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Multiple solutions and advection-dominated flows in the 
wind-driven circulation. Part I: Slip 

by Glenn R. Ierley’ and Vitalii A. Sheremet’s* 

ABSTRACT 
We consider steady solutions of the barotropic quasigeostrophic vorticity equation for a 

single subtropical gyre with dissipation in the form of lateral friction. Solutions are governed 
by two parameters: inertial boundary-layer width; and viscous boundary-layer width. Numeri- 
cal computations for slip conditions indicate a wedge-shaped region in this two-dimensional 
parameter space, where three solutions coexist. One of these is a viscous solution with weak 
recirculation; one a solution of intermediate recirculation; and one a strongly nonlinear 
recirculation gyre. Parametric scalings based on elementary solutions are numerically corrobo- 
rated as the first and third of these solutions are continued away from the vicinity of the wedge. 
The multiplicity of solutions is anticipated by a severely truncated Fourier modal representa- 
tion paralleling Veronis (1963). The Veronis work was originally applied to predict the 
possibility of multiple solutions in Stommel’s (1948) bottom friction model of the circulation. 
Paradoxically, it appears the solutions are, in that case, unique. 

1. Introduction 

We present a family of steady solutions of the forced dissipative barotropic 
beta-plane potential vorticity equation, one of the most basic models of the wind- 
driven ocean circulation. Save for the brief consideration of bottom friction in 
Section 5, all of the computations and figures presented refer to a single subtropical 
gyre of square aspect ratio with stress-free boundary conditions throughout. Given 
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the lengthy history of similar studies, it is surprising that anything could be said to 
warrant further attention to a problem that seems so painfully elementary, particu- 
larly in comparison to present primitive equation general circulation models. How- 
ever, careful computation reveals the presence of multiple solutions to the quasigeo- 
strophic equations caused by the north-south symmetry breaking of the beta-effect. 
In the language of either algebraic geometry or dynamical systems, this is a “cusp.” 

Veronis (1963) first adumbrated this possibility in a model with bottom friction by 
using a severe Fourier truncation of the governing equations to obtain a cubic 
equation for the steady state amplitudes. Making suitable adjustments to the present 
case of lateral diffusion, the slip condition equivalent of Veronis’ predicted location 
of the “cusp” retains a surprising qualitative validity in spite of the extreme 
truncation, the essential reasons for which we discuss later in the paper. Ours is 
hardly the first realization of multiple equilibria in barotropic models of circulation. 
Sakai (1986) for example, exhibits such solutions for a model of the Kuroshio. His is 
a local study, rather than full basin, with specified inflow and outflow. As we do here, 
he compares the qualitatively correct prediction of a low order model with the results 
of a highly resolved computation. 

How has it been that a generic feature of the quasigeostrophic equations3 would 
remain unremarked in standard expositions of large-scale circulation theory? 

Stommel’s seminal description appeared in 1948 and that, along with Hidaka’s 
complementary higher order friction model in 1949 (with subsequent explicit solu- 
tion in Munk, 1950) admitted attack by linear and weakly nonlinear analysis. These 
analytic methods produced solutions which were, if not wholly realistic even given 
the generously large error bars in the then-prevailing observational picture, an 
apparently satisfactory zeroth order picture of great physical transparency. By the 
time the Veronis paper appeared in 1963, however, numerical models, as in the 
landmark paper of Bryan (1963), began to offer a competing source of model 
development which, though more “realistic” (e.g., in resolving time-dependent 
instability), was simultaneously less accessible to the qualitative and intuitive insights 
characteristic of analysis. 

With the increasing attention to numerical models, the notion of studying exact 
steady solutions, to say nothing of crude approximations of steady solutions, acquired 
a faint aura of quaintness even by the time of this exchange recorded at a 1972 
symposium organized by the National Academy of Sciences following a lecture by 
Steven Orszag on spectral methods for numerical modeling of fluid flow~:~ 

3. Multiple solutions can also arise as a spontaneous symmetry breaking. For example, equal forcing of a 
subtropical/subpolar gyre pair can give rise to an unsymmetrical response but this is a more tenuous 
feature since there is no reason to single out exact symmetry of forcing as a preferred condition. In 
contrast, the influence of the explicit symmetry breaking by the beta-effect is hard to escape. 

4. Source: “Numerical Models of Ocean Circulation” (page 299), proceedings of a symposium 
organized by the Ocean Science Committee of the Ocean Affairs Board of the National Academy of 
Sciences. Held at Durham, New Hampshire, October 17-20, 1972. 
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Charney: George (Veronis), you tried to model the wind-driven ocean circulation 
with how many Fourier components including the Gulf Stream? Come on now.5 
Veronis: Well, Okay. Look, I admit, but after all, it wasn’t a very good calculation. 
The only thing I can do is take refuge in saying I was pioneering. 

which bears witness to the decisive tilt in favor of computer modeling as the ultimate 
arbiter of “truth.” Quite apparently, if computer simulation failed to reveal any 
influence of Veronis’ multiple equilibria, they could be dismissed as an artifact of 
excessive truncation. Another datum: Veronis (1963) was cited in the literature six 
times in the interval 1965-1969, twice more in 1975 and one last time in 1979. 

While the flood of computer simulations may have seemed an advance to which 
the analytic queries of theoreticians would add only a trickle of occasional tabula- 
tions, paradoxically, a precise determination of both unstable steady solutions and 
their accompanying linear eigenmodes is substantially more demanding than step- 
ping the time-dependent solution forward, so one could argue that an interregnum of 
numerical neglect of foundational theoretical issues was inevitable. Computers in 
1963 were a powerful new tool. They simply weren’t powerful enough to address 
analytical questions that, at the time, would anyway have seemed nugatory. 

With the hindsight of thirty years, it was not only the advent of dynamical systems, 
with its attention to attractors, fractal sets, homoclinic orbits, and various other 
oddments, that would turn one’s attention back to a basic problem like multiple 
steady state equilibria but also some powerful results on “approximate inertial 
manifolds” or their closely related cousins of GFD provenance, slow manifolds. 
These theorems justify the application of the machinery of dynamical systems to 
precisely the evolution equations of atmospheric and oceanic circulation models. 
(For an accessible discussion in the context of the related two-dimensional Navier- 
Stokes equations see Temam, 1991.) 

Beyond that, the cusp “catastrophe” is robust. By robust we mean it is a generic 
aspect of the solution, i.e., that its qualitative consequences persist in variations of 
the original problem which may include the addition of dynamical complications 
such as topography and stratification. (For a useful introduction to the subject see 
Gilmore, 1981 or the terser, more abstract, Arnol’d, 1984.) To make a central point 
consider Figure 1. The vertical axis is chosen as a characteristic feature of the 
solution. In this paper we shall adopt the log of the global maximum of the 
streamfunction. The horizontal log axes are the controlling parameters for the 
system, i.e., the inertial and viscous boundary-layer thicknesses, S, and SW respec- 
tively. We have omitted axis calibration to focus upon the qualitative character of the 
bifurcation. (More quantitative aspects are described later but the surface is essen- 

5. By an entertaining bit of irony, Charney himself would appeal to a model every bit as crude as 
Veronis (1963) when modeling multiple equilibria as an explanation of atmospheric blocking in Charney 
and DeVore (1978). 
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Figure 1. A schematic bifurcation plot to illustrate the occurrence of multiple solutions of 
(2.1) over a finite region in the control parameter space (i&, 6,). Vertical axis indicates the 
log of the maximum of the streamfunction (or, equivalently, maximum transport). The 
arrows indicate increasing values of the respective coordinates. 

tially quantitatively correct barring some mild liberties with smoothing to create an 
easily interpolated and rendered surface.) 

As the reader can see, for a range of the parameters, there are three possible 
steady solutions. (The terminus of that region, the “cusp,” is marked with a solid 
black dot.) This much is generally familiar about bifurcation curves, though not so in 
the context of the wind-driven circulation problem. Less apparent, though equally 
important, is the magnitude of the circulation associated with the “upper branch.” 
This, as we shall see, can be considerable, say 50 ms-l everywhere in the basin. In 
addition, for fixed inertial boundary-layer width, in the limit as the viscous boundary- 
layer width tends to zero, the magnitude of this steady transport does not saturate, it 
increases without bound. 

How does our interest in the latter asymptotic limit mesh with present day GCM 
computations? 

A near-universal defining characteristic of numerical and theoretical models on 
gyre scales and larger is the use of enhanced dissipation to account for the action of 
unresolved scales of motion with eddy resolving general circulation models 
(ERGCMs), for example, commonly operating in the range of lo2 - 103m2ss1. The 
conventional wisdom is that instabilities in the aggregate act on the large scales much 
as disorder at the microscopic scale acts to produce molecular viscosity. However 
appealing this analogy, one cannot regard its application as satisfactory if two 
calculations at explicit resolutions differing, say, by an order of magnitude and each 
with a suitably tuned explicit dissipation give results differing at first order in 
predicted features of the large-scale circulation. While for the purpose of interpola- 
tion or short term prediction there is nothing invidious about setting an Austauch 
coefficient to that value producing best agreement with past and present observation, 
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as a tool for substantial extrapolation outside the range of observation (climate 
change, for example), models not shown to converge in the large scale for decreasing 
eddy viscosity coupled to higher explicit resolution are questionable at best as the 
results remain hostage to wholly unknown, and possibly gross, inadequacies in the 
subgrid-scale modeling. 

Apart from the deficiencies of subgrid-scale modeling, and while hopelessly far 
removed from the realm of direct simulation, one can at least imagine a gedanken 
experiment with the viscous coefficient of the conventional lateral friction term now 
to be regarded as tending to its molecular value. In this limit, it is of interest to know 
whether or not the time-dependent solution does “run away.” At issue is the 
existence of what we might call a sensible mechanical balance. By this, we mean that 
the magnitude of the large-scale (mean) circulation remains sensibly constant with 
changes in the boundary-layer Reynolds number. That is, the cascade of instabilities 
cuts off at some viscously controlled wavenumber, /&SC, and the large-scale solution 
becomes asymptotically independent of kvisc. Lack of a mechanical balance means 
that the amplitude of the mean circulation remains controlled by kviso diverging in 
the limit of k,isc + 03. In this regard, it is instructive to recall that the mean 
downstream velocity for simple turbulent pipe flow never ceases to depend upon the 
molecular viscosity, v. Turbulence does, however, slow the rate of growth: while the 
laminar cross-stream average grows as v-i, in the fully turbulent regime both 
experiment and theory indicate attainment of a weaker asymptotic scaling of 
log(llv). Wishful thinking aside, that oceanographic flows should behave any 
differently is neither obvious nor, in our view, likely. 

To recapitulate, a “proper” eddy viscosity would be one which, as reduced, both 
exposes progressively smaller scales explicitly to be resolved and leaves the mean 
large-scale flow sensibly unchanged. It is dubious that any present GCM has this 
property or that any form so simple as a scalar coefficient in front of some convenient 
number of powers of the Laplacian could achieve that end. A second, and deeper, 
issue is whether the large-scale flow is ultimately controlled by the actual value of the 
molecular viscosity. It is na’ive to suppose that one can provide a wholly satisfactory 
resolution of the first issue without also addressing the second. 

While these concerns inform our interests and establish a context, their resolution 
lies far over the horizon. In this paper we content ourselves with examining the 
narrow issue of characterizing the steady state solutions, fixed points in the language 
of dynamical systems, for single gyre barotropic flow. (Even this is not so elementary 
as it appears, as we have discovered from our ongoing work with no-slip boundary 
conditions.) 

In the next section we define the nondimensional problem to be solved. The 
discussion of parameters and scaling is for lateral friction with stress-free (slip) 
boundary conditions. In Section 3 we turn to a description of the steady state solution 
space. We do not approach the problem with mathematical rigor, indeed all of the 
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detailed results proceed found from computation. Strictly speaking we cannot prove 
that our numerical results are correct. They are internally consistent with appropri- 
ately small expost facto error estimates based on spectral decay. Further corrobora- 
tion emerges in the interpretation of those results by appeal to two limiting analytic 
solutions. The numerical results approaching the relevant limits are found to be 
consistent with analytic scalings. Section 4 outlines the constraints imposed by the 
integrated vorticity budget upon the class of allowed q(+) relations for flows 
dominated by advection. In Section 5, we review Veronis’ original low order 
truncation of a bottom friction model and extend the model to the case of lateral 
friction. We give a brief synopsis of bottom friction computations for the full partial 
differential equation (PDE). The low order model with lateral friction is in qualita- 
tive agreement with the full PDE. Such agreement is not found in the case of bottom 
friction. We suggest an explanation for the disparity. We conclude in Section 6 with a 
brief summary of the relation of this work to others both in oceanography and in 
general fluid mechanics. 

2. Mathematical formulation of the problem 

We consider an idealized model of the wind-driven circulation in a barotropic 
ocean of constant depth. With the shallow water, quasigeostrophic, beta-plane and 
rigid lid approximations the problem reduces to solving a two-dimensional vorticity 
equation, usually referred to in the geophysical literature as the Barotropic Vorticity 
Equation (BVE)6 

V2+ + S;J(+, V’IJJ) + ~JJ~ = S$V”+ + V x T. (2.1) 

where + is a streamfunction; J($, 5) = $& - $,L is the advection operator. (This and 
succeeding equations are all nondimensionalized.) The x-axis is directed to the east; 
they-axis is directed to the north. The zonal and meridional velocity components are 
obtained from the streamfunction with 

L4 = -*y v = tJJx. (2.2) 

The relative vorticity 5 and the streamfunction are related by Laplace’s equation 

VqJ = 5. P-3) 

The model basin is square (0 2 x I 1, 0 I y I 1). For simplicity we assume that 
there is only a zonal component of the wind stress r@) = -(l/n) cos T, so that the 
curl of the wind stress takes the form 

Vx7= -sinny, (2.4) 

which mimics the annually averaged wind stress distribution over the North Atlantic 

6. Notation as in (Pedlosky, 1987). 
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and ensures zero Sverdrup flow at the northern and southern boundaries of the 
basin. Subject to the approximations noted above, the surface wind stress is repre- 
sented by a body force in the two-dimensional equation (2.1). 

The pair of equations (2.1) and (2.3) are solved subject to zero mass flux kinematic 
boundary conditions 

*=O at x=0, x=1, y=O, y=l 

and slip (no-stress) dynamical conditions 

(2.5) 

L=O at x=0, x=1, y=O, y=l. (2.6) 

We choose this simple form since it gives a nonsingular solution in the limit of 
vanishing viscosity and hence averts certain formal difficulties associated with other 
possible choices. 

We have chosen as a length scale the basin dimension L; and as a time scale T = 
IIpL, the inverse of the Coriolis parameter variation over the meridional extent of 
the basin. The velocity scale in the interior, U, and a characteristic value of wind 
stress, T(), are connected by Sverdrup relation (Sverdrup, 1947): U = 70/pOpLH. (p,, is 
the constant density of water and H is the constant depth of the ocean.) The chosen 
nondimensionalization is convenient since the maximum nondimensional value of 
the Sverdrup transport at the western boundary is then unity. 

In nondimensional form problem (2.1)-(2.6) has only two parameters: 

(2.7) 

a measure of nonlinearity determined as the width of the inertial boundary layer (or, 
equivalently, the intensity of the wind forcing) and 

SM = (2.8) 

a diffusive parameter based upon the width of purely viscous boundary layer. AL is 
the coefficient of horizontal eddy viscosity. As s1 is increased to equality with aw an 
inertial-viscous western boundary layer forms (see, for example, Kamenkovich, 1977, 
Ch. 6 or Pedlosky, 1987, Ch. 5). 

In application to the real ocean the values of the parameters a,, i&, if not 
rigorously determined, are small, but a key point is that the structure of the solution 
of the BVE is determined by their ratio or, for convenience, the Reynolds number for 
the boundary current 

(2.9) 
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We will mostly use nondimensional variables throughout the paper; therefore, it is 
useful to bear in mind the following values typical for the subtropical gyre in the 
North Atlantic. The meridional extent is L = 2000 km. With B = 2 X lo-l3 s-l cm-‘, 
the time scale is then T = 2.5 x lo4 s. A typical value of the Sverdrup transport for 
the Gulf Stream is G = 30 Sv = 3 x 1013 cm3 s-l suggesting a scale of the 
streamfunction of q = G/H = UL = 6 x lo8 cm2 s-l, where we have assumed the 
effective depth of the Gulf Stream to be H = 500 m.’ The canonical basin interior 
velocity is I/ = 3 cm s-i. To provide the stated value of the Sverdrup transport G we 
need a wind stress of ~~~/p~ = 6 cm2s-2 which is larger than the typical observed value 
1 cm* s2. However, if we take into account the aspect ratio of the North Atlantic, 
2000 km/6500 km and the factor of l/~ we easily produce a more reasonable value 
0.6 cm2 ss2. 

The dimensionless inertia1 boundary-layer width is S/ = 1.94 x 10d2 (equivalent to 
a dimensional value of &6,L 2: 70 km) with the maximum velocity of the boundary 
current U/S, = 150 cm s-l. One cannot give an unambiguous estimate of the 
horizontal eddy viscosity, AL, but with reference to the purely frictional Munk theory 
with no-slip boundary conditions the maximum value of the streamfunction is found 
at a distance ~IT/&~,/B)“” from the coast. If we take the observed value of about 
200 km and subtract the width of the shelf, we get a value of about 130 km, which 
corresponds to AL = 1.0 x 10’ cm2 s-l. (This is less than the overestimated value 
3.3 x 10’ cm2 s-i given by Munk himself.) With this value of lateral viscosity and 
2000 km for the meridional extent of the basin we get 6,,,, = 1.84 x 10m2. This gives an 
estimate for the Reynolds number of R = 1.17 which, in the context of the Munk 
solution, would be correct only if the nonlinearity were small, 6, +Z 8,. Our estimate 
of S,, however, is determined independently, from the amplitude of wind forcing. The 
fact that even with this estimate R is larger than one means that the nonlinear terms 
are significant in the Gulf Stream. The main point is that, regarding the BVE as a 
mode1 of the mean circulation, we are interested in solutions where the inertial layer 
is as large as, or larger than, the viscous layer. 

3. Multiple steady solutions 

In this work we concentrate on steady solutions of the problem (2.1)-(2.6), their 
existence and uniqueness. (For an abstract treatment on the existence of solutions in 
a mode1 with bottom friction only, see Barcilon et al., 1988.) In general, the steady 
solution 4” of (2.1) may be unstable and thus inaccessible to traditional time stepping 

7. Strictly speaking, for a barotropic model confined to the upper 500 m of the water column, we ought 
to consider a one-and-a-half layer model. This adds a term -FIJJ, to the left-hand side of (2.3) where F = 
f&*/(g’H). Steady solutions are unaffected by this addition insofar as advection is concerned. One could 
argue whether or not to modify the dissipative term, i.e., is V*q or V4$ the more fundamental, but the 
qualitative outline presented here is unaffected by such considerations. A more compelling argument can 
be made that linear stability is appreciably affected. Because our main concern in this paper is with the 
steady solution we do not further argue the point here. 
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computations. We apply Newton’s method to a Chebyshev series expansion for the 
solution $(). This approach is little used in studies of the general circulation so, for the 
benefit of the interested reader, we have provided a few guidelines in an Appendix. 

While oceanic interest attaches to a certain parameter range for the BVE, in this 
paper we consider the global range of solutions over the entire (6,, &)-plane since 
particular features in one region, largely inexplicable if seen in isolation, are greatly 
clarified if viewed as one member of a continuous family. 

We begin by noting the existence of analytical approximations in two limiting 
cases: 

1. The solution with slip boundary conditions in the linear case (6, = 0, 6,+, +z l), 
first given in Welander (1964), may be written as 

*M(AY) = (1 - 4 - e- ( u* ( 
8 1 .a cos 5 E - 5 sin T 5 

ii 
sin T + O(&), (3.1) 

where we have introduced the stretched variable 5 = x/S,,+ This solution has a 
boundary-layer character and consists of a weak (v - O(1)) southward Sver- 
drup flow in the interior of the basin (Sverdrup, 1947) and an intense northward 
current (v - O(l/&.,)) along the western boundary (an analog of the Gulf 
Stream) which closes the pattern of circulation. 

2. The gyre solution in the highly nonlinear case (S, z+ S,,,,, &,, +z 1). 

1 
4JK = - sin m sin v 

TAT3 M 
(34 

+ & (sin 3~rx sin v + sin 71~ sin 3~) + . . . 
M 

This solution, which derives ultimately from Lamb (1932), represents a single rapidly 
rotating gyre occupying the whole basin. Odd harmonics in x beyond the first are 
systematically taken into account by averaging the wind curl over the streamlines of 
the fundamental, sin rr.x sin ny (V. Barcilon, private communication). These produce 
a slight curvature to the q(9) relation for large R. Though a little crude to neglect 
terms whose formal order is the same as that of the fundamental, that the first term 
of (3.2) alone immediately satisfies 

.I(*, s;v**) = 0 (3.3) 

is qualitatively correct in its implication that advection dominates the dynamics for 
this solution. 

Before Briggs (1980) nobody paid serious attention to this solution since it gives 
unrealistically high velocities (O(50 ms-l) for the North Atlantic) throughout the 
gyre. Restored to dimensional terms, the streamfunction is proportional to 
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(S~lS~)BL”. This upper branch of solutions, with large amplitude even in the vicinity 
of unit boundary layer Reynolds number and sharply increasing amplitude away 
from the fold, cannot be ignored merely because it is inconvenient. One can 
question, however, the extent to which it represents a characteristic feature of the 
solutions of the BVE. Though problems most amenable to analytic inquiry may rely 
upon simplifications such as forcing in the form of the gravest eigenmode of the 
Helmholtz operator, we suggest that the existence of strongly nonlinear solutions of 
the upper branch is typical, at least for the slip conditions considered. As noted in 
Cessi and Thompson (1990), Cessi (1991) and Marshall (1993), the combined 
influences of forcing and geometry are critical in determining whether recirculation 
is present. The double gyre problem is thus one obvious extension to test the merit of 
our conjecture, for which see Cessi and Ierley (1995), where an even richer spectrum 
of Briggs-type solutions is exhibited. For the moment, however, it is enough to note 
that recirculation is a dominant feature of the mean circulation in the North Atlantic 
so our restriction here to circumstances which favor its appearance is not without 
purpose. 

It is useful first to demonstrate the monotonic transition from the linear to the 
highly nonlinear case by increasing the Reynolds number R for fixed 8M (or, in 
equivalent dimensional terms, increasing the forcing at fixed eddy viscosity) since the 
dimensionless solution in the two limiting cases depends only on the diffusion 
parameter (see (3.1) and (3.2)). Figure 2 shows a sequence of six streamfunctions for 
G,,, = 0.06 as a function of increasing Reynolds number. The linear Munk solution 
(R = 0) is symmetrical relative toy = l/2. Nonlinearity breaks the symmetry; the 
maximum of the streamfunction migrates fromy = l/2 to the northwest corner of the 
basin, where the recirculation gyre forms (R = 0.2). As nonlinearity increases, the 
recirculation gyre grows in size and intensity (R = 1) and eventually extends to the 
eastern coast (R = 1.45). Then it fills the basin (R = 2) and ultimately approaches a 
basin-filling gyre solution as R + 03. In fact, the solution is quite close to this 
condition even for R = 5-10. Insofar as symmetries realized by the sequence in 
Figure 2 are concerned, there is a visual degree of similarity to the equivalent 
sequence displayed in Veronis (1966b) but one should be cautious not to overextend 
the analogy given the potentially singular character of the problem with lateral 
friction. Indeed a similarly appealing, but misleading, analogy is the identification of 
the numerical sequence of Veronis (1966b) as one tending to the Fofonoff (1954) 
unforced, inviscid solution (discussed in Section 4). As Zimmerman (1993) notes, the 
Veronis sequence is one of increasingly nonlinear solutions, but these do not recover 
the Fofonoff solution in the limit, 

Maximum transport, Q, (maximum value of the streamfunction) as a function of 
Reynolds number, R, offers a useful characterization of the solutions of the BVE. 
The transport is shown in Figure 3a as a function of R for several values of SM. The 
cases presented in Figure 2 are marked by small circles on the curve corresponding to 
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a) R=O max(l=l.ll b) R=0.2 maxJI=1.04 c) R=l maxJI=1.66 

d) R = 1.45 max$ = 3.55 e) R=2 max+=llS f) R=m max $ = 15.1 

Figure 2. A sequence of the streamfunctions illustrating the monotonic transition from the 
linear Munk solution (R = 0) to the highly nonlinear gyre solution (R = m) for tied 
viscosity, S,,, = 0.06, and increasing Reynolds number, R. The contour interval is CI = 0.1 x 

max *. 

SW = 0.06. In the linear case (R = 0) the streamfunction has a maximum, Q = 1 + 
exp(-2r/3fi) - O(S,) = 1.30 - O(S,), in the midpoint of the western boundary 
current at the latitude y = l/2 where the Sverdrup transport attains its maximum 
value. In the highly nonlinear case as the solution approaches the basin-filling gyre 
solution Q --+ l/(&5;) (with additional corrections as indicated by successive terms 
in 3.2). 

At any SW the transition from linear to nonlinear circulation occurs for R N 1, i.e., 
when the thickness of the inertial boundary layer, S,, becomes comparable to the 
thickness of the viscous boundary layer, S M. A physical argument can be made as 
follows: In steady state, global vorticity balance requires the input of negative 
vorticity by the wind to equal the diffusion of positive vorticity through the boundary 
of the basin. In the linear case, due to the beta-effect, an intense boundary layer of 
width SM forms near the western boundary. The high vorticity gradients in this region 
provide sufficient diffusion of positive vorticity from the boundary into the area 
enclosed by the streamlines passing through the interior to balance the wind. As the 
thickness of the inertial boundary layer approaches that of the viscous boundary 
layer, there forms an inertial-viscous boundary layer, the characteristic thickness of 
which cannot be less than 6, (Kamenkovich, 1966). This hinders effective diffusion of 
vorticity into the interior as compared with the previous case in which all streamlines 
thread the viscous boundary layer. In order to balance the global vorticity budget, 
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Figure 3. (a) The dependence of the maximum of the streamfunction, Q, on the Reynolds 

number R for several values of viscosity, 8,. For SW < 6,+ = 0.0555 the function Q(R) is 
multivalued corresponding to the ‘S-shaped transition from the linear to the highly 
nonlinear case. The small circles indicate cases shown in Figures 2 and 4. The triangles mark 
the three different solutions shown in Figure 4a,b,c. The secondary (Sverdrup) maximum of 
the streamfunction is labeled with QsV. The asymptotic limit (3.2) is indicated with a light 
straight line for the most inviscid transect (?iw = 0.02). Solutions were tracked along the 
middle branch using a method outlined in the Appendix. Plotted curves here and 3(b) were 
prepared using a cubic spline fit in log coordinates with arc length as the independent 
variable. 

large vorticity gradients are established by increasing velocities of the particles in the 
whole basin, which implies a breakdown of the boundary-layer solution and a 
transition to the basin-filling gyre type solution. 

In the viscous regime, say 6,,,, = 0.1 or larger, the broad features of the solution 
change relatively little in the transition from linear to nonlinear. As viscosity 
decreases, however, the difference between linear and highly nonlinear cases both in 
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Figure 3. (b) The dependence of Q on R but for several fixed values of the nonlinearity, 6,. 
The ‘S-shaped (multivalued) transition takes place for 6, < 6,, = 0.06207. Again, the 
limiting solution is indicated by the light straight line at the top of the figure. 

structure and amplitude of respective streamfunctions becomes marked. The case we 
have just illustrated is transitional between viscous and inviscid and, not coinciden- 
tally, this transect in 6, at fixed 8, passes marginally close to the “cusp” we have thus 
far indicated only schematically. On transects lying above the cusp we observe a 
monotonic evolution from Sverdrup maximum to recirculation maximum. For tran- 
sects in the cusp region, however, with increasing Reynolds number a second 
maximum appears coincident with the onset of recirculation. For the range of 
Reynolds numbers of interest, this second maximum becomes the more useful 
bifurcation parameter as it exceeds the Sverdrup value. (Even in the cusp region, for 
sufficiently large R, the highly nonlinear case returns to a single maximum with value, 
as above, of l/(&S;).) 

The most arresting feature of this problem is that, for values of 8, and 8, lying in an 
open wedge, the solution becomes multivalued. In other words, for the same values of 
the parameters there may exist three different steady solutions. This possibility is 
realized in the ‘S’-shaped curves of Figure 3a for values of SM of 0.04 and 0.02. Our 
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Figure 4. A sequence of the streamfunctions illustrating the ‘S’-shaped (multivalued) transi- 
tion from the linear to the highly nonlinear case for fixed viscosity, SW = 0.02. The upper row 
displays three different steady solutions for the same Reynolds number, R = 1, correspond- 
ing to the (a) low, (b) middle and (c) high branches of solutions. In the lower row are: (d) the 
steady solution at the low nose point; (e) the steady solution at the high nose point; and (f) 
the neutral eigenfunction +nec at the low nose point. The contour interval of the solid 
isolines is 0.1 x max a. The dotted isolines in (a), (b) and (d) are drawn with a contour 
interval of 0.2 in order to reveal the Sverdrup interior. 

most precise estimate for the tip of the wedge is S,+ = 0.0555 and S1, = 0.06207. We 
term the branches of the solution low, middle and high according to the respective 
global maximum of the streamfunction. Solutions corresponding to all three branches 
for 6,,, = 0.02 and R = 1 are shown in Figure 4a,b,c. The first two are similar, differing 
only in the intensity of the recirculation. 

In the problem thus far, we have regarded the basin aspect ratio as a secondary 
parameter but it is illuminating to turn for the moment to aspect ratio as a controlling 
parameter for the location of the cusp. As noted earlier, transects in 6, for moderate 
to large values of ZiM are monotonic: there is a unique steady solution characterized 
by a single maximum of Q which migrates smoothly from y = l/2 to the northwest 
corner of the basin (Fig. 2) as the recirculation becomes the dominant feature. 
Transects at smaller i& show an ‘S-shaped transition from linear to nonlinear 
behavior: there are multiple steady solutions over a finite range in R coincident with a 
change in topology, that is, a separate local secondary maximum, QReC, associated with 
a compact recirculation gyre arises in the northwest corner in addition to the 
mid-basin Sverdrup maximum, QsV. (See Fig. 4a.) This topological distinction 
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between a single maximum and the appearance of double maxima is strongly 
reminiscent of the breakdown of a boundary-layer approximation examined in Ierley 
(1987)-a reduced version, that is, of (2.1). In that paper, it is suggested that the 
nonexistence of an outflow boundary-layer solution for R > R, = 0.029, if it does not 
predict, at least presages the appearance of a second maximum, that associated with 
recirculation. 

This putative relationship seems to contradict experience. In solving the full 
equation (2.1) with conventional values of aspect ratio, a boundary-layer type 
solution is seen to persist to substantially greater R, e.g., 0.2 in Figure 2, before 
recirculation is observed. In Ierley (1987) a sequence of regional steady solutions is 
computed at progressively increasing aspect ratio. The import of these is that the 
delayed onset of recirculation, R, = 0.029 from the boundary-layer analysis vs. R, = 
0.20 in conventional gyre models, arises from boundary-layer corrections in the 
aspect ratio, CY, of north-south gyre scale to viscous boundary layer width. That is, in 
the limit of (Y + 00, recirculation does commence at R, = 0.029. Analysis by Mallier 
(1994) has worked in the direction of extending this asymptotic result to finite values 
of (Y but progress hinges upon successful treatment of certain Painleve logarithmic 
“resonances” which, even for the simpler case of bottom drag, present a formidable 
challenge.x Nonetheless, while a continuous transformation from the boundary-layer 
limit to the fully two-dimensional solutions discussed here cannot be analytically 
demonstrated, we believe that there is such a transformation connecting the two. The 
existence of a cusp is thus anticipated not only in Veronis’ direct low order modal 
truncation, which is one way to project the full equation (2.1) down onto a tractable 
subspace of modest dimension, but also in the (singular) projection of the problem 
down onto a parametric ODE which describes the western boundary layer. The 
latter, in a word, “inherits” the cusp, which manifests itself by the disappearance of 
the solution at a critical value of the boundary-layer Reynolds number. 

In Figure 3a the Sverdrup maximum as a function of the Reynolds number R is 
shown by the additional curve labeled Qsv for 6 M = 0.04, 6M = 0.02. For small 
Reynolds numbers the recirculation gyre maximum is less than the Sverdrup 
maximum but is nonetheless readily identifiable as an isolated knot located in the 
northwest corner of the basin. As the Reynolds number increases the recirculation 
gyre grows to dominate the Sverdrup maximum Qsy but Qsy can be smoothly tracked 
up to the edge of a “fold” in the solution space. The particular parameters at which 
the solution surface first folds back on itself trace out a curve in the parameter space. 
We speak of a given point along this curve as the “low nose.” Similarly, the solution 
surface folding back on itself a second time produces the “high nose.” The folds are 

8. Note that the transformation from boundary-layer form to the two-dimensional PDE, (2.1), is an 
unfolding: in the boundary-layer expansion at leading order, there is only a single parameter, the ratio of 
inertial to viscous scale (or, equivalently, the boundary-layer Reynolds number); as a PDE the problem 
occupies the two-dimensional parameter space we have outlined in this paper. The PDE solutions as 
represented in Figure 5 thus collapse onto a single line for (Y + m. 
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Figure 5. The location of the region in the (SM, &)-plane where the three multiple solutions 
exist. ‘L’ indicates the projection of the low nose points and ‘H’ the high nose points (or in 
other words projections of the folds of the surface shown in Fig. 1). The small circles 
indicate the solutions at the low and high nose points in some experiments. The dark small 
circles at the end of the ‘L’ and ‘H’ lines correspond to the solutions shown in Figures 4d and 
4e. The cusp point is at SW, = 0.0555,6,, = 0.06207, or Rc = 1.3987 with Qc = 3.46 marked 
by a circle at the tip. 

easily seen in the schematic surface shown in Figure 1 as the locus of points where 
the local surface normal is orthogonal to the vertical axis. The projection of these 
points onto the horizontal (a,, &)-plane forms the wedge-shaped region shown in 
Figure 5 inside of which multiple steady solutions exist. (The highly nonlinear case 
returns to a single maximum.) The bounding curves are marked ‘L’ and ‘H’, 
corresponding to the location of the low and high nose points respectively. The curve 
‘I-,’ indicating the breakdown of the boundary layer type solution closely approaches 
the line R = 1 while the curve ‘H’ deviates more and more from the curve ‘L’ with 
decreasing viscosity. From a transect at i& = 0.02 we show solutions from the edge of 
the folds (at the points indicated with open circles in Fig. 5). The solution at ‘L 
appears in Figure 4d and that at ‘H’ in Figure 4e. 

This situation is a typical example of the cusp catastrophe (Arnol’d, 1984, Ch. 2). It 
arises when a three-dimensional surface given by the equation y = x3 - 3px is 
projected onto the plane (p,y), where one sees a semi-cubic parabola y = +a312 
with a cusp at the origin. In application to our case we can make the following 
qualitative correspondences: x ff log (Q), y * log (R), p f, (log (6,+) - log (&)). 
The two branches of the semi-cubic parabola correspond to the ‘H’ and ‘L’ curves. 
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Figure 6. The solution at the cusp point SM, = 0.0555, 6,, = 0.06207, or Rc = 1.3987. (a) The 

streamfunction IJJ. Qc = max IJJ = 3.46. The contour interval is CZ = 0.1 x max $. (b) The 
potential vorticity q = y + 8:V2~. CZ = 0.1. The dotted lines show streamlines of I/J = 0.2, 1 
and 3. (c) The relative vorticity 8fV2$. CZ = 0.1. Dashed lines indicate negative values. (d) 
The scatterplot q vs. IJI produced by evaluating q and JI at evenly spaced points in physical 
space. 

Inside the small region separated by ‘H’ and ‘L’ curves there are three steady 
solutions. Outside this region there is only one solution and on the curves, two. 
Approaching either the ‘H’ or the ‘L’ curve from the interior of the wedge, two 
solutions coalesce and here, according to Whitney’s singularity theory (1955), afold 
singularity takes place. Approaching the tip of the wedge, all three solutions coalesce 
to form a so-called cusp singularity. 

Whitney proved an important theorem that the cusp is topologically stable, which 
implies that a change of variables affects neither the location of the cusp point nor 
the scaling law of ‘3/2’ for the separation of the two curves as a function of the 
distance from the cusp point. (This can be demonstrated by Taylor expansions in the 
vicinity of the cusp point.) Numerical experiments in the immediate vicinity of the 
cusp (with 6,+, = 0.054,0.055, 0.0555 and 0.056) confirm that, indeed, the difference 
in Reynolds numbers between the low and high nose points scales as M = RL - 
RN - P 3/2, while the difference in the maximum values of the streamfunction 
between the high nose point and low nose point scales as AQ = QH - QL - p112. 

The solution corresponding to the terminal point of the cusp is shown in Figure 6. 
The spatial structure of the streamfunction (Fig. 6a) is something intermediate in 
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transition from the Munk solution to the basin-filling gyre solution, with a maximum 
value of the streamfunction of Qc = 3.46. Figure 6b gives the potential vorticity 4 = 
y + &fV2+ with several superimposed typical streamlines shown by dotted lines. 
When the friction and forcing are not important in the balance of terms, fluid 
particles tend to conserve their potential vorticity, as in the recirculation gyre, where 
the isolines of 4 and q almost coincide. This conservation is implicit in a portion of 
the scatterplot of q vs. + (Fig. 6d). The recirculation gyre corresponds to larger values 
of $ where a tight functional relation is seen though not, strictly speaking, a linear 
one. The further from the center of the gyre, the greater the scatter. We return to 
these points in Section 5. The relative vorticity 5 is presented in Figure 6c. 

As implied by Figure 5, transects in the (S,, &)-phase plane for fixed nonlinearity 
6, track the transition from linear to highly nonlinear solutions. When s1 < 6,,, we 
encounter multiple solutions. Figure 3b, where Q as a function of R for several values 
of 6, is shown, illustrates this. In contrast with the transects of Figure 3a which 
asymptote to constant Q as R -+ ~0, here the limiting nondimensional solution 
diverges as R -+ 03. As one can see by reference to (2.1) an increase in 6, can be 
compensated structurally, that is, by making V2$ bear a tighter functional relation to 
$, thus decreasing the size of the Jacobian in proportion while leaving the amplitude 
of $ unchanged. No such purely structural adjustment compensates for reduction of 
&-rather + increases globally to provide for a balance of forcing against dissipa- 
tion. (Note that the dimensional streamfunction which, as noted earlier, scales as 
(8~lZ5~)13L3, diverges along transects of both fixed 6, and of fixed a,,,,). 

Although we concern ourselves principally with a characterization of steady 
solutions of the BVE, a brief word is warranted about the time-dependent behavior 
of runs in the domain of the upper branch. Naturally, these large R upper branch 
steady solutions may be linearly unstable and thus what Figure 1, for example, says 
about the expected time mean circulation is not clear. It could be the instabilities are 
such that the average of time-dependent solutions does not grow with increasing R 
even though the steady solutions do but this appealing, perhaps intuitive, speculation 
appears to be wrong, at least for the forcing considered here. Experiments with a 
variety of initial conditions all converge rapidly to the upper branch solution 
suggesting that, with stress-free boundaries, the upper branch is stable to linear and 
even arbitrary nonlinear disturbances as R --+ ~0. We conjecture that the upper 
branch is a “global attractor”: no matter what the initial condition, all solutions end 
up there after sufficiently long time. A rigorous demonstration of a similar global 
attractor appears in Foias et al. (1983) which treats the two-dimensional Navier- 
Stokes equation in a doubly periodic domain with forcing chosen as the lowest 
eigenmode of the Helmholtz problem on the same domain, viz., -sin m sin wry. 
Though the two problems are not identical, they are not far apart either. It is 
straightforward to adapt the arguments in Foias et al. to stress-free boundary 
conditions. On the upper branch, the influence of B becomes arbitrarily small with 
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increasing JI. Finally, our forcing is similar to theirs in having no internal nodes and 
being wholly convex. One expects a global attractor such as that demonstrated in 
Foias et al. to extend over a finite neighborhood of related problems. It is plausible 
that our problem falls within that neighborhood. While, as we have noted, the forcing 
chosen for this problem is far from generic owing to its proximity to the lowest 
eigenmode of the Helmholtz problem, we would risk misleading the reader if we 
failed to make the further observation that, intriguing though a global attractor may 
be, such a time-dependent response is exceptional even among the class of problems 
characterized by special forcing. Double gyre problems admit an important sinuous 
instability of the midlatitude eastward jet. Additionally, flows in bounded domains 
are typically rendered unstable by the wall-trapped shear instabilities characteristic 
of the Orr-Sommerfeld equation with no-slip boundary conditions. Periodic bound- 
ary conditions and slip boundary conditions have a number of attractive mathemati- 
cal and numerical virtues but these should not be conflated withphysical arguments 
about their merits or defects. 

4. The recirculation gyre and the Fofonoff free inertial mode 

The Fofonoff free inertial mode is a special solution of the unforced inviscid 
problem (V x T = O,&, = 0) 

J(*, y + S,2V2$) = 0 

Eq. (4.1) will be satisfied provided the potential vorticity and streamfunction are 
related by the functional equation 

y + s;vqJ = F[lJJ] 

where F is an arbitrary function. Fofonoff (1954) chose a simple linear relation, 

y + s;v2* = klJJ + yo. (4.3) 

While he considered both positive and negative slope, k, it is the positive slope which 
has come to be considered the standard solution. (As shorthand we shall, for the 
remainder of this paper, mean k > 0 when we refer to the “Fofonoff solution” 
without further qualification.) Appropriate to our single wind gyre case is the choice 
y. = 0. This solution consists of a uniform westward flow in the basin interior with 
velocities, u = -1, v = 0, and inertial boundary layers of width 6, with velocities 
O(l/&) (an accelerating western boundary layer, a current going east along the 
northern boundary, and a decelerating eastern boundary layer) closing the pattern of 
the circulation. 

Comparing the Fofonoff solution to the solution of the full (forced and damped) 
problem one can see that the recirculation gyre formed in the northwest corner of the 
basin is also characterized by a strong correlation between $ and q, a regional 
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dynamical balance characterized to leading order by J($, 4) = 0. Figure 6 shows a 
typical dependence. (A more complete discussion, incorporating the higher order 
corrections required to lift the degeneracy at leading order, appears in Cessi, et al., 
1987.) To the degree that the tight 4-G relation associated with recirculation 
approximates a straight line, one might incline to identify the response as a Fofonoff 
solution, but the slope is of the wrong sign. (Also, the residual blurring hints at the 
persistent influence of viscosity in the dynamics of the recirculation.) In a historical 
sense, these distinctions are hairsplitting. Fofonoff certainly recognized the import of 
nonlinear dynamics so that it would not be amiss to term any choice of F[+] a 
“Fofonoff solution” but, whatever the nomenclature, it is important to distinguish 
between solutions of positive and negative slope; the dynamics of the two are 
completely different. For the Fofonoff flow (dq/& > 0) the relative vorticity is 
significant only within the inertial boundary layers, while in the recirculation gyre 
(dqld+ < 0) it is important everywhere; our recirculation gyre is thus characterized 
by high velocities of the fluid particles not only in the northern (eastward flowing) 
part but also in the southern (westward flowing) part. 

The sign of dql& is determined by the additional balance between the wind 
forcing and viscous damping. To explain this let us start with the highly nonlinear 
limit when we can neglect everything in (2.1) except for the balance between the 
input (averaged along each streamline) of negative vorticity by the wind and the 
lateral diffusion of vorticity due to viscosity. If the wind curl were exactly the lowest 
Helmholtz eigenfunction, +i, = sin 71~ sin 71y, of the basin, then (inverting the 
Laplacian twice or, in the case of circular basin geometry, simply integrating in 
radius) the relative vorticity 5 and streamfunction IJJ would also be proportional to 
+,r; therefore, the q[+] relation would be exactly a straight line with negative slope. 
In Figure 7, q [+] scatterplots for several values of R at iSM = 0.06 are superimposed. 
The limiting theoretical prediction is indicated by a dotted line. One sees that as R + 
00 the solution approaches (3.2) with q[$] an increasingly linear relation of negative 
slope. (Actually, a slight residual curvature of q[+] persists because the wind curl is 
not exactly +, , but makes an excess contribution of negative vorticity near the edge of 
the gyre.) 

As R decreases the recirculation gyre shrinks in size while its center retreats to the 
northwest corner of the basin. In absence of the beta-effect an anticyclonic eddy 
would, due to interaction with its image, travel clockwise along the basin boundary. 
Only in the northwest corner can this self-propagation be balanced by the westward 
drift induced by the beta-effect. 

As the recirculation gyre gets smaller, the direct wind input of negative vorticity 
becomes less important in maintaining it. Indeed, the recirculation gyre forms even if 
the wind curl vanishes in the northwest corner. Instead, the driving agency is then 
indirect; it is transport of anomalous relative vorticity by the western boundary 
current as in Cessi et al. (1987) where a recirculation gyre is induced by prescribing 
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Figure 7. Superimposed scatterplots q vs. + for several values of R at 8, = 0.06. The dotted 
straight line shows the limiting solution (3.2) for R = 10. 

anomalously negative values of potential vorticity along the western and northern 
boundaries. 

With indirect driving, to leading order, the gyre induced has a uniform distribution 
of potential vorticity q = 4 everywhere except in narrow boundary layers close to the 
edge of the gyre and hence the slope of the q[$] relation is zero. This is a well-known 
result (Batchelor, 1956) about homogenization of vorticity inside a closed streamline 
in a rapidly rotating gyre. It is familiar in large scale circulation theory from the work 
of Rhines and Young (1982). The value of Zj is given by a so-called ‘velocity weighted 
average’ defined as 

i am - dl 
q= 

§ 
(4.4) 

uB . dl 

where the integration is performed along the boundary (subscript B) of the gyre. In 
our case the order of magnitude estimate of terms in (2.1) for 8, = 0.06 shows that 
the wind input is equally important as indirect (boundary) forcing in driving the 
recirculation gyre, which is also confirmed by the perceptibly negative, i.e., nonzero, 
slope of the q[+] relation in Figure 6. 

Impressed perhaps as much by the simplicity of the Fofonoff solution, as by any 
other consideration, authors sometimes rather loosely suggest that the linear solu- 
tion and the Fofonoff inertial flow represent the low and high amplitude limits of the 
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wind-driven ocean circulation problem but this cannot hold for lateral friction, as 
one can easily demonstrate. If we start with the Fofonoff solution and perturb it by 
adding weak forcing and lateral friction then, by applying the integral vorticity 
constraint to a typical streamline of the Fofonoff solution 

we discover that the terms in (4.5) have the same sign and thus the integral vorticity 
constraint cannot be satisfied. The conclusion is, as Pedlosky is careful to emphasize 
(Ch. 5, Section 11) that adding lateral friction and wind forcing does more than 
slightly modify the Fofonoff flow, it completely changes the solution. Resonant 
excitation of the Fofonoff free mode is simply not possible in the case of lateral 
friction. 

With bottom friction, iSsV2\cr, it is indeed possible to treat small bottom friction and 
wind forcing as a perturbation of the Fofonoff flow as in Niiler (1966). By analogy 
with the lateral friction, one can introduce a parameter Rb = &/as to characterize 
inertial and dissipative effects in a boundary layer. As Rb varies from small to 
intermediate, Rb - O(l), the recirculation grows in the northwest corner and quickly 
extends to the eastern boundary. During this stage the q vs. $ scatterplot evolves 
from that typical of Sverdrup flow to the well defined linear q[$] relation of positive 
slope, k, characteristic of the canonical Fofonoff solution. However, as Rb increases 
further, basin velocities grow until eventually the inertial boundary-layer thickness 
6,& becomes comparable to the basin scale. The slope then changes sign, as 
indicated in Figure 8. In the limit as Rb -+ ~0, the solution ultimately approaches 
2/(~~6~) sin rrx sin 7iy. Thus, with bottom friction, the classical Fofonoff solution is 
only an intermediate state in transition to a large amplitude solution in the form of a 
basin-filling gyre. (Again, vide Zimmerman (1993), the limit taken here is not the 
particular one that yields the Fofonoff solution, hence its appearance as a transi- 
tional feature.) 

5. Veronis model 

For comparison with the results presented earlier, it is interesting to parallel 
Veronis (1963) repeating here with appropriate modification his computation based 
upon a severely truncated Fourier series representation. (He used bottom friction 
--tisV2+ and a slightly different distribution of the wind stress curl, &i.) 

Veronis employed a streamfunction consisting of only two Fourier harmonics in 
each direction 

(5.1) 
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Figure 8. Superimposed scatterplots q vs. IJJ for several values of Rb at & = 0.005. In the 
bottom friction case the solution passes through the intermediate state, the Fofonoff 
solution, with positive slope, k = dqld+. 

and yet, when employed with lateral friction, this simple expansion gives qualitatively 
useful results, reproducing certain gross features of the full solution. 

Substituting this expression in (2.1) and keeping only those harmonics gives a set 
of four algebraic equations for the Fourier amplitudes (a, b, c, d) 

27r2b= -~b-&r4ij~a+~ 
IT 

5-1r’t) = i a + $ T46fac - 25T46hb 

5,rr’i. = - id - $ r46fab - 2%r46$c 
(5.2) 

8 
87r2i = -c - 64~~6~ d 

3 M * 

The first terms on the right-hand side come from the beta-effect; the terms with a Sf 
factor come from the nonlinearity; lateral friction gives the terms with a Sh factor; 
and 4/n is the projection of the wind forcing onto &t. 

Setting 6,, 6,,,,, and the forcing to zero we obtain analogs of the two lowest basin 
modes of Rossby waves, with a combination of 411, 421 representing +rl and a 
combination of 421, $22 representing JIzl (see (3.25.16) Pedlosky, 1987). Compare 
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also the frequencies 

8 1 1 8 1 1 
crl, = j-2 = 0.085 u*l = 3 - - = Js-s + 0.043 

with the exact values ull = l/(2&%) - 0.1125 and uzl = 1/(2fir) - 0.0711 for 
idealized basin modes. 

Let us turn to steady solutions. By setting time derivatives to zero and eliminating 
b, c and d we obtain a cubic equation for a. In the linear case (6, = 0, 6,,,, -K 1) the 
combination (a = 0, b = 3/2rr, c = 0, d = 0) represents the Munk solution (more 
precisely, only the Sverdrup interior solution since this representation does not 
resolve the western boundary layer). In the strongly nonlinear case (6, Z+ S,, 
&,, +Z 1) the combination [a = l/(rr%$), b = 0, c y 0, d e 0] represents the basin- 
filling gyre solution (3.2). (It is easy to show that the same value of a holds for the 
general case with a large number of Fourier harmonics.) Note that it is incorrect to 
use the global vorticity constraint (4.5) applied to the closed streamline +ii = 0 in 
order to obtain the amplitude a of the approximate solution Q 2: a+II (see also (3.2)). 
From this recipe, one obtains a = 1/(%r36&) which is close to the coefficient of the 
fundamental in (3.2) but nevertheless incorrect. A full accounting of successive terms 
from all the harmonics in (3.2) satisfies the balance given in (4.5) as 

16 1 1 1 TT2 2 1 + jj + 25 + . . . + * * * - = (uc 0. + 1)2 i s 1 (5.4) 

One shortcoming of the Veronis model vis-&vis bottom friction is that, at the 
indicated level of truncation, the model cannot capture the Fofonoff solution. This 
means that without forcing and friction the only solution to (5.2) is the trivial one of 
no flow (a, b, c, d = 0). However, we know that there is an infinite family of steady 
solutions given by (4.2). It is the last equation in (5.2) (which is, by the way, the least 
accurate) that selects the trivial solution. If we were to disregard this equation, the 
combination (a, b = 0, c = -32/(27r46F), d = 0), with a arbitrary, would then 
represent the Fofonoff solution with c corresponding to -k and a related toy0 (see 

(4.3)). 
The most notable result is, as we have remarked, that a low order model correctly 

anticipates the existence of multiple solutions for the case of lateral friction. While 
one could trace out the boundaries of the predicted region in the (aM &)-plane of 
multiple solutions by tracking a zero discriminant of the cubic equation, it would be 
too much to expect even crude agreement at that level as the true solutions develop a 
richer structure than can be captured by so extreme a truncation as that considered 
here. At the cusp itself, however, the exact solution is not so convoluted. There also, 
we can simplify algebra a bit. We reduce the cubic equation to the canonical form, 
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Figure 9. The solution at the cusp point according to the Veronis model. Compare this with 
the exact solution in Figure 6a. CZ = 0.1 x max (J. 

y” + py + q = 0, and setp, q = 0 to obtain 

fjM,(V) = (i2. 5 l@Tdr3 = 0.0989; 6,(V) = 0.1423 (5.5) 

and finally the Fourier amplitudes at the cusp itself: 

4 1 
a = ii3. ((S/3)2 + 4Tr46+(V)) 

= 1.1253 
(5.6) 

b = 0.31831; c = -0.45015; d = -0.19894. 

This solution is shown in Figure 9. It is a crude representation of the exact solution 
shown in Figure 6a but the likeness is good enough that the prediction that a cusp 
exists is correct. Moreover, since one knows that if a cusp exists there wiZZ be a fold 
catastrophe emanating from the cusp, the moral of Veronis (1963) is that one can 
often anticipate the effects of a variety of added dynamical effects using models of 
only modest resolution, which are entirely adequate in the vicinity of the cusp, before 
troubling to do more tedious computations at far smaller values of 6,,,, and 6,. 

Finally, with bottom friction -&V2$ only, i.e., the Stommel problem, the Veronis 
model predicts a cusp branching from 

8 1 113 

6dv) = 3 = J2--5. J&4 
0.0302. (5.7) 
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If lateral friction is taken as indicative, then one anticipates the actual ss, will be 
smaller. Paradoxically, Veronis (1966a,b) used & = 0.05 in numerical experiments 
on the full BVE, which would certainly lie above the cusp, and thus was exploring a 
regime ostensibly having a unique steady (stable) solution. 

So far we have completed only an initial numerical exploration of the bottom 
friction case. We have traced the monotonic evolution of steady solutions from linear 
to highly nonlinear for Ss as small as 0.008, i.e., there are no multiple solutions at 
least for Z$ larger than this value. Unfortunately, and paradoxically in view of the 
general thrust of this paper, in application to the case of bottom friction, we can only 
echo Veronis’ earlier quoted remark-the truncated model is too crude. It fails for 
bottom friction because the transition from linear to nonlinear behavior proceeds via 
the Fofonoff solution which, as noted above, is missed in the truncated set. 

One has to be cautious about extending the conclusion about uniqueness (and 
stability) to smaller values of &. The case of bottom friction case is technically 
demanding since, in an ideal fluid, singularities crop up like weeds. By contrast, with 
lateral friction singularities are exceptional. (This tendency toward regularity is used 
to analytic advantage by Barcilon et al. (1988) who consider the existence of weak 
solutions to the bottom friction case by adding small lateral friction and then passing 
to zero.) 

As posed here, in a square domain, direct numerical solution is hampered at 
smaller values of & owing to corner singularities (not previously discussed, insofar as 
we are aware). An intuitive explanation of these proceeds from the observation that, 
absent bottom friction, the standard Fofonoff solution is characterized by negative 
values of relative vorticity. Consider, for example, the northwest corner of the basin 
with its northward flowing western boundary current, which conserves potential 
vorticity. The apex of the corner is a stagnation point of the flow. It takes infinite time 
for a fluid particle to negotiate the corner. Adding even slight bottom friction 
proportional to the relative vorticity, -a,[, produces, relative to neighboring nega- 
tive values, an anomalous zero value for the relative vorticity in the corner. For small 
values of ?& the resulting sharp gradient in relative vorticity may trigger instability 
since, in contrast with the lateral friction, small-scale wavenumbers are not efficiently 
damped. This particular mathematical delicacy can be remedied numerically by 
moving to a smooth basin, free of corners. 

It would appear one should be able to parallel the argument given in Section 3, 
using breakdown of the boundary-layer problem for bottom friction to infer the 
existence of a cusp in the corresponding PDE. Possibly the breakdown has instead to 
do with the formation of corner singularities but an alternate explanation is that a 
cusp in the case of bottom friction might be attained only for more extreme basin 
aspect ratio, a suggestion perhaps best explored along the lines of Ierley (1987) with 
a regional model in a sequence of experiments of progressively increasing aspect 
ratio. 
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On the other hand, there is reason beyond our exploratory numerical results for 
the full two-dimensional problem and the known limitations of the truncated model 
to believe that bottom friction alone does not lead to multiple solutions. Several years 
ago Victor Barcilon (private communication) outlined an analytic demonstration 
suggesting that Veronis (1966a,b) is exceptional in its use of a wind stress curl that 
happens also to be the lowest eigenmode of the Helmholtz equation for the same 
basin. Based on a large Rossby number expansion, carried out as far as a solvability 
condition at second order, Barcilon’s results suggest the solution for bottom friction 
with V x T = sin XX sin mu is unique.9 While our wind differs slightly, it requires only a 
modest amount of good will to imagine the same proof might be extended to include 
our forcing. 

6. Discussion 

In recapitulation, we have approached the solution of the BVE with three themes 
in mind: 

The first thread is the abstract perspective of functional analysis and the theory of 
dynamical systems, as in the earlier cited work of Foias et al. (1983) illustrating 
particular circumstances in which a solution of the two-dimensional Navier-Stokes 
equation is a global attractor. While our model problem differs in some details, it is 
not implausible that, as our numerical evidence suggests, the BVE with slip boundary 
conditions has the same behavior. Though most models will exhibit a richer temporal 
evolution, the pertinence of fixed points and attractors persists, a mode of thought 
and a language that has not yet made deep inroads in the oceanographic literature. 

A second train of thought, bearing on spectral decay and the influence of the 
dissipation range upon the equilibrated large-scale circulation, dates back to 
Kraichnan (1967), who pointed out that two-dimensional (Navier-Stokes) turbulence 
differs radically from behavior we have come to accept as “natural” in three- 
dimensional flows: in two dimensions enstrophy cascades to smaller scales while 
energy flows to larger scales. In modifying the scenario adduced by Kraichnan, 
Rhines (1975) pointed out that the inverse energy cascade on a beta-plane is arrested 
at the scale @@. While evaluation of this for typical midlatitude Sverdrup interior 
flows gives a modest scale of, say, ten kilometers, one needs to be cautious. The point 
here is not whether the observed circulation conforms to theoretical speculation (or, 
to be scientific about it, vice versa) but, rather, how specific models behave in 
particular limits. For the latter, it is not fair to prejudge the answer by assuming U. 
The model determines that for us-acceptably or not. 

The final theme is the accumulated collection of theoretical ideas on strongly 
nonlinear gyres. The earliest of these, of course, is Fofonoff (1954). The inviscid, 
unforced idealization was pressed further in the equilibrium statistical mechanics 

9. Note that the case of V x T = 1 also has a special standing in regard to the posited expansion. 
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introduced by Salmon et al. (1976) which ascribes particular significance to Fofonoff 

solutions (of either sign of dq/dJI) as realizing a condition of maximum entropy. A 
particularly incisive paper by Carnevale and Fredericksen (1987) elaborated upon 
this by showing that, in the limit of a zero wavelength cutoff, the statistical 
equilibrium collapses to a single realization, a Fofonoff-like solution (though possibly 
one with a nonlinear q[$] relation) which is nonlinearly stable in the sense of 

Arnol’d. (For the BVE, however, one cannot appeal to any simple selection principle 
based on equilibrium statistical mechanics to explain the incidence of multiple steady 

solutions.) Griffa and Salmon (1989) tested the connection between the ideal inviscid 
solutions predicted by application of statistical mechanics and the solutions actually 
realized in an interesting sequence of runs with bottom friction. Their central finding 
is that the tendency toward a Fofonoff flow is crucially dependent upon the geometry 
of the wind forcing. Flows driven by a wind tending to cancel the bottom-drag torque 

around every closed streamline of the Fofonoff solution (positive dqld+) are 
“energetic, Fofonoff-like, and nearly steady.” Not so flows when the wind is in the 

same sense as the bottom-drag torque. Then the solution is turbulent, with a small 
mean. (It is impossible, of course, to conclude anything about possible differences in 

the underlying steady state (unstable) solutions that may exist in each of these cases.) 
In spite of the long observed occurrence of recirculation gyres in models with lateral 
friction, not until Marshall and Nurser (1986) and Cessi et al. (1987) did a theoretical 
framework develop comparable to that for bottom friction. (Curiously enough, for 
hard analysis, such as existence and uniqueness of solutions, as noted earlier, the 

bottom friction case is technically much more the difficult of the two.) 
One unsatisfactory aspect of these works on recirculation and the large-scale 

circulation is the degree to which they partake of answer analysis, i.e., they are 

constrained either explicitly or implicitly to a range of parameters suggested by 
observation with particular parameters standing proxy for absent dynamical pro- 

cesses particularly, as has been emphasized here, eddy viscosity (though one might 
with equal justice focus upon the considerable gaps in our understanding of transfer 
of momentum across the air-sea interface). The point is that some of these processes 
may, through their persistent secular influence, play a controlling role in determining 
the grossest order mean dynamical balance at the large scale, e.g., a linear Sverdrup 
balance of the interior. This is more explicit in the statistical mechanics of Salmon et 

al. which requires that global energy and enstropy be given aption’. It is natural to 

select values considered “reasonable” but while maximum entropy solutions are 
hypothetical states toward which it is suggested nonlinear terms are tending to drive 
the flow (much as we have proposed the fixed points can “steer” the time-dependent 
behavior) models determine for themselves what dynamical regime to inhabit. 

Much as in Griffa and Salmon (1989) where that selection turns importantly upon 
the pattern of wind forcing in relation to integral constraints over closed streamlines, 
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so we expect that the location of cusps, the multiplicity of folds and other features we 
assert are characteristic of the BVE will vary. Understanding how these elements in 
turn are affected by forcing, boundary conditions, stratification, etc., will help to 
clarify the physical origin and selection of particular dynamical regimes. Further 
progress along these lines requires that one take a serious approach to the mathemat- 
ics-sensitivity studies, papers on numerical resolution, and the like, generally have 
other objectives. 

The main point of this paper is not merely the existence of multiple solutions but 
their disparate physical character. One is not surprised that a differential equation 
observes one scaling in a viscously dominated regime and a second, asymptotic, 
scaling in the strongly nonlinear limit. The surprise is that, for the BVE, the one 
exists cheek by jowl with the other, and at a boundary-layer Reynolds number of 
order one. In that regard, the bottom friction case is the more intuitive as the 
transition from linear to nonlinear is gradual, rather than abrupt. This distinction 
highlights the influence of the form of dissipative parameterization. A second thesis 
advanced here is that even in the time-dependent case, the large amplitude upper 
branch solution may exert a significant dynamical influence. 

One cannot fail from this to appreciate the central role of dissipation in setting the 
grossest dynamical balance of models of the circulation. Indeed we expect such 
dependence is characteristic of a wide array of present two-dimensional and quasi- 
two-dimensional ocean circulation models-roughly the oceanographic equivalent of 
the earlier noted laminar u-l (or turbulent log(llu)) dependence of channel flow 
arising in this case, however, not as a reflection of the correct dependence upon 
molecular viscosity, but simply as an undesirable artifact of defective models of eddy 
viscosity. With respect to the gedanken experiment of the diffusion coefficient 
tending to molecular values, certainly we expect that there are physical processes 
that do intervene to slow, if not entirely to arrest, the tendency toward a basin-filling 
pattern of recirculation. We do not, however, hold to a Micawberish optimism that 
some rich source of dissipative small-scale disorder will simply turn up. The issue is 
which physical processes are critical. Brown and Owens (1981) suggest from ob- 
served wave stresses that coupling of mesoscale flow to the internal gravity wave field 
can provide an equivalent viscosity of order lo6 cm* s-l. Given the enormous 
disparity throughout the ocean interior of mean kinetic energy density in the internal 
wave field compared to the far smaller kinetic energy of the large-scale circulation, 
one wouldn’t be surprised that the former might constrain the amplitude of the 
latter. In some respects, our focus upon the ideal single gyre overestimates the need 
for a large eddy viscosity: we preclude, for example, the possibly significant exchange 
of vorticity between adjacent gyres moreover, when the bottom is flat, an important 
torque is missing from the right-hand side of the vorticity equation. 

Although this paper has considered only steady solutions, thus making any direct 
assertion about turbulent models tenuous at best, it is motivated by some earlier 
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direct simulations that suggested similar conclusions. Several years ago, one of us 
(GI) engaged in a collaborative program of high resolution, low viscosity, computa- 
tions done on the NCAR Cray computer. A disturbing aspect of those runs was that 
reduction of lateral friction to even 10 m2 s-l (compared to a commonly used GCM 
value of 1000 m2 s-l) gave no evidence of saturation at the large scale, that is, the 
emergence of a well defined structure and amplitude. If anything, the suggestion of 
runs for both two- and five-layer single gyre models with no-slip conditions at east 
and west was a trend toward a basin-filling time mean recirculation. Such a model 
evidently has no sensible oceanic application apart from its use with some large, 
fixed, value of the eddy viscosity. We view it as entirely likely that present primitive 
equation GCMs respond in the same way (assuming, of course, that wholly spurious 
behavior attributable simply to inadequate numerical resolution is eliminated). 

While an extensive paper cataloging statistics of the earlier Cray runs might have 
been prepared, that did not seem a satisfactory synthesis for what we intended to be 
an elementary process model. However, we did not apprehend any simple analytic 
framework about which to organize a more insightful note, hence those numerical 
results have been presented only informally in several seminars (leavened, it must be 
admitted, by a flashy color videotape of the sort that today serves so readily as proxy 
for insight). This paper is, at long last, some fruit borne of that earlier effort. 
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APPENDIX 
Solution for the steady form of (2.1) cannot be found by time stepping at Reynolds 

numbers past the onset of the first instability. Instead we tackle the two-dimensional 
nonlinear PDE directly. We have found that an expansion in Chebyshev polynomials 
efficiently resolves the characteristically sharp boundary-layered structure of the 
solution. (By efficiency, we mean that convergence as a function of increasing 
resolution is exponential in the number of degrees of freedom, rather than algebraic, 
as in the case of finite difference and finite element methods.) 

Substitution of this basis set leads to a (large) coupled set of nonlinear algebraic 
equations. Newton’s method is used to determine the solution(s) of each set. 
Application of Newton’s method requires computation of a matrix, A, (termed the 
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“Hessian”) and subsequent solution of the standard linear algebra problem: 

(A simply expresses the first variation of the residual with respect to changes in each 
of the N coefficients of the solution vector. Although the original expansion form of 
the solution finds natural expression as a matrix of coefficients, if they are regarded 
simply as algebraic unknowns, it is preferable to suppose the coefficients are 
rearranged in the form of a single column vector. The distinction is merely one of 
indexing.) 

Numerical experience with application of a spectral version of Newton’s method to 
this problem (and a variety of related two-dimensional advection-diffusion prob- 
lems) suggests several general observations which we include here since they are not 
generally noted elsewhere in the literature: 

1) Provided the solution is adequately resolved (a judgement which can be made 
from expost facto examination of spectral decay), standard application of Newton’s 
method is normally found to converge to machine accuracy in about five steps. 

2) For certain boundary conditions (typically slip), even if the solution is inad- 
equately resolved, convergence is equally rapid (to an underresolved, but typically 
qualitatively correct, result). 

3) Convergence often fails when the structure of the solution to be found differs 
grossly from the initial guess, as may be the case when one finds the very first 
solution. Normally this can be circumvented by a suitable choice of parameters to 
render the problem nearly linear. Thereafter, solutions found with initial guesses 
based on converged solutions for nearby parametric values can quickly be produced. 
As the solution sought is one of increasing nonlinearity, the “basin of attraction” of 
Newton’s method tends to shrink, with the consequence that parametric changes 
must be successively reduced to ensure convergence. 

4) Computation divides naturally into two tasks: forming the matrix A; and 
solution of Ru = 6. In those problems where it is feasible to compute the elements of 
A analytically, as here, monitoring of CPU usage shows that about 95% of the total is 
spent on the second task, i.e., solvingA = b. From the standpoint of efficiency, this is 
ideal since the latter problem is one for which most computer centers and many 
workstations are apt to have locally optimized subroutines available, e.g., those from 
IMSL or LINPACK. In our computations, we have made extensive use of the 
relevant IBM/ESSL library routines, which our experience suggests make optimal 
use of the RS/6000 architecture. A is a full nonsymmetric real matrix and not 
diagonally dominant, so neither iterative nor non-pivoting structured programs, e.g., 
sparse or banded algorithms, are applicable. The full structure ofA is, at first glance, 
a severe drawback since memory limitations can easily become a constraint on the 
attainable range of solutions while finite difference and element methods enjoy the 
advantage of a sparse Hessian matrix with consequent reductions in memory and 



734 Journal of Marine Research [53,5 

CPU time. However, the exponential convergence of the spectral formulation means 
that neither timing nor memory usage can be compared with finite difference and 
finite element methods on the basis of an equal number of degrees of freedom. 

5) Typical timing for the solution of the (nonlinearly) coupled set of the nearly 
1400 algebraic equations resulting from a 41 x 41 Chebyshev expansionlo is 65.6 
seconds per step on an IBM RS/6000 Model 350. This compares very favorably with 
the 49.4 seconds per step (CPU time, not elapsed time) we experienced on the 
UCSD Cray-YMP using putatively optimized IMSL software. Timing scales approxi- 
mately as the cube of any change in resolution (based on the Gaussian elimination 
operations count). For this problem, 1400 variables suffice to explore a wide range of 
parameter space though a few selected runs at a higher resolution of 51 x 51 have 
proved useful. Memory requirement is essentially the square of the number of 
variables. Commonly our usage has ranged from 8 Mb to 40 Mb. (Linear stability 
analysis requires twice this as the streamfunction formulation leads naturally to the 
generalized eigenvalue problemAx = A&.) 

6) In contrast with textbook treatments (e.g., Numerical Recipes) which advocate 
the use of “quasi-Newton” methods, such as that due to Broyden based on a 
sequence of rank one updates, our experience (based on experiments with the 
available range of IMSL quasi-Newton algorithms) is that such methods are less 
efficient for this class of problems and where A has the structural characteristics 
indicated. Simple application of Newton’s method with elementary quadratic minimi- 
zation in the reciprocal gradient direction is easily superior to any other method 
tried. 

With reference to the occurrence of multiple solutions, a limitation of Newton’s 
method applied to nonlinear equations is that, in order to ensure convergence, it is 
necessary to provide an initial guess that is sufficiently close to the exact solution. 
Generally this is done by starting from some known solution and then varying 
parameters of the problem. For example, one can start from the Munk solution and 
increase the Reynolds number R. Obviously one can be more or less fancy about this, 
moving a small distance at each step and either discarding previous information or 
else predicting the new solution based on first (or higher) differences. By such 
incremental means it is possible to track solutions all the way up to highly nonlinear 
gyre solutions, but only if & > S,+,,. When SW < Z&c, the solutions can be traced 
along the low branch only up to the (lower) nose point, RL, that is, the turning point 
of the curve in Figure 3a (8, = 0.04,0.02). Similarly, if one starts from the basin- 
filling gyre solution, one can descend along the high branch only down as far as the 
high nose point, RH. For S,,, < &c the low and high branches overlap each other in 
the interval of the Reynolds numbers RH < R < RL. For example, for I$,,, = 0.04, 
RL = 1.3203 and RH = 1.0377; while for 6w = 0.02, RL = 1.0735 and RH = 0.4206. 

10. The tau method is used to eliminate the last four variables in each direction. 
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The overlapping of the of the high and low branches suggests the existence of the 
middle branch but it requires a little care to obtain the solution on the middle 
branch, i.e., to get around the nose. We adopt an approach based upon the general 
spectral properties of the solution. Linearizing the BVE (2.1) about the steady 
solution $” or, in other words taking a functional derivative of (2.1) with respect to $, 
we obtain a spectral problem for the perturbations rl~‘(x, y) . exp( -icrt) 

-iuV2*’ + Sf[J(*,, 0%‘) + J(*‘, V2*0)] + *; = SbV4*’ (A2) 

with appropriate boundary conditions. Solving this spectral problem we obtain a set 
of eigenfrequencies u and corresponding eigenfunctions JI,. Normally, the eigenfre- 
quencies u are complex since, in the presence of viscosity, the problem is not 
self-adjoint. The imaginary part of the frequency gives the rate of growth (or decay) 
of the perturbation. 

The significant eigenmode is that associated with the recirculation. It is a nonoscil- 
latory eigenmode, i.e., its eigenvalue, o&, lies on the imaginary axis with &(a,+) = 
0. The pattern of the associated eigenfunction, I&~, closely resembles the recircula- 
tion gyre. The distinguishing feature of this eigenmode is that as the Reynolds 
number increases from zero to RL the eigenvalue drifts along a negative half of the 
imaginary axis and, at R = RL (corresponding to the low nose), vanishes identically. 

According to the Fredholm theorem for linear operators, the existence of a zero 
eigenvalue means that the solution of the problem is not unique. The same 
conclusions can be drawn for a zero eigenvalue of the Frechet derivative (A2) for our 
nonlinear problem.” Indeed, adding a small amount of the eigenfunction, +k,, 
corresponding to the zero eigenvalue of the solution IJJ~~ on the low branch close to 
the low nose point, we can jump to the solution on the middle branch. The 
eigenfunction *d, at the low nose point for 6,,,, = 0.02 is shown in Figure 4f. 
Essentially the same structure is found if one computes the difference of the middle 
and low branch solutions shown in Figure 4b and Figure 4a, respectively. In practice 
it is that difference, rather than a true neutral mode found by solving the associated 
eigenvalue problem, that is used to negotiate the fold. Once on the middle branch we 
can, by decreasing the Reynolds number, trace it up to the high nose point, where the 
middle branch connects with the high branch. 

There is, incidentally, a large numerical literature devoted to automated means of 
following bifurcation branches through their contortions. In many problems there 
are physically motivated parameterizations with respect to which variation in the 
bifurcating quality is rendered single-valued. Failing that, any of various intrinsic 
parameterizations can be used. In this problem, our simple-minded approach is more 

11. For a useful introduction to the FrCchet derivative see Finlayson, “The Method of Weighted 
Residuals and Variational Principles,” Academic Press, 1972. 
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than adequate. Far and away the majority of time is spent plodding along the 
successive branches, not negotiating the turns between them. 

In accord with the usual expectation of alternating stability of branches in 
bifurcation theory, on the low branch the imaginary part of the eigenvalue associated 
with the recirculation is negative, Z,(Q,,, ) < 0 for R < R,-; on the middle branch it is 
positive, Zm(uR,,,) > 0 for RH < R < RL; and on the high branch it becomes negative 
again, Zm(crReC,) < 0 for RH < R, i.e., Zm(uRCC) changes sign in passing a nose point. 
In other words the middle branch is unstable. 
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