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A technique for the determination of surface heat 
and freshwater fluxes from hydrographic observations, 
using an approximate adjoint ocean circulation model 

by Andreas Schiller1,2 and Jiirgen Willebrand’ 

ABSTRACT 
A technique to determine the large-scale time-averaged ocean circulation from hydro- 

graphic observations and surface flux estimates is described. It is based on an inversion of the 
Bryan-Cox ocean general circulation model. We have constructed an approximate adjoint to 
that model which is computationally simpler and more economic than the exact adjoint. The 
optimization algorithm, although not optimal in a statistical sense, allows calculation of all 
state variables such that they are consistent with the equilibrium dynamics of the circulation 
model and agree as closely as possible with the observed data. 

To verify the technique, we have performed identical twin experiments with the circulation 
model in an idealized geometry. It is found that in principle the true model state including 
surface fluxes can be recovered with acceptable accuracy, even if no information on the surface 
fluxes is available. Under ideal conditions, the resulting rms errors of the surface fluxes were as 
low as 3 W/m* and 0.2 m/year for heat and freshwater, respectively. Regions of deep-water 
formation due to convection show however larger errors on a small spatial scale, depending on 
the nonlinear, threshold-like nature of convective adjustment. The optimized solutions are 
distinctly sensitive to the integration time interval, with optimal values around three years. 

The results suggest that the procedure is suitable to obtain a consistent description of the 
oceanic state, and in particular more accurate estimates of the air-sea heat and freshwater 
fluxes. 

1. Introduction 

The distributions of temperature and salinity in the ocean have long been a 
primary source of information for the large-scale ocean general circulation. The 
classical water mass analysis which is based only on the conservation of heat and salt 
has been successful for qualitative inferences. Attempts to determine circulation 
parameters more quantitatively have additionally involved some aspects of the 
dynamics, as e.g. geostrophy or an approximation to the vorticity balance (e.g. 
Stommel and Schott, 1977; Wunsch, 1978; Olbers et aZ., 1985; Martel and Wunsch, 
1993; Bogden et al., 1993). 
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A complete dynamical description can only be obtained from three-dimensional 
numerical models which have become increasingly important tools to understand 
and interpret the ocean circulation and water mass distribution. However, prognostic 
models still have considerable inaccuracies, which besides insufficient resolution are 
mainly due to uncertainties in surface forcing and in subgrid-scale parameteriza- 
tions. For that reason, models need to be systematically validated by ocean observa- 
tions, and in particular hydrographic observations. 

The concept of inverse modelling, or data assimilation, allows us to combine both 
model dynamics and observations in a systematic fashion. The main objectives which 
have been described (e.g., by Willebrand and Wunsch (1990)) are: (i) to obtain 
estimates of oceanic state variables, in particular of those parameters that are not 
easily and directly observable, (e.g. heat and freshwater transports and water mass 
formation rates, including an estimation of the error of all fields) and (ii) to establish 
consistency of the observed data within their error bounds with the model dynamics. 

Recently, growing computer facilities have allowed the introduction of extensive 
assimilation schemes in oceanography employing full three-dimensional general 
circulation model (GCM) dynamics. The technique based on the adjoint equations 
which is described (e.g., by Le Dimet and Talagrand (1986) or Thacker and Long 
(1988)) has been particularly attractive for systems with a large number of degrees of 
freedom. This method which is inspired from optimal control techniques is based on 
standard least-squares procedure which minimizes the difference between model 
state and observations while satisfying the model dynamics exactly. The adjoint 
method has been used for data assimilation into primitive equation models with 
simplified momentum balance to determine the mean hydrography and circulation of 
the North Atlantic (Tziperman et al., 1992a,b; Marotzke and Wunsch, 1993). A full 
primitive equation model and its adjoint have been applied to estimate the seasonal 
circulation of the Mediterranean (Bergamasco et al., 1993). 

Construction and operation of the full adjoint of a primitive equation GCM is 
extremely demanding in terms of computing and manpower, and was not feasible for 
us with the available resources. The simplified approach presented in this paper is 
based on the following considerations. Since the forward model describes the 
dynamical connections among oceanic fields and boundary fluxes, any approxima- 
tions here potentially restrict the validity and credibility of the results. On the other 
hand, the adjoint (backward) model serves only to provide information about how 
the control variables have to be changed in order to reduce the model-data 
differences. Any approximations here may reduce efficiency of the minimization 
procedure or prevent finding the absolute minimum. However, the quality of the 
optimized state can always be tested independently, and an acceptable state is 
guaranteed not to violate any dynamical laws. 

Consequently, we have constructed a simplified adjoint to the full Bryan-Cox 
forward circulation model. The momentum and vorticity equations in that model are 



19951 Schiller & Willebrand: Approximate adjoint technique 435 

algebraically rather complex and cause the most difficulties for the adjoint model. As 
velocities are very nearly in geostrophic equilibrium, we have decided to limit the 
adjoint formulation to the heat and salinity conservation equations. The resulting 
approximate adjoint model is technically much less complex and computationally 
much more economic than the full adjoint. The obvious disadvantage is that this 
formulation does not permit use of direct current observations, and also prevents 
optimization of the wind field. 

In this paper we describe the optimization procedure and report results from 
identical twin experiments to demonstrate that the technique is indeed suitable to 
calculate the thermohaline fluxes. In a companion paper, the method is applied to 
the North Atlantic circulation (Schiller, 1995). 

2. Model description and approximate adjoint equations 

The adjoint method will be presented in the simplified form which was used to 
solve the oceanographic inverse problem. The deviation of the model fields of 
temperature and salinity, T, S as well as heat- and freshwater flux HT, Hs from the 
corresponding observations (index obs) is measured by a cost function J which 
subsequently will be minimized. Assuming Gaussian statistics, the cost function thus 
reads: 

P”:, TY d*t + ; JJ ‘sobs; S12 dxdt + ; JJ ‘“k- HT12 dadt 

T s Hi 

1 

+z ss 

1 (P-P)2 
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a2 

s AT 

dx+zs a? dx. 
AS 

The contributions to the cost function are interpreted as follows. The first two terms 
denote the model-data differences for temperature and salinity fields which are 
normalized by the respective standard deviations UT, us of the observed fields, and 
integrated over time and over the model volume. A rigorous procedure would also 
involve covariances of the observed fields which are however difficult to estimate and 
would increase the computational burden and are therefore ignored. 

The next two terms in (1) arise from the difference between model and observed 
surface heat and freshwater fluxes, again normalized by the errors oHT, oHs of the 
observed fluxes and integrated over time and over the surface area. 

The last two terms measure the temporal changes of temperature and salinity 
during an integration, penalizing the difference between the final model state LO, Sf 
and the initial state To, So (Tziperman and Thacker, 1989). The necessity for these 
terms, and the choice of the weight factors uAT and uAS needs some explanation. 

We are interested in the time-averaged circulation state so that in principle all 
variables should be independent of time. In practice, the model steady state is 
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obtained by integrating the time-dependent Bryan-Cox model forward in time until a 
steady state is reached. The baroclinic adjustment processes in the ocean take place 
on a timescale of years to decades, and the advective-diffusive adjustment of the 
thermohaline circulation requires several centuries. Computational requirements 
prevent us from computing the model’s steady state for every iteration, and restrict 
the integration to a finite interval At. To overcome this problem, the additional 
constraints are added to the cost function that measure the quadratic difference of 
the temperature and salinity fields between the end and beginning of the integration 
period. Large differences force the next forward integration via the new estimates To, 
So to be closer to a steady state. 

The best choice for the interval At is not obvious. Tzipennan and Thacker (1989) 
performed experiments with a quasigeostrophic barotropic model by an integration 
of the model one time step forward and the adjoint model one time step backward. 
However, as described in Marotzke (1992), with a primitive equation model it is 
necessary to carry out the integration over a much longer time span than just one 
time step. We have performed most experiments with a value of At = 610 days. The 
sensitivity to this choice will be discussed in Section 3 below. 

The quantities oAr, (TAs represent the relative strength of the steady state con- 
straint. We have chosen 

CT& = cl+ (2) 

and likewise for @AS. This empirical choice means that a temporal temperature 
change of magnitude or over the integration time interval At has the same weight in 
(1) as one standard deviation between model and observation. 

We will now discuss the model equations and their simplifications in our adjoint 
model as well as the consequences for the applied minimization procedure. The 
model code is based on the primitive equations, including conservation of momen- 
tum, mass, heat and salt as described by Bryan (1969) and Cox (1984). The 
prognostic equations for this model are given by 

EdT, S, u, x, t) = $ + u. VT + w FF - V . (Kh . VT) - % 

E,(T,S,u,x,t)=~+u.V~+~~-V.(Kh.VS)-- 

(4a) 
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The notations are standard and can be found elsewhere (e.g. Cox, 1984). The 
diagnostic equations are given by 

dP 
z= -lx (5) 

P = P(S, T,P). (7) 

The momentum equation (3) is actually decomposed into a barotropic and baroclinic 
part, and the stream function of the vertically integrated volume transport is used as 
a prognostic variable. This aspect is however not relevant for our adjoint model and 
hence not described in detail. 

The equations 3,4a and 4b are solved by forward time stepping with finite spatial 
differences. In the vertical dimension an implicit scheme for convective adjustment 
processes is used (Richtmyer and Morton, 1967; Cox, 1987) that allows K, to take on 
a large value in case of static instability. 

The fluxes of heat (Hr) and freshwater (I&) (positive into the ocean) enter 
through the boundary conditions 

and 

PC@W = HT @a> 

KS, = Wk. @I 

Here cP is the specific heat. The freshwater flux in Eq. (8b) is approximately 
translated into an equivalent salinity flux, with Sref representing a fixed reference 
salinity. Note that this approach is different from the commonly used technique of 
Newtonian restoring boundary conditions. 

Insulating boundary conditions on T and S are specified for the bottom and lateral 
walls. 

The cost function has to be minimized, while simultaneously satisfying all dynami- 
cal constraints of the model. The resulting functional is the Lagrange function L with 
the model dynamics as “strong constraints”: 

L(T, s, u,HnHs, AT, As, 1,) = J + sj- h@, t).ET(T, s, u, x, t)ddt 
(9) 

+ ss AS(x, t) . E,(T, S, u, x, t)dxdt + ss AU(x, t) . E,(T, S, u, x, t)dxdt. 

The purpose of introducing the Lagrange multipliers Ar, AS, and A, in Eq. (9) is to 
transform the problem from a constrained minimization of the cost function J to an 
unconstrained minimization using only unconstrained derivatives as if all variables 
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were independent. Variation of the Lagrange function with respect to, e.g., tempera- 
ture yields: 

(1) (11) (III) (IV) 
Term (IV) denotes the cost function contribution. The only assimilation of observa- 
tions is done at the end of the forward integration with an ocean assumed closer to an 
observed steady state than at the initial time. 

In accordance with the motivation given in the introduction, we neglected the 
terms (II) and (III) in Eq. (10). Term (II) results from the dependence of the salinity 
budget from temperature (through a stability-dependent mixing or convection). This 
information is ignored for the adjoint model (but still included in the forward 
model). Term (III) results from the temperature-dependence of velocity (via hydro- 
static pressure gradient), its influence on the adjoint is likewise ignored. Attempts to 
include this influence by approximating (III) with a geostrophic momentum balance 
and a linearized density equation did not result in any improvement, compared to 
neglecting (III) completely. 

With this approximation, and after some integration by parts, from Eq. (10) one 
obtains the adjoint equation 

a 
-az 

FbS - j-9 (11) 
4 . 

t*> 

As a further approximation, we have neglected the term (*) in Eq. (11) which again 
results from stability-dependent mixing. Inclusion of this term would cause severe 
numerical problems in the adjoint equations in the case of static instability when the 
factor dK,/dT, becomes very large. Ideally, this should give no contribution to the 
gradients because that large number is multiplied by the vertical temperature 
gradient which vanishes in case of vertical convection. However, numerical inaccura- 
cies cause a nonvanishing contribution of the convective adjustment to the respective 
gradients. As a consequence, the gradients would lose their correct information 
content about the model-data misfits. 

The main advantage of these simplifications is that Eq. (11) (and likewise for A,) is 
no longer dependent on X,. Hence it is no longer necessary to solve the adjoint 
equations for the velocity unless one wants to include direct velocity observations or 
to optimize the wind forcing. A further advantage is a considerable reduction of the 
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computational cost and model code complexity. Incidentally, Eq. (11) is formally 
identical with the corresponding forward equations (except for the forcing term and 
the sign of the first order terms), and thus needs only minor coding efforts. 

On the other hand, as a consequence of the approximations the Lagrange 
multipliers are only approximately correct. Hence we expect that the approximations 
may have adverse effects on the optimization algorithm described below. 

The Lagrange multipliers are calculated by integrating Eq. (11) backwards in time. 
Physically, the Lagrange multipliers X r,s are a measure for the sensitivity of the cost 
function to variations of the model variables. The right-hand side of Eq. (11) is the 
gradient of the cost function with respect to the state variables (T, S) and represents 
the forcing of the adjoint equation. The gradients of the Lagrange function with 
respect to the initial conditions (To, So) determine the direction in state space along 
which the control variables have to be changed to find a smaller value for the cost 
function. In accordance with the thermohaline boundary conditions of the forward 
model, there is neither advective nor diffusive transport of the Lagrange multipliers 
across the bottom or the lateral walls. 

The gradients of the cost function with respect to the thermohaline surface fluxes 
are obtained through variation of the Lagrange function (Eq. 9), e.g.: 

6L (HFbS - HT) 1 -=- 
SHT 2 - ‘T- po. cp .z1 dt, s 

Hi 

(12) 

with 2, denoting the depth of the uppermost layer in the model. 
To summarize, the procedure contains the following steps (Fig. 1): The model is 

integrated forward in time starting from an initial guess for the control variables 
(PO, So, HT, Hs). The initial velocity field for the first forward integration is taken 
from a steady state solution of the prognostic model. At the end of the integration 
time interval which will be specified later, the resulting final values V and Sf are used 
to compute the cost function. If no minimum of the cost function is found at a current 
iteration, the model-data misfits in the adjoint model are integrated backward in 
time determining the gradients and thus new estimates of the control variables. The 
gradients and the actual value of the cost function are passed to a mathematical 
descent algorithm to compute new estimates for To, So, HT and Hs. With these new 
estimates another forward integration of the prognostic model is performed. This 
procedure is continued as long as the cost function continues to decrease. 

The velocity field (including baroclinic and barotropic component), which will not 
be optimized in our approach is handled in the following way: In the forward model 
the first guess of the velocity field is taken from a steady state solution of a prognostic 
model integration. For subsequent iterations the velocity of the last time step tf from 
the previous iteration serves as initial condition for the next forward run. Strictly 
speaking, the estimates for the velocity at the beginning of every iteration are not 
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Figure 1. Schematic plots of temporal evolution of an arbitrary temperature point of the 
model: (a) prognostic model, (b) adjoint model. Notation: to: initial time, tf: final time, Tabs: 
observed temperature, Z? initial temperature, Z? final temperature. Curve (a) describes 
the forward run starting from P (from initial guess for first iteration, from new estimate for 
subsequent iterations). Tf - TobS denotes the model-data misfit computed at the end of the 
forward integration, D - P denotes the difference between the final and initial tempera- 
ture. Curve (b) describes the computation of the Lagrange multiplier hr. The velocity is kept 
fixed the last five days of backward integration (dotted part of curve (b)). At the end of the 
backward integration (*) the gradient is computed. See text for further explanations. 

determined correctly. However, the velocity field adjusts geostrophically on a time 
scale of typically 3-4 days to a modified density field (Anderson et al., 1979), so that 
incorrect estimates for the initial velocity become unimportant on longer time scales. 
The model ocean can be regarded as being always in a near-geostrophic equilibrium, 
except for the first few days of forward integration. The geostrophic adaptation might 
negatively influence the advective terms of the adjoint model during the last time 
steps of backward integration. For this reason, the velocity field is kept fixed during 
the last five days of backward integration (dotted XT in Fig. lb). 

3. Identical twin experiments 
We have performed identical twin experiments where data extracted from a 

spin-up of the model serve as simulated observations. These artificially created 
observations are subsequently assimilated into the identical model. Identical twin 
experiments serve as a tool for exploring the performance of an inverse model, 
because observations and model dynamics are compatible with each other. For that 
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reason, identical twin experiments represent the best results one can possibly expect 
when using real data instead of simulated observations. 

The actual model state of an OGCM with given values of the parameters is 
determined from the initial conditions and the boundary conditions, in particular, 
the fluxes of heat and freshwater which are among the least well known variables in 
models. In contrast, the three-dimensional distributions of temperature and salinity 
are known with comparably high accuracy. This suggests investigation of the capabil- 
ity of the inverse procedure to recover the thermohaline surface fluxes with the 
observations of temperature and salinity assumed to be almost perfect. The hardest 
test is to assume that there are no surface flux observations available. Technically, 
this strategy is reflected in the cost function (Eq. 1) by suppressing any model-data 
misfits for the surface fluxes (equivalent to assuming a very large error for the 
observed fluxes). 

We have used a coarse resolution (3.75” x 4”) basin-scale model without topogra- 
phy. The model geometry is a sector 60” in longitude, the latitudinal range extending 
from the equator to 64N. There are 15 levels in the vertical with layer thicknesses 
ranging from 50 m near the surface to 500 m near the bottom. The parameters for 
mixing and diffusion are (in m2/s): Ah = 2.5 . 105, A, = 1.0 * 10P4, Kh = 1.0 * 103, K, = 
0.5 . 10M4. Model resolution, parameters for mixing and diffusion as well as the 
spin-up state have been chosen in accordance with a model configuration used by 
Marotzke (1990). The integration time was set to 610 days; the reason for this choice 
will be discussed later. The time steps are two hours for the momentum and vorticity 
balances and five days for the temperature and salinity equations. This asynchronous 
integration (Bryan, 1984) significantly reduces the amount of computing time and 
produces correct steady state solutions. Although we do not integrate our model to 
steady state this procedure gives reasonable results within the estimated steady state 
errors ur, us in the cost function. 

The control variables are the surface fluxes of heat and freshwater, as well as the 
initial conditions for temperature and salinity. The initial guesses and the observa- 
tions for the hydrography have been chosen as the true values from the model’s 
steady state, while the initial guesses for the surface fluxes were set to zero (i.e. 
nothing is known about the surface fluxes). The observation and steadiness errors 
have been set to small values (-0.02”C and 0.005 psu at the surface with smaller 
values below) compared to observation errors computed by Levitus (1982). The low 
errors in temperature in salinity documentate the confidence one has in the 
hydrographic data. The wind stress field was the same as in the spin-up model run. 

Solving for the unknowns (16 x 16 horizontal x 15 vertical grid points correspond- 
ing to about 4350 unknowns in To, So, Hr, Hs) required 57 iterations. Figure 2a 
displays the descent of the cost function as well as the different contributions to the 
cost function as a function of the iteration number. Although the hydrography has 
been started from the true values, after the first forward run the zero fluxes have 
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ITERATION ITERATION 

Figure 2. (a) Cost function and different cost function contributions for experiment without 
surface flux observations. Values are plotted vs. the iteration number. T: model-data misfit 
of temperature, S: model-data misfit of salinity, AT: steadiness misfit of temperature, AS: 
steadiness misfit of salinity. (b) rms-difference of the heat flux residual (W/mz) plotted as 
function of the iteration number. 

modified significantly the temperature and salinity fields. Thus, in the following 
iterations the hydrography had to be corrected together with the surface fluxes. All 
cost function contributions of T, S, AT, AS normalized by their errors are below one 
standard deviation, revealing that a consistent solution within the a priori error 
estimates has been found. 

After the first 20 iterations the cost function has been reduced to one percent of its 
initial value. Another 37 iterations are performed, reducing the cost function further 
by nearly one order of magnitude. The residuals of the solution are due to the misfits 
of the hydrographic data and the steadiness-penalties, having the same order of 
magnitude (Fig. 2a). The residuals are influenced indirectly by the unknown surface 
fluxes, because only a reduced amount of information is available for the inverse 
model. However, even the rms-values of the surface fluxes show significant reduc- 
tions. Figure 2b and Figures 3a,b demonstrate the way the errors in the surface heat 
fluxes are reduced (similar for freshwater fluxes). The strongest reduction in the 
rms-errors takes place within the first few iterations (Fig. 2b), increasing the number 



19951 Schiller & Willebrand: Approximate adjoint technique 443 

of iterations reduces the errors only marginally. The surface fluxes are recovered 
such that the large-scale structure is rebuilt at first, while small-scale features become 
visible in the later iterations. This process can be understood with Figures 3a,b: after 
3 iterations the regions with strong heat release in the area of the western boundary 
current and the northwestern part of the model domain are already visible. Heat 
uptake by the ocean can be seen in the central and southern part of the model area. 
A similar behavior is found for the freshwater flux. After 57 iterations the cost 
function cannot be reduced further by the optimization procedure and the area- 
averaged rms-errors for the heat and freshwater fluxes are 2.8 W/m2 and 
0.14 m/year, respectively. 

Why are the errors not exactly zero? Possible reasons might be the approximate 
adjoint approach, which can result in systematic errors of the optimized parameters, 
and, additionally, the nonlinear convection parameterization. To examine this 
problem in more detail, Figure 4 shows the differences between the true and 
optimized surface heat fluxes. The largest deviations occur in the northwestern part 
of the model area with maximum local values of about +20 W/m2, while the 
remaining areas show deviations smaller than 2 W/m2. The northwestern area is 
dominated by permanent vertical convective activity that reaches the lowest model 
layers. The nonlinear formulation of the convection scheme used here suggests 
significant differences between the true and optimized heat fluxes (likewise for 
freshwater fluxes, which are not shown). Even regional averaging does not com- 
pletely smooth out the differences with alternating signs. As a consequence of the 
surface flux deviations from their true values the hydrography also shows the 
strongest deviations in the northwestern region (Fig. 5). In all other areas the surface 
flux errors are relatively small and no fast adjustment process like convection exists 
to transfer the surface flux information into greater depths within the integration 
time of 610 days. Like the model-data misfits for the hydrography, the same holds for 
the steadiness misfits of the model. In Figure 6 the temporal differences for 
temperature in a depth of 1875 m are displayed. The errors of the surface fluxes are 
transported through vertical mixing to great depths and are detectable even in the 
time rate of change for the hydrography. 

The choice of the integration time needed to obtain optimal results is not obvious. 
Tziperman et al. (1989) performed identical twin experiments, using a barotropic 
quasigeostrophic model, and the correct model state was found by carrying out only 
one forward time step of the model and one backward time step of the adjoint model. 
When we adopted their approach for our primitive equation model, the result was a 
model state that was far away from being steady. The contributions to the cost 
function by the steady penalties dominated over the model-data misfits. Especially 
along the western boundary current and the areas of strong vertical convection 
unacceptably large deviations from the steadiness demand appeared. The minimiza- 
tion could not find a compromise between the steady penalties and the observation 
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Figure 3. Optimized heat flux (W/m2). Solution after 3 iterations (3a) and after 57 iterations 
(3b) (end of optimization). 
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Figure 4. Difference between true and optimized surface heat flux. C.I. = 2.0 (W/mz). 
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Figure 5. Difference between true and optimized salinity at 425 m depth. C.I. = 0.001 psu. 
Labels are scaled by 104. Min./Max.: -0.018/+0.009 psu. 
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Figure 7. Rms-difference of the heat flux residual (W/m’) plotted as function of the 
integration time. Initial guesses for the surface heat flux have been set to zero (solid line) 
and to zonal mean values of the steady state (dashed line). The stars denote the individual 
experiments, the dot denotes the single experiment discussed in the text (Fig. 2 to Fig. 6). 
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misfits, which would characterize a reasonable solution. It has been demonstrated by 
Marotzke (1992) that using only one time step must fail when applied to a primitive 
equation model. To summarize his results, the main reason was found in the 
convective adjustment processes that need more than one time step to adjust to a 
modified model state. For the same reason, Tziperman et al. (1992a) failed to find a 
reasonable solution in the northern, convectively active part of their primitive 
equation model, using again one time step for the forward and backward integra- 
tions. A model with many degrees of freedom and few convective grid points may 
show a reduced sensitivity to the problems reported above. Nevertheless, one has to 
be aware of the possibility that even a small number of convection points may prevent 
an effective minimization in addition to poor results in the convective region itself. 

To determine the optimal integration time, two sets of experiments were per- 
formed. Using the same model configuration as described above, the initial guesses 
for the surface fluxes were either set to zero or to the zonal mean values of the 
spin-up run, and the optimization was performed for several different integration 
times. The resulting rms-errors for the heat fluxes are shown in Figure 7. The optimal 
integration time with the smallest errors in the surface heat flux lies in a temporal 
window between approximately 100 and 1000 days (an explanation will be given 
below). In this range the rms-errors vary between about 2 and 10 W/m*, showing a 
strong increase in the error for shorter and longer integration times. A similar 
picture arises for the freshwater flux with minimum errors of less than 0.2 m/year in 
the time range of 100 to 1000 days. 

Marotzke (1992) performed data assimilation experiments with a simple box 
GCM. Using data from the steady state of his model, the experiments proved 
successful for integration times between about 5 and 50 years, with the lower 
integration time being not far away from the optimal time range described above. 

Tziperman et al. (1992b) have suggested reformulating the steadiness penalties in 
the cost function (Eq. 1). Investigating the role of ocean waves in the steady state 
demand, they proposed to involve the sum of squares of the differences between the 
initial temperature and the temperature at several different times between the initial 
and final states. Their analysis suggests an optimal integration time of the order of 
one to a few years. 

Observation errors are inherent to all climatological hydrographic data sets. 
Concerning our inverse approach, errors in the hydrographic data might prevent an 
improvement of the surface fluxes. To simulate the noise in the hydrographic data, 
randomly generated Gaussian noise has been added to the model data that serve as 
simulated observations in our experiments. The model configuration is the same as 
before, i.e. no surface flux observations are used. To obtain some information about 
the dependence of the final rms-errors of the surface fluxes on the noise level in the 
hydrographic data we performed three experiments in addition to the one already 
described above. Table 1 shows the final rms-errors of the surface heat flux for 
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Table 1. Final rms-errors of surface heat flux HT as a result of different noise amplitudes in the 
observed hydrography. The profiles of noise amplitudes (decreasing from top to bottom) for 
T, S have been chosen somewhat arbitrarily from error profiles of the Levitus data (Levitus, 
1982) in the North Atlantic. The left column shows the noise amplitude of the surface layer 
temperature for the four experiments, the right column contains the final rms errors of the 
surface heat flux (similar results are obtained for the freshwater flux). 

Noise amplitude in surface layer (“C) rms-error HT (W/m2) 

0 2.8 
0.019 3.0 
0.19 6.5 
1.9 23.9 

different noise amplitudes in the hydrographic data. The rms-errors of the surface 
fluxes are nearly insensitive to small noise amplitudes in the hydrography. However, 
for noise amplitudes similar to the errors in the surface layers of the Levitus data, i.e. 
1°C and 0.5 psu, the rms-errors in the surface fluxes become larger than 20 W/m2 
(rms-error H,: 0.5 m/year). As a result from these experiments without any surface 
flux observations, the rms-errors of the surface fluxes show a strong sensitivity to the 
order of magnitude in the hydrographic data errors. Reasonable estimates for the 
surface fluxes were obtained with hydrographic data at low noise levels (i.e. 5 O.l”C, 
0.05 psu). 

4. Discussion and conclusions 

A simplified adjoint technique has been successfully applied to obtain optimal 
thermohaline surface fluxes and three-dimensional distributions of temperature and 
salinity. The present method can be considered as an alternative to a complete 
adjoint model whenever one is mainly interested in the optimization of thermohaline 
circulation parameters. It has been shown that with the simplified technique im- 
proved estimates for the surface fluxes of heat and freshwater can be achieved. 
Experiments performed under ideal conditions yielded rms-errors for the thermoha- 
line surface fluxes that were up to an order of magnitude smaller than those known 
from observations so far. Therefore, it should be possible in principal to obtain better 
estimates of the oceanic surface fluxes when using real hydrographic data. Care has 
to be taken, however, for regions with strong convective activity and-to some 
degree-western boundary currents. The identical twin experiments showed that the 
adjoint method used here has difficulties to produce sensible results in these areas. 

The surface fluxes represent the upper boundary condition for the hydrography 
(Eq. 8a,b) and are linked to the temperature and salinity fields in the adjoint model 
through Eq. (12). Although in our specific experimental setup the inverse model did 
not contain any surface flux observations, “recovering” the hydrography was accom- 
panied by an improvement of the surface fluxes too. Moreover, increasing the 
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integration time to more than one timestep not only improves the estimates for the 
hydrography, but also the thermohaline surface fluxes, which were absent in the cost 
function of this experiment. This can be seen in Figure 7, where the errors are 
reduced at first with an increase in integration time. 

The details of one experiment within the range of low rms-errors in Figure 7 have 
been discussed in Section 3. It is a surprising result that for longer integration times 
(larger than 1000 days) the errors increase again. The reasons are not obvious to us. 
It is likely that this increase is at least partly due to the initial guesses of the surface 
fluxes, which deviate too much from the true values of the model’s steady state. An 
integration of the prognostic model for a long time range with the wrong fluxes yields 
a wrong model state far away from the data at the end of the forward integration. Itis 
likely that there exist multiple local minima of the cost function (Marotzke, 1992), 
and the further the model moves away from the global minimum, the greater is the 
possibility of falling into a secondary minimum. 

Additionally, we offer another possible explanation for the failure of the optimiza- 
tion to retrieve the initial and forcing fields. The wrong model state at the end of the 
forward integration results in large model-data misfits at the beginning of the 
backward integration of the adjoint model (recall that the observation misfits are 
computed at the beginning of the backward integration). For longer integration 
times the diffusion has to be considered such that locally adjacent Lagrange 
multipliers (i.e. model-data misfits) are strongly mixed and with it the gradients of 
the initial conditions lose their information about the original model-data misfit. 
Finally, the optimization fails to progress, so that the correct minimum of the cost 
function cannot be found. The loss of information in the adjoint integration concerns 
only the quality with which the initial conditions can be determined. In contrast, the 
gradients with respect to the boundary conditions are computed from integrals of the 
surface Lagrange multipliers over time, which tend not to zero for long integration 
times. 

One could argue that an improvement in the results might be obtained when 
performing longer model integrations, i.e. when the data are not assimilated only 
once but repeatedly. One has to keep in mind that the first forward run of the model 
was started from the true hydrography. Consequently, the model state at the end of 
the first model run shows a larger deviation from the true hydrography than a model 
state some time steps after the beginning of the prognostic computation. For this 
reason, the gradients of the control variables are mainly determined by the large 
model-data misfits at the beginning of the backward integration of the adjoint model. 
Now the same thing happens as described before and the largest misfits determine 
the adjoint solution. Consequently, the minimization stalls and does not make any 
further progress toward lower cost function values. In both experiments shown in 
Figure 7, an integration time of more than about 1000 days did not give satisfactory 
results. It is important to note that the described effect of diffusion on time scales 
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down to a few years does not correspond to the diffusion time scale of a purely 
prognostic model, which is of the order of centuries or millenia. However, the effects 
of diffusion obviously may influence the accuracy of the gradients and thus the results 
of the minimization even on shorter time scales. 

The results of the authors mentioned above together with our own experiences 
seem to suggest that the optimal integration time lies in a range of a few months up to 
some decades, depending on the kind and quality of the data. This integration time is 
sufficient to resolve the oceanic response within the surface layers and the main 
thermocline to modified boundary conditions. A shorter integration time prevents an 
adjustment of the model to the modified initial and boundary conditions. On the 
other hand, optimization experiments with long time integrations of a complex GCM 
may fail, if the experiments use a bad first guess. Probably, the optimization finds 
only local minima of the cost function or the increasing effect of diffusion leads to 
inaccurately determined gradients and therefore to wrong estimates of the control 
variables. 

Application of the approximated adjoint model using real oceanographic data for 
the Atlantic Ocean will be discussed in Schiller (1995). 
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