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Parameter optimization and analysis of ecosystem models 
using simulated annealing: A case study at Station P 

by Richard J. Matear’ 

ABSTRACT 
A simulated annealing optimization algorithm is formulated to optimize parameters of 

ecosystem models. The optimization is used to directly determine the model parameters 
required to reproduce the observed data. The optimization routine is formulated in a general 
manner and is easily modified to include additional information on both the desired model 
output and the model parameters. From the optimization routine, error analysis of the optimal 
parameters is provided by the error-covariance matrix which gives both the sensitivity of the 
model to each model parameter and the correlation coefficients between all pairs of model 
parameters. In addition, the optimization analysis provides a means of assessing the necessary 
model complexity required to model the available data. 

To demonstrate the technique, optimal parameters of three different ecosystem model 
configurations are determined from nitrate, phytoplankton, mesozooplankton and net phyto- 
plankton productivity measurements at Station P. At Station P, error analysis of the optimal 
parameters indicates that the data are able to resolve up to 10 independent model parameters. 
This is always less than the number of unknown model parameters indicating that the optimal 
solutions are not unique. A simple nitrate-phosphate-zooplankton ecosystem is successful at 
reproducing the observations. To justify the use of a more complicated model at Station P 
requires additional data to constrain the optimization routine. Although there is evidence 
supporting the importance of the microbial loop at Station P, without additional ammonium 
and bacteria measurements one cannot validate a more complicated model that includes these 
processes. 

1. Introduction 

An important question in oceanographic research involves understanding the 
relationship between physical oceanography and the marine ecosystem. To assess the 
future uptake of anthropogenic CO2 by the ocean, one will need to assess how the 
marine ecosystem will respond to changes in the ocean circulation produced by 
changes in the physical forcing functions (i.e. solar radiation and the wind field) due 
to climate change. Previous box modeling studies show that the air-borne fraction of 
CO2 is strongly affected by changes in the ocean biological pump (Sarmiento et al., 
1989; Peng and Broecker, 1991; Joos et al., 1991). Simple ecosystem models provide a 
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valuable tool for understanding the interaction between the forcing functions and 
the ecosystem. 

In recent years, 1-D ecosystem models have been used to trace the flow of material 
between various components in an ecosystem (Evans and Parslow, 1985; Frost, 1987; 
Fasham et al., 1990; Radach, 1993). To apply these models, a large number of 
parameters must be specified. To assign values to the biological parameters is 
especially difficult, because unlike many chemical or physical parameters, they 
cannot be regarded as constants (Fasham et al., 1990). This problem has been 
approached by using an optimization technique to determine model parameters 
from the data. This inverse formalism provides a means of producing a set of 
ecosystem model parameters that is most consistent with the available information. 
It is a natural way of objectively assigning values to the model parameters. Inverse 
methods have been applied to observations to quantify the steady-state flow of 
nitrogen and carbon between the various components of the ecosystem model 
(Vezina and Platt, 1988; Vezina, 1989; Jackson and Eldridge, 1992). In all these 
references, a linear inverse problem was formulated to quantify the mean steady- 
state flow of nitrogen and carbon between various components in the model. Inverse 
techniques will be applied to a more complicated non-linear problem of modeling 
the seasonal cycle of the plankton dynamics. 

For ecosystem models like Evans and Parslow (1985) or Fasham et al. (1990) the 
large number of model parameters and the non-linearity of the ecosystem model 
make it difficult to evaluate the sensitivity of the model to the various parameters. 
Inverse methods provide a natural way of exploring the parameter space of an 
ecosystem model to determine sensitivity of the ecosystem model to the model 
parameters and to investigate the correlation between the various model parameters. 

The techniques presented in this paper provide a novel and general way of 
incorporating field measurements into an ecosystem model. The primary focus of this 
paper is to illustrate the use of an optimization technique to analyze ecosystem 
models. One which would determine the essential dynamics of the ecosystem model 
reflected in the available data and explore the parameter space of the model. To 
demonstrate the technique, data collected from Station P in the subarctic Pacific 
were used to optimally estimate model parameters of three different ecosystem 
model configurations. Section 2 provides a description of the different ecosystem 
models used. Section 3 describes the data from Station P used to force the ecosystem 
model and to constrain the model parameters. In Section 4, the optimization 
problem is outlined and a brief synopsis of the simulated annealing routine is 
presented. The advantages and disadvantages of the simulated annealing are dis- 
cussed and the performance of simulated annealing is compared to the conjugate 
gradient algorithm. In Section 5, the results of the optimization of the three different 
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ecosystem model configurations at Station P are presented. Section 6 discusses and 
summarizes the results of this study. 

2. Ecosystem model 

a. Model structure 
Following the suggestion of Platt et al. (1981) three different ecosystem model 

configurations were formulated to assess the necessary model complexity required to 
reproduce the observations. These models served to encompass the general knowl- 
edge of the biological conditions in the oceans. All three model configurations 
described the seasonal variation of the phytoplankton biomass and production at a 
point in the ocean. In all the models, horizontal advection and diffusion were ignored 
and the pelagic ecosystem was assumed to consist of a homogeneous mixed layer 
overlying a deeper abiotic layer (Steele, 1974). The phytoplankton and zooplankton 
were assumed to be confined and homogeneously distributed in the upper layer. 

These models have been used to model biological conditions in the Pacific and 
Atlantic oceans. In applying these models at Station P, Frost (1991) showed that the 
effect of ignoring horizontal advection and dilfusion were small. Confining the 
phytoplankton and zooplankton to the mixed layer at Station P was an oversimplifi- 
cation, but eliminated the need for detailed parameterization of mixing and plankton 
growth, grazing and mortality within the pycnocline. This simplification underesti- 
mated the integrated water column primary production at Station P in the summer 
when the significant amount of chlorophyll a can be found below the mixed layer 
(Anderson et al., 1977). 

For all three configurations, the mixed layer dynamics were not explicitly modeled, 
rather observed mixed layer depths were used to describe the temporal evolution of 
the mixed layer depth (H) 

dH 
x = I;(t). (1) 

Following Evans and Parslow (1985), changes in the mixed layer had an asymmetrical 
effect on the model depending on whether a component was motile or not. Only the 
zooplankton in the model were assumed able to maintain their position in the mixed 
layer, therefore were concentrated as the mixed layer shallowed. A shallowing of the 
mixed layer (5 < 0) introduced no new water into the mixed layer and the concentra- 
tions of nitrate, phytoplankton and other non-motile components remained constant 
in the mixed layer. Only the deepening of the mixed layer (t; > 0) generated mixing 
with the water underlying the mixed layer to produce changes in the concentrations 
of nitrate, phytoplankton and other non-motile components in the mixed layer. To 
capture this assymmetry in the model, one defines t;+(t) = max (t;(t), 0) (Evans and 
Parlsow, 1985). 
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For all three configurations, the temporal evolution of the different components of 
the models was in units of FM N. 

i. 3-component model. The first ecosystem model configuration modeled the nitrate 
(N), phytoplankton (P) and zooplankton (2) concentration in the mixed layer. The 
model was based on the Evans and Parslow (1985) model with the modification that a 
fraction of the grazed phytoplankton and of the zooplankton mortality were returned 
directly to the nitrate component. The equations for the temporal evolution of 
nitrate, phytoplankton and zooplankton concentrations were 

dN 
x = - kJ(4 fwl - PlIp + 

m + t;+(t) dP - POP 
H (N,-N)+(l-y,)y,K~+p-p 

0 (2) 

+ (1 - Y4)l-G 

dP g(P - PJZ m + t;+(t) p 
,,=[~(t,H)Ql-~11P-~~+~-~ - H 

0 

dz y&’ - PJZ -= 
dt K3 + P - PO 

- FSz-roz 
H (4) 

where NO was the nitrate concentration one meter below the depth of the mixed 
layer. For the phytoplankton growth rate, the non-dimensional nutrient limitation 
term was 

The light-limited growth rate, in units of d-l, averaged over the depth of the mixed 
layer was obtained by integrating over one day/night cycle 

a(t,H) = 2;$rF(Z)dzdt 

where F(Z) was a function describing the phytoplankton photosynthesis-irradiance 
relationship (the P-Z curve), 27 was the day-length (calculated from Brock, 1981) and 
Z was the photosynthetically active radiation (PAR) as a function of depth below the 
surface of the water. The function F(Z) was defined by the Smith function (Smith, 
1936) 

F(z) = (VP(T) + 0~~1~)~‘~ (7) 
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where VP was the growth rate as Z + 03 and cx was the initial slope of the P-Z curve. The 
maximum temperature-dependent growth was defined following Eppley (1972) 

V,(T) = 0.6(1.066)T 

and light intensity at any depth was given by 

(8) 

Z(z, t) = PAR Z(O,t)exp(-k,z-Ek,Pdz) (9) 

where Z(O,t) was the incident radiation observed immediately below the surface of 
the water, PAR was the photosynthetically active radiation, z was depth in meters; P 
was the concentration of phytoplankton in the mixed layer, the k, and k, were light 
attenuation constants with typical values of 0.04 m-l and 0.06 (FM rne3)-l m-r 
respectively (Evans and Parslow, 1985). The variation of Z(0, t) with time was 
assumed to be triangular which allowed one to analytically integrate Eq (6) (Evans 
and Parslow, 1985). 

As described above, the ecosystem model required 14 model parameters (Table 1). 

ii. I-component model. The second model configuration separated the zooplankton 
component of the 3-component model into two size classes-microzooplankton (Z) 
and mesozooplankton (M). This was based on modeling work by Frost (1987) which 
showed that only the microzooplankton have the potential grazing capacity to 
prevent a bloom of phytoplankton. The model was identical to the previously 
discussed 3-component ecosystem model with the inclusion of the mesozooplankton. 
The grazing by the mesozooplankton was parameterized following the work of Frost 
(1987) however in this model mesozooplankton was explicitly modeled. The equa- 
tions for this model were 

dN 
- = - b(t, H)QI - PIIP + 

m + t+(t) dP - POP 
dt H (N,-N)+t1-y,)~,K3+P-P 

0 (10) 
g’(Z + P)M 

+ (1 - YiM K’ + p + z + (1 - Yh)PW 
3 

dP 
z = [a@, H)Ql - /.L@ - ;y+;:‘; - m +j+@) P - K3 “,‘;“+ z (11) 

0 

dz wtp - PoP W g’ZM 
-= 
dt K3+P-P, -Fz-K,+P+Z 

dM l;(t) Yk’@ + PM 
~~=P;M-HM- K;+p+Z ’ 

(12) 

(13) 



Table 1. A list of different model parameters required by the ecosystem models. The 
uncertainty in the a priori value was used by the optimization scheme (see text) and if an 
uncertainty was not provided then the corresponding parameter was assumed to be 
specified. A check mark in the last three columns indicates whether the parameter was 
required by the 3-, 4- or 7-component model. 

Phytoplankton (P) parameters 
Exudation fraction 
Specific mortality rate 
Half Saturation constant for nutrient 

uptake 
Ammonium inhibition parameter 
Light attenuation by phytoplankton 
Light attenuation by water 
Initial Slope of P-Z curve 
Photosynthetically active radiation 
Zooplankton (Z) and 

Mesozooplankton (M)parameters 
Assimilation efficiency of Z 
Ammonium fraction of Z excretion 
Detrial fraction of Z mortality 
Fraction of Z grazing excreted as 

nitrogen metabolites 
Specific excretion rate of Z 
Specific mortality rate of Z 
Maximum growth rate of Z 
Half Saturation for ingestion of Z 
Grazing threshold of Z 
Relative preference for phyto- 

plankton of Z 
Relative preference for bacteria of Z 
Relative preference for PON of Z 
Detrital fraction of M mortality 
Specific mortality rate of M 
Maximum growth rate M 
Assimilation efficiency of M 
Specific excretion rate of M 
Half Saturation for ingestion by M. 
Bacteria (B) parameters 
Specific excretion rate 
Maximum growth rate 
Half Saturation for uptake 
Ammonium/dissolved organic 

nitrogen uptake ratio 
Detrial (N,)parameters 
Breakdown rate 
Sinking velocity 
Physical Mixing parameters 
Diffusion Rate 
Total Number of model parameters 

Symbol Aprioti value 

Yl 
Fl 

0.05 -r- 0.01 
0.024 -I- 0.05 

1.0 f 1.0 
1.5 
0.06 
0.04 
0.025 f 0.01 
0.5 

Y2 

Y3 

Y4 

0.5 +- 0.1 
0.75 + 0.3 
0.33 f 0.1 

Y5 0.6 2 0.05 
P2 0.1 * 0.5 
CL5 0.07 + 0.02 

g 1.0 + 0.2 
K3 0.5 -c 0.3 
PO 0.05 + 0.05 

Pl 0.35 -c 0.1 
P2 0.45 +- 0.1 
P3 0.2 2 0.1 
ri 0.33 k 0.1 
CL; 0.05 k 0.02 
g ’ 0.3 + 0.1 
ri 0.5 2 0.1 
r; 0.6 k 0.05 
K 0.9 r 0.1 

CL3 

vb 

K4 

q 

0.05 + 0.025 
2.0 + 0.5 
0.5 + 0.2 

0.6 + 0.2 J 

CL4 

WS 

m 

0.05 2 0.2 
10.0 +- 3.0 

3.0 -c 0.5 

Units 3 4 7 

J 
d-’ J J J 

g4-1 
J J J 

J 
m-‘(FM)-’ J J J 
m-r J J J 
(W mm2d)-* J J J 

d-’ 
d-’ 
d-’ 
PM 
PM 

J J 
J 

J J 
J J J 
J J J 
J J 

d-’ 
d-’ 

PM 

d-i 
d-’ 
CLM 

J 
J 
J 

J 
J 
J 
J 
J 
J 

J 
J 
J 

d-’ J 
md-l J 

md-i J J J 
14 18 25 

J J J 

J J J 
J 

J J 
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The daily growth rate of phytoplankton was as defined in the 3-component model. 
This model required 18 model parameters (Table 1). 

iii. 7-component model. The third model configuration was based on the model 
presented by Fasham et al. (1990) which included the microbial loop. The application 
of this model was motivated by work by Azam et al. (1983) which showed that the 
microbial loop plays an important role in the plankton dynamics in the northeast 
Pacific Ocean. The model components were nitrate (N,), phytoplankton (P), 
zooplankton (Z), bacteria (B), particulate organic nitrogen, (N,), dissolved organic 
nitrogen (Nd) and ammonium (NT) (Fasham et al., 1990). The model equations are 
presented below; for a more complete description of the model refer to Fasham et al. 
(1990). 

dlv, x = -4, W[QdNm Nr)Ip + m +;+(" (N, - No) 

$ = (1 - rdb(t, W[QdNn, W) + Q,Wlf’l 

-G - I@‘- 
m + I;+(Op 

M 

dZ t;‘(t) 
~~=Y~[G~+G~+G~I-[cL~+~~sIZ-MZ 

dB 
-jT=[UI+U2]-G2-~3B-m+;+(t)B 

(14) 

(15) 

(16) 

(17) 

dlvp - m + I;+(t) + w, 
dt - pqP - G3 - 14’~ + (1 - Y~)(G + G2 + G3) - M Np (18) 

dlv, - 
dt - -a(& WQ,(N)IP - u2 + FOB + h3k2 + (1 - Y4)&1z - 

m + I;+(t) N 
M I 

(19) 

dlv, 
dt = [(I - Y3)k2z + b4Np - u, + wJ(4 W[Ql(Nt, N) 

m + C+(t) 
(20) 

+ Q,(N)IP - M Nd* 
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The light-limited growth term was as defined in the 3-component model. The 
non-dimensional nutrient limitation terms for ammonium and nitrate were 

(21) 

QOr> = K+. (22) 
r 

The zooplankton grazing rates (in uM N d-l) were defined by the following equation 

Gj =gZ ti Cj” 

Kg ipkC, + &zC,? 

j=1...3 (23) 

k=l k=l 

where C, = P, C2 = B, and C3 = Np. 
Bacterial uptake of nitrogen in ~.LM N d-l was defined by the following equations 

u1 = vdV,B 
K4 + s + Nd 

s = min(N,, V-tNd). (26) 

This model required 25 model parameters (Table 1). 

b. Model numerics 

The full set of differential equations describing the ecosystem model was solved 
using a fourth-order Runge-Kutta algorithm. Testing of the algorithm showed that a 
one day time step was sufficient to produce accurate estimates of the concentration 
of the modeled components. The simulations were run for three years and a day, with 
the third year of data being used by the optimization routine. Typically by the third 
year, the model achieved a steady state annual cycle which was not sensitive to the 
initial conditions. At steady-state, the concentrations of the modeled components on 
the first day of the third year were identical to the concentrations on the first day of 
the fourth year. 

3. Data from Station P 

A large amount of data on biological, chemical and physical oceanography is 
available from Station P and the data used in this study are summarized in Table 2. 
For this study, the data sets are separated into data used to force the model and data 
used to constrain the model parameters. 
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Table 2. Datasets available at Station P used to force the ecosystem model to constrain 
optimization and to evaluate the ecosystem model output. 

Dataset 

Monthly incident radiation 
Daily mixed layer depth and temperature 
Seasonal cycle of nitrate 
Seasonal cycle of phytoplankton biomass 
Depth distribution of phytoplankton 
Monthly primary production observations 
Seasonal zooplankton biomass (meso- 

zooplankton) 
Monthly estimates of new production 

Bacterial nitrogen 
Surface ammonium concentration 

a. Forcing data 

Reference 

Dobson and Smith, 1985 
Tabata (personal communication) 
Wong, (unpublished data) 
Anderson et al., 1977 
Anderson et al., 1977 
McAllister, 1969; Parslow, 1981 
McAllister, 1969; LeBrasseur and Kennedy, 

1972; Miller et aZ., 1984; 
Wong, (unpublished data); Wheeler and 

Kokkinakis, 1992 
Simon et al., 1992 
Wheeler and Kokkinakis, 1990 

The forcing terms of the ecosystem model were the annual cycles of solar 
radiation, mixed layer depth, mixed layer temperature and nitrate concentration 
below the mixed layer. Data for these variables were based on averages of observa- 
tions made at Station P (see Table 2 for references). 

Mean monthly values of total solar radiation at Station P for the period of 1959 to 
1975 are reported by Dobson and Smith (1985). Their data were interpolated to daily 
values of the mean incident solar radiation (Fig. la). The daily mean solar radiation 
measurements were converted to peak values for noon by assuming the daily 
variation in light intensity was triangular. The photosynthetically active radiation 
(PAR) just below the surface at noon was assumed to be a constant fraction of the 
incident solar radiation. In reality, the ratio of PAR to total radiation is affected by 
sun zenith angle, water vapor content and aerosol optical thickness (Baker and 
Frouin, 1987). However, such complications were unnecessary for the scope of the 
present study and a constant value was used. 

Seasonal variations in the mixed layer depth (Fig. lb) were based on the average 
mixed layer depth observed at Station P between 1970 and 1980. The daily changes in 
the mixed layer depth, calculated from finite center differencing of Figure lb, 
determined the amount of entrainment or detrainment occurring at the base of the 
mixed layer (Fig. lc). The high frequency variability observed in Figure lc reflects 
the importance of episodic events on the temporal evolution of the mixed layer 
(Large et al., 1986), which was still evident after averaging eleven years of data. The 
average mixed layer temperatures for this period of time were determined by 
integrating the observed temperature measurements over the depth of the mixed 
layer (Fig. Id). The empirical relationship between phytoplankton maximum growth 
rate and temperature derived by Eppley (1972) was used to determine the maximum 
growth rate of phytoplankton in the mixed layer. 
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120 
b) 

I I 
I 

Figure 1. Observations from Station P for (a) daily incident solar radiation, (b) depth of the 
mixed layer (m), (c) the rate of the change of the mixed layer depth (m d-l), and (d) 
temperature of the mixed layer (“C). 

Nitrate concentrations collected from Station P for the period of 1970 to 1981 
provide a good sampling of the nitrate concentration in the upper ocean. From this 
data, the annual cycle of nitrate concentration in the upper ocean was produced 
(Fig. 2). Using the data in Figure 2, the nitrate concentrations below the mixed layer 
were set to the nitrate concentration 1 m below the depth of the mixed layer (Fig. 3). 

b. Constraining the parameter optimization 
To apply the parameter optimization, one must provide information that describes 

the relevant features desired in the model output (constraints). These constraints are 
then used by the optimization routine to determine the model parameters that best 
satisfy these constraints. The data available at Station P to constrain the model were 
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TIME 
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

OM 

3”fl 

----..- 

-22.5-.+/- 

--- 

Figure 2. Average seasonal cycle of nitrate concentration in the upper ocean at Station P 
in FM. 

nitrate, phytoplankton, mesozooplankton concentrations in the mixed layer and net 
phytoplankton productivity (NPP) from the mixed layer. 

Integration of Figure 2 over the observed mixed layer depths produced the values 
of the observed nitrate concentration in the mixed layer (Fig. 3). The nitrate 
concentration in the mixed layer at station P was relatively high with the seasonal 
cycle varying between 9 p.M and 16 uM. Estimate of the errors associated with the 
data were determined from the standard deviation of the surface nitrate concentra- 
tion from the seasonal mean and are shown in Figure 4a. 

Figure 3. Nitrate concentration in FM for 1 m below the mixed layer (dashed), and for the 
mixed layer (solid). 
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a) Nitrate 

100” 
Phytoplankton Productivity 

J 

1.0’ 
b) Plankton 

I I 

0 182 274 365 
days 

Figure 4. Reference run of the 3-component ecosystem model (model I) for the mixed layer 
(a) nitrate concentration, (b) phytoplankton concentration, (c) net phytoplankton produc- 
tivity and (d) zooplankton concentration. The solid lines refer to the model and the three 
dashed lines are the data and the data with + one standard deviations uncertainty. 

A series of studies on the seasonal variation of the planktonic food web (McAllis- 
ter, 1961; Stephens, 1964, 1966, 1968, 1970; Anderson et al., 1977) have shown 
Station P to be atypical because of the absence of a spring bloom of phytoplankton 
(Fig. 5). This lack of phytoplankton blooms is evident from long-term sampling at 
Station P between 1950 and 1981. Throughout this period recurring spring blooms of 
phytoplankton were not observed and the blooms that did occur were small never 
exceeding 2 mg Chl a m-3. For Station P the typical concentrations of phytoplankton 
for all seasons are between 0.3 and 0.4 mg Chl a m-3. In contrast, in the subartic 
North Atlantic, even the most remote oceanic sites have phytoplankton blooms every 
year of greater than 1.0 mg Chl a m-3 (Parson and Lalli, 1988) when the major 



19951 Matear: Ecosystem model analysis using optimization 583 

Figure 5. Chl a concentration measured at Station P, redrawn from Anderson (1977). 

nutrient levels decrease to zero. Although there is no spring bloom at Station P, there 
is a spring peak in primary production followed by a summer peak in zooplankton 
biomass (Parslow, 1981). In general at Station P, the phytoplankton are uniformly 
distributed in the mixed layer and there is no subsurface maximum (Anderson et al., 
1977). For the model, the phytoplankton concentration was set to 0.15 ~J,LM + 
0.05 l.r.M (mg C: mg Chl a = 50). The error reflected the uncertainty in the Chl a 
concentrations and the uncertainty in converting the phytoplankton Chl a concentra- 
tion to a carbon and then nitrogen concentration. 

The net phytoplankton productivity (NPP) was defined as the difference between 
the photosynthetic rate of phytoplankton minus the respiration rate of phytoplank- 
ton. Estimates of NPP are available at Station P over a period of several years 
(McAllister, 1969; and Parslow, 1981). To constrain the model, the estimated NPP of 
Parslow (1981) was used with a correction to account for the production occurring 
below the mixed layer in the summer (Fig. 4~). The differences between McAllister 
and Parslow estimates of NPP were used to assign the errors in the net phytoplank- 
ton productivity (8NPP) measurements (Fig. 4~). 

At Station P, the standing stock of mesozooplankton vary seasonally in a fashion 
qualitatively similar to the cycle of primary production (Frost, 1987). From 1965 to 
1980, the standing stocks of mesozooplankton were collected using vertical hauls of 
150 m with a 350 ~J,M mesh net (Fulton, 1983). A mean seasonal cycle of meso- 
zooplankton standing stock at Station P was given by Miller et al. (1984). To constrain 
the optimization, the averaged nitrogen concentrations of mesozooplankton calcu- 
lated by Frost (1987) for this data were used. The errors in the mesozooplankton 
concentrations were estimated from the difference between the two curves calcu- 
lated by Frost (1987). The mesozooplankton concentrations, along with the pre- 
scribed errors, are shown in Figure 6d. 
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a) Nitrate 

,Ol-----l 

C) Phytoplankton Productivity 
100, I I 

Figure 6. Reference run of the 4-component ecosystem reference model (model IV) for the 
mixed layer (a) nitrate concentration, (b) zooplankton concentration, (c) net phytoplankton 
productivity, (d) microzooplankton concentration, and (e) mesozooplankton concentration. 
The solid lines refer to the model and the three dashed lines are the data and the data 
with +- one standard deviations uncertainty. 

4. Optimization problem 
a. Implementation 

The cost function was used to describe the desired features of the ecosystem 
model. For our optimization problem, the general cost function (J) was given by the 
following equation: 
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Figure 6. (Continued) 

where N *, P*, NPP* and M* referred to the observations with prescribed uncertain- 
ties SN, SP, SNPP and SM; 12 referred to the number of data observations in a year 
(n = 365); ~tc referred to the number of components in the model; m referred to the 
number of model parameters; Cj referred to the different components in the model 
(i.e., N, P, Z, . . .); 6T = 0.01 PM; and x referred to the model parameters. The cost 
function was composed of three penalty terms-data misfit penalty (terms l-4), 
steady-state penalty (terms 5) and the a priori parameter penalty (term 6). The data 
misfit penalty required that the model output approximately reproduced the annual 
cycle of nitrate (N), phytoplankton (P), net primary productivity (NPP) and meso- 
zooplankton (M). The steady-state penalty forced the model to produce a steady- 
state output with only a seasonal cycle, by requiring the model components at the 
start of the fourth year to be approximately equal to the values at start of the third 
year. The a priori parameter penalty on the values of the model parameters (x*) 
incorporated information on the expected value of the model parameters. By setting 
&xi in this penalty term to zero, one forced the value of Xi to be equal to the a priori 
value. 

The aprioti parameter penalty was included to try and force the model parameters 
to be within acceptable limits. The a priori values, along with their prescribed 
uncertainty, are given in Table 2. These values were derived from previous applica- 
tions of the ecosystem models (Evans and Parslow, 1985; Frost, 1987; 1991; Fasham 
et al., 1990). For easier comparison among the different ecosystem model configura- 
tions in this study, the parameters PAR, K, and KC were fixed at their a priori values. 

b. Optimization algorithm 

Simulated annealing was used to determine the optimal model parameters. The 
simulated annealing technique is well suited to handle optimization problems with 
strong non-linearity and a small number of unknown parameters (Kruger, 1993). 
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Algorithms associated with the name “simulated annealing” are stochastic and are 
based on the statistical model of the thermodynamic process for growing crystals. 
The simulated annealing method is analogous to the thermodynamics of the way 
liquid cools, freezes and crystallizes; that is, a perfect homogeneous crystal lattice 
represents a state of a solid material at a global minimum of energy. One method to 
obtain a nearly perfect crystal lattice is: (1) to heat the solid material up until it 
reaches an amorphous liquid state and then (2) cool the liquid very slowly using a 
specific scheme for decreasing temperature. The system will arrange itself into a 
state that closely resembles the structure of the perfect crystal at the global energy 
minimum, if the starting temperature is high enough to ensure nearly a random state 
and the cooling is slow enough to ensure thermal equilibrium at each temperature. 
As the system cools, each new configuration at a lower energy level than the previous 
one is unconditionally accepted by the system. However, in the thermodynamic 
system there is a non-vanishing probability related to the Boltzmann factor for a 
configuration at a higher energy level to be accepted. 

The simulated annealing algorithm is the adaptation of the process described 
above to the problem of minimizing a function and was introduced by Kirkpatrick et 
al. (1983) as an optimization tool. To define the probability of accepting a higher cost 
function, a Metropolis function, f (4, Ji, T), was used (Metropolis et aZ., 1953). 

where Ji is the current cost function, 4 is a new and higher cost function and T is a 
control parameter. A higher cost function Jj is accepted if the Metropolis function is 
greater than a random number between 0 and 1. Two applications of the technique to 
oceanographic problems are Barth and Wunsch (1990) and Kruger (1993). A good 
outline of the simulated annealing algorithm is found in Kruger (1993). 

An advantage of simulated annealing is that it is independent of the structure and 
analytical properties of the cost function and only requires the evaluation of the cost 
function. Also, the method is independent of the initial guess because the algorithm 
enforces a randomization of the initial guess. The major disadvantage is that the 
stochastic nature of the algorithm requires a large amount of computer time to reach 
an acceptable final state. Furthermore, the reliability of the method depends on the 
quality of the cooling scheme, because for practical cooling schemes one cannot 
guarantee convergence to a global minimum (cooling schemes exist which guarantee 
convergence to a global minimum but in practice they are too slow). 

Following Kruger, the simulated annealing required 6 parameters: the initial 
temperature (TO); a vector representing the standard deviations of gaussian error to 
be added to the model parameters (a,); the reduction factors for TO and a, after each 
annealing step, dT and da respectively; the maximum number of perturbations per 
annealing step (IV,,); the maximum number of acceptable perturbations required 
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before exiting from an annealing step. The vector a, was set to the standard deviation 
of the model parameters given in Table 1. To calculate the initial value of T,, 1000 
perturbations were performed by adding gaussian errors with standard deviations a, 
to the initial model parameters and calculating the mean change of the cost function, 
(AJ). T, was then given by 

where x was the probability of simulations with higher values of the cost function to 
be accepted. x was set to a value of 0.90. 

When running the algorithm, if N,,,, parameter simulations were performed or Ng 
parameter simulations were accepted, then T was reduced to T = T dT. For a given 
value of T, if N,, simulations were performed, u was reduced to u = a da. The 
remaining simulated annealing parameters were set to dT = 0.5, da = 0.75, N,, = 
2500 and Ng = 550. These parameters were arrived at by testing to insure the 
algorithm converged to the same value of the cost function independent of the initial 
guess of the model parameters. 

On a DEC alpha 3000/400, the optimizations required approximately 60 minutes 
of cpu for the 3-component model and 180 minutes for the 7-component model. The 
factors controlling the numerical demands of simulated annealing are the complexity 
of the ecosystem model which was integrated many thousands of times, and the 
number of parameters to optimize. Simulated annealing algorithm is well suited for 
these optimizations because it is numerically efficient to integrate the ecosystem 
models and because the number of parameters to be optimized was small. More 
efficient algorithms are available for solving a nonlinear optimization, such as a 
conjugate gradient, however when the cost function is a complex surface, the 
algorithm has a tendency to terminate at a local minimum (Marotzke, 1992). This 
makes the scheme very sensitive to the choice of the initial model parameters. 

To compare the performance of simulated annealing and conjugate gradient 
algorithm, the optimal parameters were also determined using a conjugate gradient 
algorithm. Only for the 3-component model did the conjugate gradient algorithm 
converge to an acceptable minimum, in about one third of the cpu time required by 
the optimization with simulated annealing. For the more complicated 4- and 
7-component models, the conjugate gradient algorithm failed. This failure was 
attributed to the complex shape of cost function, J, caused by non-linearities in the 
model which lead to discontinuities in the cost function. To successfully use the 
conjugate gradient algorithm with these models would require optimizing the model 
parameters with many different initial guesses of the model parameters in an attempt 
to find the global minimum. Given this situation, the simulated annealing technique 
was the better choice. Another added benefit of simulated annealing is that it does 
not require information on the gradient of the cost function with respect to the 
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different model parameters. This reduces the coding required in implementing the 
algorithm, enabling one to explore several different model configurations without 
much additional effort. 

c. Error analysis 

In order for the solution of the model parameters to be complete, it must include 
estimates of the uncertainty in the optimal model parameters. When the errors in the 
observations are assumed to be normally distributed this information is obtained by 
analyzing the Hessian matrix (Tziperman and Thacker, 1989). The Hessian matrix. 
H, is defined as 

CPJ 
Hz- 

aXi aXj 
fori,j= l,...m. 

By expanding cost function, J, in a power series about the optimal solution x*, to the 
lowest order in x yields 

J = J,i, + M(x - x*)~H(x -x*), (31) 

where the third and higher-order terms are neglected. If the neglected terms were 
sufficiently small, then the uncertainties in the optimal model parameters are 
normally distributed with zero mean and with an error-covariance matrix defined as 
the inverse of the Hessian, C = H-l (l-hacker, 1987). The error-covariance matrix 
provides information on the probability distribution of the optimal parameters. The 
diagonal elements of the error-covariance matrix provide a measure of the width of 
the distribution for the different optimal parameters. In previous studies which 
investigated the sensitivity of an ecosystem model to different model parameters 
(Fasham et al., 1990; Frost, 1987), the sensitivity of the model was obtained by 
separately perturbing each model parameter and observing the effect on the output 
of the model. Such parameter sensitivity analysis is comparable to the parameter 
uncertainties provided by the diagonal elements of the covariance matrix. However, 
the approaches are inversely related; the parameter uncertainties given by the 
diagonal elements of the covariance matrix provide values for separately perturbing 
each model parameter to generate a constant change in the value of the cost 
function. Therefore, the smaller the parameter uncertainty, the more sensitive the 
model output (measured by the cost function) is to changes to that parameter. A 
convenient way to compare the model sensitivity to the different model parameters is 
to divide the parameter uncertainties by their optimal values to give their relative 
uncertainties. 

The estimate of the model parameter uncertainties or parameter sensitivity only 
contain part of the information available on the sensitivity of the model to the 
different model parameters. The off-diagonal elements of the covariance matrix 
indicate the degree to which pairs of model parameters are correlated. To show the 
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Table 3. Summary of model optimizations with the three different ecosystem model 
configurations. The values of the three penalty terms of the cost function (Eq. 27) have been 
multiplied by two and divided by the total number of constraints (nt + m + number 
components in the model). An acceptable Chi-squared misfit of optimal model with the 
constraints should produce a final cost function of approximately one (Tarantola, 1987). 

Model Comments 

3-component ecosystem model 
I Reference model 

II Reference model with 
a = 0.025 

III Model II with con- 
straint on micro- 
zooplankton 

4-component ecosystem model 
IV Reference Model 
V Model IV with 

(Y = 0.025 and con- 
straints on the micro- 
zooplankton 

7-component ecosystem model 
VI Reference model 

VII Model VI with con- 
straint onf-ration 
and a = 0.025 

Number of Number 
model of data 

parameters constraints 
Cm) (4 

11 1095 
10 1095 

10 1460 

15 1460 0.8999 0.176 2.04E-04 1.09 7 
14 1825 1.281 0.131 7.74E-03 1.50 8 

20 1095 0.851 0.077 4.71E-08 0.93 9 
19 1460 1.5952 0.119 2.13E-04 1.73 10 

Data 
misfit 

penalty 

0.785 
0.84 

1.05 

Final 
A priori Steady- cost 

parameter state function Figure 
pen+ penalty (J) number 

0.222 6.05E-22 1.01 4 
0.229 l.O2E-22 1.07 

0.104 l.OOE-22 1.15 6 

relationship between the various parameters, a correlation matrix was calculated 
from the error covariance matrix (Tarantola, 1987). The correlation matrix provided 
both the relationship between various parameters at the optimal solution and 
indicated the number of independent parameters which were constrained by the 
data used in the optimization. 

In the model, the Hessian matrix was evaluated using a 3-point centered finite 
differencing scheme. To calculate the error-covariance matrix, the Hessian matrix 
was inverted using a Singular Value Decomposition (SKY) algorithm. The SW 
algorithm allows one to invert a singular matrix and provide the rank and condition 
number of the inverted matrix. 

5. Model results for Station P 

The simulated annealing optimization was applied to the 3-, 4- and 7-component 
ecosystem model configurations to determine optimal model parameters at Station 
P. Table 3 summarizes the different model optimizations performed in this study. For 
the three model configurations, the reference run refers to an optimization of the 
model parameters where the output of the ecosystem model was constrained by the 
nitrate, phytoplankton, mesozooplankton (only for 4-component ecosystem model) 
concentrations in the mixed layer, the net phytoplankton productivity (MY) from 
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Table 4. Model I optimal parameters with the estimated one standard deviation uncertainty 
(same units as given in Table 1). 

Model Parameter 
Standard deviation 

uncertainty 
Relative 

uncertainty 

1.368 
0.0002 
0.123 
1.315 
0.952 
0.500 
0.015 
0.500 
0.005 
0.040 
0.060 
2.064 
0.518 
0.484 

3.009 2.200 
0.006 30.0 
0.048 0.390 
0.450 0.342 
0.067 0.070 
0.001 0.002 
0.002 0.133 

- 
0.001 

- 

- 
0.20 
- 

- - 
0.149 0.072 
0.018 0.035 
0.055 0.114 

the mixed layer and by aprioti model parameters. To these reference runs, additional 
constraints are introduced to the model to improve the model output and assess their 
effect on the optimal model parameters. 

a. 3-component ecosystem model 

The optimization of the reference run (model I) successfully reproduces the 
observed nitrate, phytoplankton and NPP observations (Fig. 4). The model also 
produces very high concentrations of zooplankton in the mixed layer. Before dealing 
with the high zooplankton concentrations, it would be instructive to first discuss the 
error-covariance matrix of the optimal model parameters. 

The error-covariance matrix of the optimal model parameters provides insight into 
the behavior of the ecosystem model. Shown in Table 4 are the calculated model 
parameters along with their estimated (one standard deviation) uncertainty deter- 
mined from the diagonal elements of the error-covariance matrix. All optimal model 
parameters appear reasonable with the exception of p+ p,5 and (Y parameters which 
are too small. The calculated model parameter uncertainties indicate that the 
parameters, g, yz, y5 and m are the parameters best determined by the optimization 
and hence that the model output is most sensitive to these parameters. The small 
uncertainities in some of the parameters controlling the zooplankton biomass 
indicate that these parameters are well-defined by data constraints without explicit 
constraints on the zooplankton concentrations. The high model sensitivity to m is the 
consequence of requiring the model nitrate concentrations in the mixed layer to 
approximate the observations. 
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Table 5. The correlation coefficients between the optimal parameters of model I. 

Model Parameters 

591 

Kl 1.00 -0.96 0.95 -0.38 0.37 0.28 -0.52 -0.97 0.60 0.45 -0.13 
Pl -0.96 1.00 -0.83 0.12 -0.38 -0.39 0.71 0.88 -0.54 -0.41 0.10 
0 0.95 -0.83 1.00 -0.63 0.32 0.14 -0.25 -0.99 0.58 0.44 -0.15 
k -0.38 0.12 -0.63 1.00 0.11 0.31 -0.55 0.53 -0.42 -0.26 0.04 

g 0.37 -0.38 0.32 0.11 1.00 0.12 -0.21 -0.32 0.27 0.18 -0.03 
Y2 0.28 -0.39 0.14 0.31 0.12 1.00 -0.53 -0.21 -0.01 0.20 0.19 
P5 -0.52 0.71 -0.25 -0.55 -0.21 -0.53 1.00 0.37 -0.11 -0.13 0.15 
a -0.97 0.88 -0.99 0.53 -0.32 -0.21 0.37 1.00 -0.49 -0.41 0.18 
m  0.60 -0.54 0.58 -0.42 0.27 -0.01 -0.11 -0.49 1.00 0.49 0.11 
Y5 0.45 -0.41 0.44 -0.26 0.18 0.20 -0.13 -0.41 0.49 1.00 0.13 
Y4 -0.13 0.10 -0.15 0.04 -0.03 0.19 0.15 0.18 0.11 0.13 1.00 

Kl Pl 0 K3 R Y2 P5 a m Y5 Y4 

For model I, the inversion of the Hessian is ill-conditioned (condition num- 
ber = 106) indicating that a number of the model parameters are highly correlated. 
The correlation matrix calculated from the error-covariance matrix gives the correla- 
tion coefficients between all pairs of optimal model parameters for model I (Table 5). 
This table reveals that the parameters separate into one set of highly correlated 
parameters (It-1 > 0.8) and 7 independent parameters. The formulated optimization 
problem is only able to uniquely determine 8 independent parameters. The set of 
highly correlated parameters, p+ Kr, 0 and (Y are systematically related and therefore 
the solution determined for these parameters is not unique. For example, fixing (Y = 
0.025 (W me2 d)-‘, the optimization routine (model II) produces model output that 
is nearly identical to the output from the reference model as evident in the similar 
values of the final cost function (Table 3). 

The output of model I and model II produces high concentrations of zooplankton. 
Although there are very limited data on the microzooplankton concentrations at 
Station P (Boyd et al., 1995), both models predicted considerably greater concentra- 
tions than expected. To investigate the effect of a lower zooplankton concentration 
on the model, an artificial constraint on the zooplankton concentration is employed 
(model III). With this added constraint, the model still produces a good fit with the 
data (Fig. 7). The model generates a small increase in phytoplankton concentrations 
from 0.1 to 0.3 pmol kg-’ in the spring and a slightly reduced NPP in spring (Fig. 7) 
as compared to the reference model (Fig. 4). The presence of the weak spring 
phytoplankton bloom is caused by the imbalance between the rapidly growing 
phytoplankton and the grazing of phytoplankton by the zooplankton. The imbalance 
is initiated by presence of a feeding threshold in the zooplankton grazing which 
turns-off zooplankton grazing until the threshold concentration is exceeded. Once 
the phytoplankton concentration exceeds this threshold the imbalance is quickly 
restored as the zooplankton graze down the phytoplankton. For this model configu- 
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100C 
Phytoplankton Productivity 

, 

0 91 182 274 365 
days 

b Plankton 
1.0 

J-----l 0.8 

days 

d) Zooplankton 

0 91 182 274 
days 

36 

Figure 7. Model III (3-component ecosystem model) as Figure 5. 

rations, the feeding threshold parameter is necessary to stabilize the model, and 
without this parameter the model displays very erratic behavior. 

Optimal parameters from model III along with their estimated uncertainties are 
given in Table 6. The constraint on the zooplankton concentrations cause Ks to 
decrease by 1 FM to 0.43 ~.LM, g to increase by 13% to 1.07 d-l and p,5 to increase by 
0.03 d-l to 0.047 d-l from that of model II. The other model parameters are not 
significantly affected by including the zooplankton constraint. With the exception of 
the mortality rate of zooplankton, p5, the parameters displaying the largest uncer- 
tainty in model I did not experience a reduction in uncertainty in model III. This 
indicates that the added zooplankton constraint does not further constrain these 
parameters. However, the zooplankton constraint is important to increasing the 
value of lq and reducing its relative uncertainty. With the added zooplankton 
constraint, the correlation matrix does not significantly change from the correlation 
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Table 6. Model III optimal parameters with the estimated one standard deviation uncertainty 
(same units as given in Table 1). 

Model Parameter 

Kl 
kl 

e 

K3 

g 

Y2 

zm 

kv 

KC 

m 
Y5 

Y4 

4.786 
0.035 
0.074 
0.431 
1.075 
0.504 
0.047 
0.500 
0.025 
0.040 
0.060 
2.312 
0.527 
0.570 

Standard deviation Relative 
uncertainty uncertainty 

4.739 
0.013 
0.034 
0.093 
0.085 
0.001 
0.002 

- 

0.990 
0.371 
0.460 
0.215 
0.080 
0.002 
0.043 

- 
- 
- 
- - 

0.203 0.088 
0.021 0.040 
0.076 0.133 

- 
- 

matrix for model I (Table 5); still only 8 independent parameters are resolved by the 
optimization problem. 

By only relying on the nitrate, phytoplankton and NPP data, the model does not 
produce acceptable zooplankton concentrations. Tests with this model configuration 
did show that the zooplankton concentration is sensitive to only a few model 
parameters and that small changes to these parameters produce large changes in the 
zooplankton concentration. Modeling work by McAllister (1969) also exhibited large 
fluctuations in the zooplankton biomass when the zooplankton growth and mortality 
terms were changed by small amounts. 

b. I-component ecosystem model 
The 4-component model configuration was formulated in an attempt to produce 

more acceptable microzooplankton concentrations than the 3-component configura- 
tion. The addition of another trophic level to the model enables one to include the 
mesozooplankton data but increases the model complexity. The 4-component refer- 
ence model (model IV) is successful at reproducing the nitrate, phytoplankton and 
NPP observations (Fig. 6) however, this model predicts higher microzooplankton 
concentrations and a peak in the mesozooplankton concentrations that occurs later 
in the season than observed. 

The optimal model parameters for this model, along with their calculated uncer- 
tainties, are given in Table 7. Both the 3-component and the 4-component models 
predicted similar values for diffusion (m) with small uncertainty which indicated that 
this parameter is not sensitive to the formulation of the ecosystem model. The 
uncertainties of the 4-component model parameters are all greater than the uncer- 
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Table 7. Model IV optimal parameters with the estimated one standard deviation uncertainty 
(same units as given in Table 1). 

Model Parameter 
Standard deviation 

uncertainty 
Relative 

uncertainty 

2.246 
0.0002 
0.121 
1.131 
0.133 
0.470 
0.009 
0.500 
0.010 
0.040 
0.060 
2.143 
0.554 
0.068 
0.939 
0.604 
0.189 
0.345 

3.665 1.627 
0.010 50.0 
0.032 0.264 
0.682 0.603 
0.069 0.519 
0.133 0.283 
0.0001 0.011 

- 
0.001 

- 
0.100 

- - 
- - 

0.153 0.071 
0.028 0.051 
0.011 0.162 
0.087 0.093 
0.021 0.035 
0.029 0.153 
0.083 0.240 

tainties for corresponding parameter of the 3-component model. The increases in 
the 4-component model parameter uncertainties show that by adding the meso- 
zooplankton component to the 3-component model, the model complexity increases 
more than the constraints. 

Like the 3-component model, the correlation matrix calculated from the error- 
covariance matrix of model IV reveals that many of the parameters are highly 
correlated (Table 8). The model parameters separate into 3 sets of highly correlated 
parameters (Irl > 0.8) and 7 independent parameters. The 3 sets of highly correlated 
parameters are (1) Kr, lo+ 8, y2 and OL, (2) K3 and g and (3) g’ and y>. The 
optimization problem determines only 10 independent parameters; the optimal 
parameters are not a unique solution. The 4-component model determines 2 more 
independent parameters than the 3-component model but requires 4 additional 
parameters. By setting (Y = 0.025 (W mm2 d)-‘, the optimal parameters produce 
model output that does not change nitrate, phytoplankton and NPP and only slightly 
reduces the micro and mesozooplankton concentrations. 

By imposing an artificial microzooplankton constraint on the 4-component ecosys- 
tem model (model V), along with cx = 0.025 (W m-2 d)-‘, the optimal parameters 
produce the results shown in Figure 8. The model produces a small peak in the 
phytoplankton concentrations in the spring, and underestimates the NPP in summer. 
Like the 3-component ecosystem model configuration, the weak spring phytoplank- 
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Figure 8. Model V (Ccomponent ecosystem model) as for Figure 7. 
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Table 9. Model V optimal parameters with the estimated one standard deviation uncertainty 
(same units as given in Table 1). 

Model Parameter 
Standard deviation 

uncertainty Relative uncertainty 

5.148 
0.051 
0.107 
0.283 
0.1450 
0.191 
0.010 
1.000 
0.025 
0.040 
0.060 
2.421 
0.533 
0.154 
1.095 
0.607 
0.295 
0.349 

5.796 1.126 
0.005 0.097 
0.028 0.266 
0.543 1.919 
1.652 1.140 
0.208 1.091 
0.000 0.045 

- 
- 
- 
- - 

0.286 0.118 
0.057 0.108 
0.002 0.015 
0.862 0.787 
0.026 0.043 
0.157 0.532 
0.104 0.297 

- 
- 
- 

ton bloom is caused by the presence of the feeding threshold parameter in micro- 
zooplankton grazing. 

The optimal model parameters have low zooplankton efficiency (yZ) and a low 
grazing rate of mesozooplankton (g’) (Table 9). Compared to the 3-component 
model (model III), model V shows an increase in the values of Ki and 8 by 3.0 and 
0.05 respectively and a decrease in the values of KS and y2 by 0.2 and 0.35 
respectively. The parameters of model V have larger uncertainties than the corre- 
sponding parameters of model III. The error-covariance matrix of model V param- 
eters still shows that only 10 independent parameters are determined. 

To produce acceptable concentrations of micro- and mesozooplankton, the com- 
puted optimal parameters are not realistic for parameters that describe the growth 
rate of micro- and mesozooplankton. This indicates that the formulation of this 
ecosystem model is inconsistent with the data, and the model requires modification 
to resolve this inconsistency (i.e. temperature-dependent zooplankton grazing rates 
or non-linear mortality rate for mesozooplankton). 

c. 7-component ecosystem model 
The optimization of the 7-component reference model (model VI) produced 

model output that resembled the data and produced a reasonable zooplankton 
concentration (Fig. 9). The lack of the spring phytoplankton bloom is attributed to 
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Figure 9. Reference of the 7-component ecosystem model (model VI) for the mixed layer (a) 
nitrate concentration, (b) phytoplankton concentration, (c) net phytoplankton productivity, 
(d) microzooplankton concentration, (e) f-ratio, (f) bacteria concentration, (g) ammonium 
concentration. The solid lines refer to the model and the three dashed lines are the data and 
the data with of: one standard deviations uncertainty. 

absence of a feeding threshold in the grazing of phytoplankton by zooplankton which 
enables the zooplankton to more closely track the phytoplankton population than 
the previous models. However, the model’s f-ratio in the summer is 0.9 (f-ratio is the 
ratio of new production to total production), much greater than the measured 
summer f-ratio of approximately 0.5 made by Wheeler and Kokkinakis (1990) at 
Station P. 

The optimal parameters determined from the reference model produce a value for 
diffusion (m) similar to the previous 3- and 4-component models (Table 10). The 
uncertainties in the parameters of the 7-component model that are comparable to 
the 3- and 4-component model are all greater than the correspnding parameters 
from the 3- and 4-components models (models I and IV). The model parameters 
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days 

Figure 9. (Continued) 

m,yl, u2, y3 and y4 have the smallest relative uncertainties showing that the model 
output is most sensitive to changes in these parameters. 

The inversion of the Hessian matrix, required to determine the error covariance 
matrix for model VI parameters, has a condition number that is 2 orders of 
magnitude greater than the 3-component model, indicating that the problem is more 
ill-conditioned than the 3-component model and that many parameters are not 
independently resolved. The correlation between the various parameters is more 
complicated than in the previous 3- and 4-component models (Table 11). The 
parameters separated into one group of parameters that exhibited high correlations 
with each other and 8 independently resolved parameters. The lack of a distinct 
pattern to the highly correlated parameters demonstrates that the model was more 
non-linear than the previous models. The larger uncertainty in the optimal param- 
eters and the large number of highly correlated parameters indicated that the model 
constraints are insufficient to properly constrain many of the model parameters. 
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Table 10. Model VI optimal parameters with the estimated one standard deviation 
uncertainty (same units as given in Table 1). 

Model Parameters 
Standard deviation 

uncertainty Relative uncertainty 

PAR 
KV 
KC 

:1 
PI 
Yl 
* 
g 
Y2 

a 

CL2 

P5 

K3 

Y4 

Y3 

vb 

P3 

K4 

1 

CL4 

WS 

PI 
P2 

0.50 
0.040 
0.060 
2.144 
1.190 
0.0002 
0.050 
1.500 
1.410 
0.596 
0.009 
0.107 
0.052 
0.569 
0.341 
0.746 
2.094 
0.052 
0.418 
0.615 
0.053 
3.495 
0.136 
0.438 

- 
- 
- - 

0.240 0.112 
5.429 4.562 
0.037 185.0 
0.005 0.10 
- - 
1.409 1.000 
0.498 0.836 
0.011 1.222 
0.078 0.730 
0.002 0.038 
0.757 1.330 
0.021 0.062 
0.012 0.016 
1.776 0.848 
0.056 1.08 
1.078 2.580 
0.258 0.419 
0.178 3.358 

16.903 4.834 
0.333 2.445 
0.159 0.363 

- 
- 

To reconcile the model with the observed f-ratios, the model was run with (Y = 
0.025 (W m-2 d)-l and a constraint on the f-ratio (model VII). With this constraint, 
the fit to the other constraints is degraded, J = 1.73 (Table 3). The optimal parameters 
produced a model output which has lower phytoplankton concentrations, reduced 
NPP in the summer and decreased zooplankton concentrations (Fig. 10) from that of 
model VI. The average f-ratio for the model is ~0.5. The addition of the f-ratio 
constraint significantly changes the values of the optimal parameters and their 
corresponding uncertainties (Table 12). The constraint reduced the sensitivity of the 
model output of m, yl, l.~~, y3 and y4 but made the model extremely sensitive to K4, the 
half saturation constant for bacterial uptake. Model VII output is also much more 
sensitive to zooplankton preference for phytoplankton grazing, pl. 

Only limited comparison of the modeled ammonium and bacteria concentrations 
can be made with observations at Station P. Ammonium measurements of Wheeler 
and Kokkinakis (1990) gave summer ammonium concentrations of 0.2 ~.LM N which 
are consistent with the model. The bacterial abundance measurements of Kirchman 
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Figure 10. Model VII (7-component ecosystem model) as Figure 9. 

et al. (1990) and Simon et al. (1992) gave an estimated summer bacterial biomass of 
0.3 PM N which is considerably greater than the summer value of the model. To 
validate this model clearly requires more data on the ammonium and bacteria 
concentrations. 

6. Discussion and conclusion 

Parameter optimization of an ecosystem model provides a direct technique for 
determining model parameters in a way that produces results that are consistent with 
the observed data. The optimization problem can be formulated in a very general 
manner and is easily modified to include additional data constraints as well as 
constraints on the model parameters provided by direct measurements. The automa- 
tion of the process for determining the model parameters enables one to test a 
variety of ecosystem model configurations to determine their suitability for use with 
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the available data. The calculation of the error covariance matrix of the optimal 
parameters provides a way of evaluating the sensitivity of the model output to the 
model parameters and assessing the correlations between the various parameters. 
This determines the number of independent parameters in the ecosystem model. 

Optimal parameters of an ecosystem model were determined by simulated anneal- 
ing. The limiting factor in applying a stochastic optimization scheme like simulated 
annealing is the computational cost. However, in these optimizations the limited 
number of unknowns and the simplicity of the ecosystem models means that the 
computational requirements are not a significant barrier to using simulated anneal- 
ing. Furthermore, for these optimizations a fast annealing schedule could be used 
(dT = 0.5) which significantly improves the efficiency of the algorithm. This made 
simulated annealing ideally suited for these optimizations. Optimizations with 
simulated annealing were robust and effective at determining the optimal param- 
eters for three ecosystem model configurations while the conjugate gradient algo- 
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Table 12. Model VII optimal parameters with the one standard deviation uncertainty (same 
units as given in Table 1). 

Model Parameters 

PAR 

z 

E 

P-1 

Yl 

w 

g 

Y2 

a 

CL2 

P-s 

K3 

Y4 

Y3 

vb 

CL3 

K4 

11 

/L4 

WS 

PI 

P2 

0.50 
0.040 
0.060 
2.880 
0.028 
0.083 
0.056 
1.500 
1.155 
0.584 
0.025 
0.062 
0.056 
0.313 
0.332 
0.767 
2.323 
0.064 
0.118 
0.508 
0.055 
0.001 
0.435 
0.476 

Standard deviation 
uncertainty 

- 
- 
- - 

0.405 0.141 
0.053 1.892 
0.060 0.723 
0.007 0.125 

- - 
1.497 1.295 
0.197 0.337 

- - 
0.013 0.210 
0.013 0.232 
0.681 2.176 
0.050 0.151 
0.044 0.057 
0.939 0.404 
0.034 0.531 
0.0001 o.oooo1 
0.999 1.967 
0.046 0.836 
2.183 2.183 
0.083 0.144 
0.207 0.434 

Relative uncertainty 
- 
- 

rithm failed on the more complex and nonlinear 4- and 7-component ecosystem 
models. An added benefit of simulating annealing over the conjugate gradient 
method is that it only needs to evaluate the cost function and not the gradient of the 
cost function. Such a feature is particularly useful when considering different model 
configurations and different model parameterizations. 

At Station P, simulated annealing was used to optimize a 3-, 4- and 7-component 
ecosystem model configuration. The models were constrained by nitrate, phytoplank- 
ton, mesozooplankton and NPP data and by aprioti values of the model parameters. 

The 3-component ecosystem model is capable of reproducing the observed data. 
The model requires artificial data to produce reasonable zooplankton concentrations 
but the inclusion of this information does not greatly alter the model fit with other 
observations. The 4-component ecosystem configuration, which had the additional 
mesozooplankton component, failed to produce acceptable microzooplankton con- 
centrations without an additional constraint on the microzooplankton concentra- 
tions. This ecosystem configuration cannot produce reasonable microzooplankton 
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concentrations without having some unrealistic parameters for the growth rate and 
mortality rate of microzooplankton and mesozooplankton. This inconsistency indi- 
cates that the model parameterization is inconsistent with the observations and 
requires modifications. Both, the 3- and 4-component configurations require a 
feeding threshold for the grazing of phytoplankton by zooplankton to stabilize these 
models. This threshold level allows the development of small spring blooms of 
phytoplankton in these models. 

The 7-component ecosystem configuration did not require additional constraints 
on the microzooplankton to produce reasonable values and it lacks the small spring 
phytoplankton bloom that is produced by the 3- and 4-component models. The 
7-component configuration produced no spring bloom- because the model had no 
feeding threshold for phytoplankton grazing allowing the zooplankton growth rate to 
more closely follow the phytoplankton growth rate. The 7-component model re- 
quired a constraint on the f-ratio to produce acceptable values for the f-ratio. 
Furthermore, the lack of relevant data, such as ammonium and bacteria concentra- 
tions make it difficult to validate the model. The analysis of the optimal model 
parameters shows a large number of highly correlated parameters with less than half 
of the parameters being independently determined, 

The optimizations with the three different ecosystem configurations show that the 
available data place significant limitations on the necessary complexity required in 
the ecosystem model. It also reveals shortcomings in the model formulation. For 
three ecosystem configurations, the error-covariance matrices of the optimal model 
parameters show that the constraints on the models determine 10 or less indepen- 
dent parameters. This number is always less than the number of unknown model 
parameters indicating that optimal solutions are not unique. The parameter optimi- 
zations of the different ecosystem configurations reveal that the 3-component 
configuration is an adequate model for explaining the data at Station P. Even with 
this simple configuration, several model parameters cannot be resolved by the 
optimization scheme, and an artificial constraint on the microzooplankton concentra- 
tions was required to produce acceptable values. Measurements of microzooplank- 
ton at Station P are necessary to validate this model. To justify a more complicated 
ecosystem model, like the 7-component configuration, additional measurements are 
required. It would be extremely useful if more measurements on thef-ratio and the 
ammonium and bacteria concentrations could be obtained since Azam et al. (1983) 
suggests that the microbial loop plays an important role in the plankton dynamics in 
the northeast Pacific Ocean. Such measurements are essential to validate the 
7-component ecosystem model. 
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