, for non-zero source flux, both x2 and xE must continue to 
migrate offshore until the leading edge reaches its own density level or the interface 
becomes parallel to the bottom, as demonstrate by Figure 4b. 

The viscous solutions described above tend to break down when the layer depth is 
comparable to the boundary layer thickness. Under these circumstances, the along- 
slope velocity is an integral part of the boundary layer solution and the bottom slope 
has a major influence on the flow structure. This problem is greatly simplified by 
noting that a necessary condition for a shallow layer to extend across a wide section 
of slope is that h, ==c S. The geostrophic relation (18) then suggests an alongslope 
velocity scale of 

v, = -a. (37) 

The subscript N refers to Nagata et al. (1993) who gave a detailed viscous solution for 
this limit. Their Figure 13 indicates that the downslope transport can be approxi- 



Journal of Marine Research 15326 

-0.005 

V 

-0.01 

(4 (b) 

Figure 5. As in Figure 4, except that the dashed curves represent deviations from the inviscid 
geostrophic adjustment solutions associated with vertical viscosity in a shallow layer with 
F < 1. (a) U, = 2.2 x low4 andE > 2.6 x 10m2. (b) U, = 3.3 x 10W4andE > 4.2 X 10m2. 

mated by U, = v&/3 for h < 3&l J2, leveling off at a constant value of around 
vJ+/ J2 for larger h. Equating this with the source flux and utilizing (37) we obtain, 

This is satisfied provided the ratio, 

satisfies F < 1. 
Eqs. (38) and (39) define the velocity and layer depth profiles which can then be 

matched with inviscid profiles at a point, say xN, at which viscosity becomes impor- 
tant. In Figure 5, the shallow layer solutions (dashed curves) are matched to the 
geostrophic adjustment solutions from Figure 4 (solid curves). In contrast to the 
previous scaling (Eqs. 35 and 36) each inviscid solution can only be matched to a 
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Figure 6. Side view of the axisymmetric configuration used in the slope front laboratory 
experiments. The right-hand figure shows the equivalent topography produced by centrifu- 
gal acceleration. 

viscous solution with a particular value of U,. .!J, therefore uniquely determines both 
the geostrophic adjustment and viscous parts of the solution. This also differs from 
previous solutions in that the dense layer extends arbitrarily far down the slope, 
irrespective of the extent of the inviscid part of the flow. Both the increase in 
alongslope velocity and decrease in layer depth with distance offshore, are associated 
with the change in bottom slope. 

For F > 1, the source flux exceeds the downslope transport U, that can be carried 
by the shallow layer. Nagata et al. (1993) suggested that the flow must then be 
unsteady with dense fluid accumulating near the source without affecting the 
downslope flow. However, these conditions clearly cannot be sustained indefinitely. 
A more consistent scenario for F > 1 is that accumulation of source fluid increases 
the layer depth and steepens the front until the more traditional Ekman scaling takes 
over. Transitions between the two regimes can also occur where the bottom slope is 
changing. In Figure 4 for example, F > 1 for all x > 0.043, so strictly speaking there 
should be a transition to the shallow layer behavior at this point. 

We can summarize the results of this section by noting that scales (37) and (38) can 
be applied over slope regions with F < 1, while (35) and (36) can be applied over 
regions with F > 1. The validity of these scales will now be tested using results from 
laboratory experiments. 

c. Laboratory experiments. The laboratory experiments were conducted on a rotating 
table, utilizing an axisymmetric geometry to eliminate complex end effects. The 
configuration used to generate dense slope fronts is shown in Figure 6. A circular 
source of salty water was situated at the center of a cylindrical rotating tank 
containing fresh water. The bottom of the cylinder was horizontal. However, with 
rapid rotation, centrifugal accelerations distorted isopotentials in such a way that the 
gradient in fluid depth increased linearly with radius (Fig. 6). Nagata et al. (1993) 
conducted similar experiments using a conical bottom of uniform slope. Their study 
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focused on the small F regime and the results will be integrated with those from the 
current experiments to cover a wider range of parameters and behaviors. 

When dense fluid was supplied continuously at the source, a front formed and 
spread radially away from the source. This was tracked by dying the dense fluid 
(Fig. 7a). The radial velocity component at later times could be determined by 
adding a different colored dye to the dense fluid. The alongslope velocity component 
was measured by streaklines originating from radially distributed dye sources within 
the lower layer (Fig. 7b). Velocity information within the upper layer was provided by 
video recordings of floating particles. The downslope component of the flow associ- 
ated with Ekman pumping is directly evident in Figure 7b. The flows were also much 
more stable than those produced at the free surface under similar conditions 
(Condie, 1993), suggesting that the Ekman layer had a strong stabilizing influence. 

Examples of the downslope and alongslope velocity profiles are shown in Figure 8. 
After the initial transient leading edge passed, these profiles remained relatively 
constant in both layers. The downslope velocity increased with radius, r, as fluid from 
the source accelerated anticyclonically along the slope. This may have been further 
magnified by concentration of the downslope transport into a thinning layer during 
geostrophic adjustment. However, both velocity components then fell away quite 
rapidly with radius. The trends in the upper layer were very similar close to the 
source where the layer depth was small and interfacial drag predominated. However, 
a weak anticyclonic shear consistent with geostrophic adjustment was evident at 
larger radii. 

While the lower layer shear close to the source is qualitatively consistent with 
geostrophic adjustment, viscosity is clearly important over most of the flow where the 
velocity actually decays with radius. Ekman transports based on measured down- 
slope velocities (Fig. 9a) and measured alongslope velocities (Fig. 9b) have been 
plotted against the transport from the source in accordance with relation (35). The 
dimensional form of the Ekman transport is U, = (2f/u)‘12UQ, where the dense fluid 
transport is given by U e = Q/2nr for the cylindrical geometry, Q being the total 
volume flux from the source. While significant scatter is evident in Figure 9 
(discussed below), the results support the scaling and consistently indicate that 
around half of the source flux is carried within the Ekman layer. 

The graphs in Figure 9 reveal that deviations from the theoretical scaling tend to 
occur either close to the source or under conditions of high Q and small E, and 
therefore large F. In the first instance, the anomalously low Ekman transports near 
the source occur because radial transport is carried over the full layer depth during 
the geostrophic adjustment close to the source. In the second case, the weak 
dependence on Q and E is due to the influence these parameters have on mixing. 
When F > 10 strong detrainment into the upper layer was observed close to the 
source. This reduces the radial flux which needs to be carried by the Ekman 
transport, thereby decreasing u and v. 
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Figure 7. Axisymmetric slope fronts formed by the intrusion of dense water. (a) A two-second 
exposure taken 20 rotation periods after the source was turned on. The dense fluid is dyed 
and the streaks are produced by floating particles. The flow conditions were HI = 1.0 cm, f = 
4.0 s-r, Q = 12.5 cm3 s-l and E = 4.1 x lo-*. (b) Dyed streaklines within the dense lower 
layer of the slope front 50 rotation periods after the source was turned on. The azimuthal 
velocity decreases with r so that the radial velocity component associated with Ekman 
pumping becomes more evident at larger. 
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Figure 8. An example of downslope and alongslope velocity profiles from the laboratory slope 
fronts. These were measured approximately 18 rotation periods after the source of dense 
water was turned on. The radius has been non-dimensionalized by (gH~)~‘*/f and the 
velocities by (gHI)1/2 as in the theoretical figures. The conditions were HI = 1.0 cm, 
f = 2.0 s-l, Q = 12.5 cm3 s-l and E = 9.1 x 1O-2. Multiply the x-axis by E-I/* = 3.3 to obtain 
units of internal deformation radii. 

While these experiments are mostly characterized by relatively large values of F, 
there is some evidence in Figure 9 that the Ekman scaling also begins to break down 
as F -+ 1. Furthermore, Nagata et al. (1993) note that their shallow layer solution is in 
quite good agreement with their laboratory results at low rotation rates (i.e. small F) 
and breaks down at higher rotation rates. These findings are consistent with our 
theoretical analysis which suggests that there should be a transition from the shallow 
layer solution to the more traditional Ekman solution at around F = 1. This is most 
clearly demonstrated by Figure 10, in which velocities from the current series of 
experiments and a selection covering the parameter range of Nagata et al’s. experi- 
ments are plotted against F. Despite differences in the shape of the two topogra- 
phies, the combined data reveal a fairly continuous transition between the two 
regimes. The traditional Ekman scaling works well for F > 1, although the influence 
of mixing is again evident for F > 10. 

The implication of the laboratory results for ocean slope fronts is that bottom 
friction will limit the offshore migration and alongslope velocities associated with 
geostrophic adjustment, while enhancing the offshore transport within the boundary 
layer. If the production of dense water is small enough to satisfy F < 1, then it will be 
carried down the slope within a thin layer described by Eqs. (37) and (38). For higher 
production rates satisfying F > 1, the flow is described by Eqs. (35) and (36). While 
this provides a solid dynamical framework from which to interpret observations, its 
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Figure 9. Ekman transport based on (a) measured downslope velocities and (b) measured 
alongslope velocities, plotted against the transport from the source. 

use as a predictive tool is limited by our ability to estimate turbulent diffusivities v 
and quantify other mixing processes which may be present at real ocean fronts. 

It is also important to note that the viscous theories only strictly apply if the source 
flux is steady. For example, the laboratory experiments revealed that if the source 
was turned off after some time (U, = 0), the Ekman transport continued to remove 
dense fluid from the upper slope until its entire volume was transformed into a thin 
viscous bottom flow which spread slowly down the slope. Only then did the dense 
water mass completely separate from the source region. It therefore appears that the 
transition of a slope front over relatively flat topography into a dense filament 
requires more than the action of bottom friction alone. Presumably alongshore 
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Figure 10. Downslope and alongslope velocities, non-dimensionalized in accordance with Eq. 
(35) and plotted against F. The solid squares have been replotted from the study of Nagata 
et al. (1993). 

gradients in either the topography or the dense water production rate must also be 
present. 

3. Dense filaments 

Downstream from the dense water source, alongslope gradients in forcing or 
topography, combined with frictional effects in the alongstream momentum balance, 
may eventually move the front down the slope and away from the coast. It will then 
form a dense filament which intersects the bottom at two points (Fig. lb). Vertical 
viscosity is again likely to play a strong role in the dynamics of these flows. After 
deriving inviscid solutions, the influence of both a simple bulk friction parameteriza- 
tion and more realistic Ekman layer dynamics will be examined. The latter reveals 
how dense fluid is pumped out of the filament and down the slope within the bottom 
Ekman layer. This behavior is confirmed by laboratory observations. 

a. Two-layergeostrophic adjustment. To calculate a solution we will again assume that 
the flow is hydrostatic, geostrophic in the cross-stream direction, and has uniform 
potential vorticity. Solutions (26) (28), (29) and (30) for the layer depths and 
velocities can therefore be carried over from Section 2. However, when combined 
with the new boundary conditions: 

h&t) = 0, (40) 

h(G = 0, (41) 

h*&) = & (42) 

h*h) = ff,, (43) 
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they yield a new set of constants 

4 
e&4 e-km ekw e-k5x4 \-I IIf4 + (a - l)H* 

c4 
ekyrs e-km ek-5 e-k5rs I& + (a - l)H* 

CS 
= K3ekw K3e-k3r4 Kgekw Kse-kw * (cx- 1) . (44) 

\c6, , 
&ekjxs K3e-kx K5eksrs KSe-km 

\ 
(a - 1) 

I 

To close the problem we need to be given x4 and x5 or alternatively, be able to 
determine them from the upper layer velocities v*(x4) and v*(x~) using Eq. (29). The 
cross-sectional area beneath the front can also be found by integrating (15), 

s x; h ok = x5 - x4 + V(Q) - v(x4). (45) 

An example of a two-layer dense filament solution is shown in Figure lla. It is 
assumed that H.+ = H,, so that there is zero horizontal shear in the upper layer at x5. 
Anticyclonic shear is generated by compression of fluid columns in both layers. 
However, the magnitude of this effect decreases with increasing upper layer depth. 
The horizontal shear in the lower layer is insensitive to the filaments location on the 
slope. However, solutions for fronts further offshore (not shown) reveal that the 
velocity becomes increasingly unidirectional and negative as Coriolis accelerations 
increase to balance the larger bottom slope. 

b. Deep filaments with dissipation. A particularly simple solution can be found for 
dense filaments which reach a sufficient depth that any motions generated in the 
upper layer are negligible. This is also a convenient configuration in which to 
examine the effects of dissipation. Geostrophy in the reduced gravity system is given 
by Eq. (18) while potential vorticity conservation (Eq. 15) is replaced by 

v, = Ah - 1, (46) 

where A is the fractional change in the potential vorticity due to dissipation. The 
exact functional relationship between A and the alongstream coordinate is unknown. 
However, we do know that almost any type of friction will tend to broaden the 
filament and reduce the magnitude of the negative shear. These correspond to an 
increase in potential vorticity so that A will grow with distance downstream. After 
examining the influence of the bulk parameterization A, we will consider how the 
Ekman layer formulations from Section 2b might be applied to filaments. 

Combining (18) and (46) yields 

h, - E-I& = s, - e-l, 

which has the general solution 

h= 
Es, - 1 h (C&(hlt)“2 + cse-n(X/t)“2 - I), 

(47) 

(48) 
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Figure 11. Dense filament solutions for E = 10m4, (Y = 103, x4 = 0.05 and xs = 0.10. (a) 
Two-layer solution with H4 = 2.25 and H* = H5 = 6.0. (b) One and a half layer solution with 
H.+ = 6.0 and no dissipation (A = 1). The dashed curve represents the deviation from the 
geostrophic adjustment solution associated with vertical diffusion in a shallow filament 
which satisfies condition (38) and F < 1. (c) Same as (b), except that the dashed curve 
represents the deviation from the geostrophic adjustment solution associated with vertical 
diffusion with F > 1. This example hasxs = 0.075 and UE = 8.0 x 10m3 E1j2. In all plots 
multiply the x-axis by l -1/2 = 100 to obtain units of internal deformation radii. 

where c7 and cs are constants. Applying boundary conditions (40) and (41) yields 

1 
c7 = 

ex4(A/p + exs@i4 
112 7 (50) 

e(x4+x~)(A/#2 

c8 = 
ex4(A/e)“2 + exs(Ale)1’2 ’ (51) 

In the reduced gravity dissipative system, (18) and (46) also provide an expression for 
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Figure 11. (Continued) 

the volume flux, 

s xy vh a!x = B(Xg) - B(q), 
where 

B(x) = +2 + E(h - J&x)) 

(52) 

is the Bernoulii function for this system. Volume flux is therefore conserved if B is 
constant along the streamlines x4 and x5. Given the initial values of B(x4) and B(q), 
(53) can be used to determine x4 and x5 as a function of h. 

Before examining the effects of X, we compare the deep filament solution without 
dissipation (h = 1) represented by the solid curve in Figure llb to the two layer 
solution of the same width in Figure lla. Without potential vorticity constraints on 
the upper layer, the filament is required to undergo less compression in the vertical 
and therefore less horizontal shear develops. The shape of the velocity profile is 
similar to continuously stratified numerical solutions (Ezer and Weatherly, 1990; 
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Figure 12. One and a half layer dense filament solutions of velocity (top), depth (center) and 
transport (bottom) for E = 10m4, cx = 103. Flux is conserved between profiles, while the 
potential vorticity increases by the factor A. The depth profile for h = 3e extends from x4 = 
0.14282 to x5 = 0.24524, but using this vertical scale is almost indistinguishable from the 
topographic profile. 

Fig. S), except that the latter decays smoothly to zero at the outer edges of the 
filament. 

The main effects of the parameterized dissipation in the model are to allow the 
filament to descend the slope, while increasing its width and reducing its mean 
horizontal shear. Solutions based on relations (48) and (49) for layer depth, velocity 
and transport are presented in Figure 12 for three values of A and constant flux. 
Friction causes the filament to broaden and move down the slope. The speed actually 
increases in response to the steepening slope and loss of potential energy. However, 
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Figure 13. Broadening of a dense filament due to frictional increase in potential vorticity by a 
factor h. The total increase shown in these figures is 50e-folds. The volume flux is conserved, 
while E = 10m4 and (Y = 103. If the potential vorticity increases linearly with distance 
off-shore (upper) then the rate of descent decreases with distance downstream. However, if 
the rate of change of potential vorticity is proportional to its local value, then the dense 
water will descend ever more rapidly down the continental slope (lower). 

the horizontal shear across the flow decreases as relative vorticity is dissipated. This 
is also accompanied by more uniform transport across the filament. 

The broadening of the constant flux filament in Figure 12 is plotted against X in 
Figure 13. In the first instance (Fig. 13a), potential vorticity increases linearly with 
distance offshore, while in the second (Fig. 13b), it increases exponentially. While the 
latter might be preferred on the basis that the level of dissipation should depend on 
the local value of the potential vorticity, observations of the Norwegian Overflow and 
the Mediterranian Outflow reveal trajectories which are more consistent with those 
in Fig. 13a (Smith, 1975). While these flows are influenced by mixing and the detailed 
topography, the Norwegian Overflow conditions are otherwise consistent with those 
in Figure 13a. A quantitative comparison with Smith’s Figure 7 suggests that the 
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alongslope e-folding distance is around 40 km, so that the length of the vertical axis in 
Figure 13a is 2000 km or around four non-dimensional units. 

The flux-conserving example in Figures 12 and 13 parameterizes the effect of the 
boundary layer in increasing potential vorticity, but ignores losses in alongslope flux 
due to Ekman pumping down the slope. This could be improved if the downslope 
transport were known. One possibility is that the alongslope velocity plateaus at vN 
where the shallow layer solution from Section 2b becomes applicable. Matching the 
velocities given by (37) and (49) indicates that the transition always occur at the 
midpoint of the filament, (x4 + x5)/2, as shown by the dashed curve in Figure llb. It 
is therefore only relevant to thin filaments which satisfy condition (38) over their 
entire width. Under these conditions, dissipation is a major influence throughout the 
filament depth and downslope velocities are comparable to alongslope velocities. 

For thicker filaments, the dynamics over the interior are distinct from those in the 
boundary layer and the more traditional Ekman scaling from Section 2b can be 
applied. However, in this case, the Ekman transport accumulates over the width of 
the filament and relation (35) is replaced by 

where XE is again the location at which vertical viscosity becomes important. The 
layer depth for x > XE is then given by Eq. (36) with U, replaced by U, and h(xE) 
calculated from (48). An example solution is shown in Figure llc using U, = 8.0 x 
10m3 E1’2. This is close to the largest transport which can be maintained far down the 
slope. For slightly larger U,, h goes to zero at some point on the slope. This 
observation can be expressed more generally using (36) with h > 0 or 

(55) 

for all x > XE. Alternatively, by eliminating UE between (54) and (55), this can be 
expressed purely as a constraint on XE. The specific value of UE, or equivalently& at 
a particular alongslope location is determined by the upstream history of the filament 
and therefore can only be uniquely specified by a three-dimensional model. 

It is interesting to compare the cross-stream structure of the bulk parameteriza- 
tion model and the boundary layer models. The major qualitative difference is the 
pronounced asymmetry which develops between the upslope and downslope sides of 
the filament in the boundary layer models. This is also evident in numerical models 
which resolve the bottom boundary layer (Ezer and Weatherly, 1990) and even those 
with parameterized bottom friction which acts preferentially in shallow regions 
(Jungclaus and Backhaus, 1994). 

c. Laboratory experiments. The configuration used to generate filaments in the 
laboratory is shown schematically in Figure 14. Dense fluid entered through the base 
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Figure 14. Plan view of the configuration used in the dense filament experiments. 

of the cylindrical tank used in the previous experiments. A narrow channel, extend- 
ing vertically from the bottom to the free surface, carried the intruding fluid out to a 
prescribed radius where it spread onto the slope. This method produced far less 
mixing than an isolated source over the slope (Smith, 1977) and therefore allowed 
smaller density anomalies to be used. This resulted in deeper currents with less 
dissipation. After leaving the channel, the dense intrusion formed into a filament 
which flowed azimuthally along the topographic contours. Figure 15 shows the 
development of an intruding water mass beneath a deep upper layer at a relatively 
low rotation rate. While most of the flow followed the axisymmetric topographic 
contours, some of the transport was pumped down the slope within the bottom 
Ekman layer, causing significant broadening of the flow, 

Figure 16 shows azimuthal velocities measured from dye streaks over a radial 
section 90” from the radius at which the intrusion was introduced. The velocity 
profile varies very little over the duration of the measurements: It is characterized by 
strong anticyclonic shear on the upslope side and much weaker cyclonic shear on the 
downslope side. The alongslope speeds reach a maximum close to the radius of the 
channel exit and their values typically exeed vN by an order of magnitude. This 
suggests that the filament is much deeper than the Ekman layer and should be scaled 
accordingly. 

The theoretical solutions shown in Figure 16 are based on values ofX4,q measured 
from photographic images similar to Figure 15, and the depth Hi of the dyed 
intrusion measured as it first exited the channel. The solid velocity curve corresponds 
to the A = 1 solution. Increasing X reduces the size of the velocity peaks at the outer 
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Figure 15. Photographs of the development of an intruding filament. The dense fluid is dyed 
and the number of rotation periods since the source was turned on is shown in the top 
left-hand corner. The conditions were 01 = 0.25, f = 3.0 s-l, Q = 2.7 cm3 s-r and E = 3.8 x 
10m3, giving an Ekman number of E* 7 1.5 x 10e3 and a Rossby number of R = 1.3 x 10-a. 
These values fall near the border between Smith’s (1977) Class I and Class II flows. 

edges and makes the profile more step-like in shape. However, any improvement in 
the data fit is marginal, suggesting that dissipation has had relatively little influence 
on this part of the filament. On the other hand, the geostrophic adjustment solution 
breaks down completely on the downslope side ‘of the filament. Here the velocity 
structure can be fitted by the Ekrnan solution from Eq. (54). Selecting v(xE) to 
maintain consistency with the experimental data is equivalent to specifying the 
downslope transport U,. For the example in Figure 16, l.J, decreases with r (due to 
the circular geometry) from a maximum of 9.2 x 10e4 at r = 1.4. 

The viscous part of the layer depth solution taken from Eq. (36) predicts a 
horizontal interface. This is an artifact of the circular geometry, which requires that 
the downslope transport be inversely proportional to the radius. While h(r) could not 
be accurately measured experimentally, the total volume flux can be compared to the 
theoretical estimate for s vhdr. The solution in Figure 16 gives an alongslope flux 
of 7.5 X 10m3. Losses through Ekman pumping can also be estimated using the 
product of the transport in Eq. (54) and the filament pathlength 7rxJ2. This yields an 
Ekman flux of approximately 2.3 x 10-3, which gives a combined flux of 9.8 x 10e3. 
This is slightly less than half the measured source flux of 2.1 x lo-*. While some of 
this discrepancy may be due to detrainment into the upper layer, very substantial 
losses are also evident within a boundary current which develops along the outer 
channel wall (Fig. 15). Taking into account such losses, the theoretical flux predic- 
tions appear to be reasonably consistent with the laboratory measurements. 

The flows in Figures 15 and 16 were relatively stable, allowing meaningful 
comparisons with the theoretical solutions. However, at higher rotation rates the 
filaments tended to break-up into a string of eddies as described by Smith (1977). 
Still further increases in rotation rate helped re-established a more coherent current 
with anticyclonic eddies aligned along the downslope edge. Leakage of fluid down 
the slope within the Ekman layer was evident even for these less viscous flows. 
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Figure 16. Radial profiles of azimuthal velocity from a dense laboratory filament recorded 90, 
140 and 250 rotation periods after the source was turned on. The experimental conditions 
were (Y = 0.25, f = 3.0 s-l, Q = 2.7 cm3 sr and E = 2.37 x 10-3, giving E* = 9.6 x 10m4 and 
R = 8.6 x 10m3. These are compared with a theoretical solution using x4 = 0.4, x5 = 1.5, 
HI = 2.5 cm and A = 1, matched to an Ekman scaling solution with E = 5.3 x 10m4 and U, = 
9.2 x 10e4. The corresponding layer depth solution is also shown. 

Ekman pumping also appears to have increased the size of the anticyclonic eddies by 
driving divergent motions within the boundary layer. For example, the eddy radii 
were at least a factor of two greater than the free surface experiments of Griffiths et 
al. (1982) and the inviscid estimates of Griffiths et al. (1982) Thompson and Young 
(1989) and Nof (1990). Some distance downstream of the source, the dye pattern also 
suggests the presence of topographic Rossby waves. These propagate in the same 
direction as the intrusion and could be generated by the radial outflow at the source 
or eddy motions further downstream. In either case, they may enhance the stability 
of the mean flow by carrying away cross-stream momentum. 
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Figure 17. Photographs of the development of a dense filament with cx = 0.25, f = 8.0 s-l, Q = 
2.7 cm3s-* and E = 3.8 x 10m3, giving an Ekman number of E* = 2.2 x low4 and a Rossby 
number of R = 5.8 x 10T3. This run is significantly less viscous than any of the flows 
produced by Smith (1977). 

The laboratory results for dense filaments can be compared with the flow regimes 
reported by Smith (1977). These were defined in terms of a second Ekman number, 

and a Rossby number, 

(57) 

where s is taken here to be the slope where the dense fluid exits the channel. Smith’s 
most inviscid flows were referred to as Class I and fell within the range lo-” < E * < 
(R, 10m2). They consisted of a string of eddies interconnected by a strongly meander- 
ing jet. Our experiments yielded almost identical behavior within this regime and 
therefore are not shown. The slightly more viscous flow shown in Figure 15 falls near 
the boundary between Smiths Class I and Class II (i.e. R 2: E* < 10e2). While the 
general structure is similar to that described for Class II, there was no evidence for 
the small-scale instability described by Smith (1977). Finally, flows such as that in 
Figure 17 with E * < 10-j < R < low2 were less viscous than any described by Smith 
(1977). They revealed a new mode of behavior, in which eddies formed along the 
downslope edge, but without the very strong meandering associated with Class I 
flows. However, like the previous regimes, most of the downslope transport appeared 
to be concentrated within the bottom boundary layer. 

4. Implications for deep water formation around Antarctica 
Descending water masses are particularly significant around the Antarctic conti- 

nental margin where they supply much of the deep water and most of the bottom 
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water for the worlds oceans. They also have a strong influence on biological 
productivity by replenishing deeper waters with oxygen and nutrients, while replac- 
ing subducted shelf water with upwelled water which is often rich in krill larvae. 
While observations in these regions are relatively sparse, preliminary comparisons 
can be made with some aspects of the theoretical and laboratory models. 

The Antarctic Slope Front (Fig. 2) is a robust feature along much of the Antarctic 
shelf-break. The subsurface flow is characterized by strong westward velocities and 
significant shear (Keys et aZ., 1990). The outcropping tends to be concentrated close 
to the ice cover, (suggesting small values of x2), so that there is often little surface 
evidence of the front. This is consistent with both the laboratory experiments and 
theoretical solutions, which suggest that the inviscid part of the front may be 
effectively trapped on the shelf. In the case of the solution in Figure 3a, the width of 
the front is less than two internal deformation radii, (geH1)“*/f, and reaches 
maximum speeds approaching the wave speed (g&,) 1’2. This width is consistent with 
data from Figure 2, however, the inviscid solutions overestimate observed velocities 
by up to a factor of two (Jacobs, 1991). 

Frictional effects beyond the Antarctic shelf-break are revealed by tracers such as 
salinity, dissolved oxygen, silicate and phosphate, which appear to have been carried 
down slope within the bottom boundary layer. The density characteristics of these 
waters led Jacobs (1991) to conclude that much of the deep ocean is ventilated by 
waters descending from the bottom boundary layer beneath the Antarctic Slope 
Front. If this is true, then the dynamical balance near the leading edge of the front is 
likely to be similar to that in the viscous theory and laboratory experiments. 
Qualitatively, the front will move offshore and the alongslope velocity will increase 
only until the Ekman flux approximately balances the production of new dense water. 
The structure of the viscous region of the flow will depend on the magnitude of F, 
which in terms of dimensional variables becomes 

F _ uQ f” “* 
0 gcsv . (58) 

Using scales off - 10m4 s-l, E - 10m4, s - lo-*, v - 10m2 m2 s-l and UQ - 1 m2 s-l, 
gives F - 1. Because v is poorly constrained, any value of F near unity makes it 
difficult to differentiate between the two regimes. However, under such conditions 
the dimensional alongslope velocities, 

UQ, 

v --e 
N- f’ 

(59) 

(60) 

both give realistic estimates of around 0.1 m s-l. 
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Hydrographic data may be used more directly to identify the relevant regime. For 
example, Figure 2 reveals that isopycnals are significantly steeper than the topogra- 
phy within 10 km of the shelf break, suggesting that the normal Ekman scaling 
applies in this region. Further offshore, parts of the slope are steeper and some of the 
transport may have been lost through detrainment. These factors tend to reduce F 
and thus favor a uniform depth solution. While not obvious in the density structure, 
the corresponding salinity section reveals a layer of relatively constant depth 
extending through the 2000 m isobath (Jacobs, 1991). The depth of this layer 
collapses to around 50 m over the steeper regions, which is consistent with estimates 
based on Eq. (38). 

While there is some evidence of filament-like structures to the west of the Ross 
Sea (Gordon and Tchernia 1972; Carmack and Killworth, 1978), currently available 
data sets do not allow a detailed comparison with the theory. There is also no 
documentation of the transition of slope front water into filament structures. If the 
slope front drains through the bottom Ekman layer, then it could only form a new 
bounded geostrophic front by re-accumulating along deeper topographic features. A 
simpler mechanism would be topographic steering of the shelf water down the slope 
by features such as submarine ridges and canyons, which are relatively common 
along the Antarctic continental margins. 

5. Conclusion 

The slope front theory indicates that dense water undergoes geostrophic adjust- 
ment close to the source, where the offshore Ekman transport grows due to interior 
horizontal shear. When the Ekman transport carries most of the new dense water 
production, the velocity plateaus. While the maximum alongslope velocity is always 
determined by a balance between dense water production and Ekman transport, the 
detailed scaling depends on the parameter F. This is confirmed by results from the 
laboratory experiments. 

Extending the theory to the case of deep filaments, indicates that friction will tend 
to broaden these flows, reduce their shear, and move them down the continental 
slope into the deeper ocean. Solutions which explicitly include boundary layer 
dynamics reveal that Ekman transport grows over the upslope side of the filament 
due to the shear associated with geostrophic adjustment. Both the Ekman transport 
and alongslope velocity then plateau on the downslope side. However, the point at 
which this transition occurs can only be uniquely determined by a three-dimensional 
model. These results have again been shown to be quantitatively consistent with 
those from laboratory experiments. 

For both slope fronts and dense filaments, downslope transport was concentrated 
within the bottom Ekman layer throughout the experimental parameter range. This 
suggests that such processes may also make a major contribution to the production of 
deep water in the ocean. However, there still remains a question as to what fraction 
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of dense water descends the continental slope as dense filaments compared to 
bottom boundary layers. While the laboratory experiments tend to support a 
boundary layer mechanism, the actual balance will probably depend strongly on 
topographic details such as the presence of submarine canyons and seamounts 
(Jungclaus and Backhaus, 1994). Other major issues which have not been addressed 
here are the influences of turbulent mixing (Price and Baringer, 1994) and strongly 
stratified environments. 
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