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Estimates of turbulence parameters from Lagrangian data 
using a stochastic particle model 

by Annalisa Griffa’, Kenneth Owens 2,3, Leonid Piterba& and Boris Rozovskii2 

ABSTRACT 
A new parametric approach for the study of Lagrangian data is presented. It provides 

parameter estimates for velocity and transport components and is based on a stochastic model 
for single particle motion. The main advantage of this approach is that it provides more 
accurate parameter estimates than existing methods by using the a-priori knowledge of the 
model. Also, it provides a complete error analysis of the estimates and is valid in presence of 
observation errors. Unlike nonparametric methods (e.g. Davis, 1991b), our technique depends 
on a-prioti assumptions which require that the model validity be checked in order to obtain 
reliable estimates. The model used here is the simplest one in a hierarchy of “random flight” 
models (e.g. Thomson, 1987), and it describes the turbulent velocity as a linear Markov 
process, characterized by an exponential autocorrelation. Experimental and numerical esti- 
mates show that the model is appropriate for mesoscale turbulent flows in homogeneous 
regions of the upper ocean. More complex models, valid under more general conditions, are 
presently under study. 

Estimates of the mean flow, variance, turbulent time scale and diffusivity are obtained. The 
properties of the estimates are discussed in terms of biases and sampling errors, both 
analytically and using numerical experiments. Optimal sampling for the measurements is 
studied and an example application to drifter data from the Brazil/Malvinas extension is 
presented. 

1. Introduction 

Lagrangian data (i.e. data provided by current-following instruments such as 
drifting buoys) have become increasingly common in the last two decades, providing 
good coverage of extensive regions in the ocean (Davis, 1991a). In the mesoscale 
range, Lagrangian data provide a satisfactory measurement of the horizontal motion 
of ideal water particles (Davis, 1991b), and are therefore particularly suitable for 
statistical studies of the transport of passively advected substances in the ocean. In 
this context, they can be considered complementary to more direct transport studies 
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based on observations of geochemical tracers. The simplest statistical description of 
transport phenomena is provided by the average concentration of a passive tracer (0). 
Ideally, (Cl) can be computed from the single particle probability function Pi (e.g. 
Davis, 1983) that can be reconstructed given enough Lagrangian data in a certain 
region. In real applications, though, the number of data necessary to compute Pi is 
unrealistically large, so that the computation of (0) from Lagrangian data relies on 
the use of indirect methods. In what follows, we briefly summarize the methods in the 
literature, and then introduce a new and alternative approach. 

The most common way to compute (13) is based on its Eulerian evolution equation, 
using a simple closure form to parameterize the turbulent transport term. The 
simplest and most commonly used closure is the eddy-diffusion parameterization, for 
which the equation for (0) reduces to the advection-diffusion equation 

a(@/at = -U 1 V(0) + V(KV(B)) (1) 

where U is the mean velocity and K is the eddy-diffusivity. The parameters U and K 
can be estimated, at least in principle, from the data and inserted into (1) to compute 
(0). Notice that Eq. (1) is valid under restrictive conditions (e.g. Holloway, 1989; 
Zambianchi and Griffa, 1994a) so that its applications are limited to processes with 
time scales larger than the Lagrangian time scale T (and corresponding space scale), 
which are found in selected regions of the ocean where the flow is approximately 
homogeneous. These restrictions can be relaxed by considering generalized forms of 
(1) (generalized “K-models”). An example of this type of model is the “elaborated 
advection-diffusion equation” derived by Davis (1987), which is written in terms of a 
time-dependent K representing the particle history. These models are not frequently 
used in practical applications due to their complexity. 

One problem with the approach based on (1) (or on its generalizations) is the 
difficulty in estimating the turbulent parameter K from the Lagrangian data. The 
basic reason for this is the dependence of K on the lowest frequency of variability 
which introduces an inherent problem in the estimates. This can be easily seen in the 
case of a homogeneous flow (Taylor, 1921), where K is defined as 

K = $ s,” R(r)& 

where R(r) is the Lagrangian velocity autocorrelation and a2 is the velocity variance. 
As it is evident K depends on the asymptotic behavior of the particles so that very 
long records must be used to correctly compute it. On the other hand, as shown by 
Davis (1991b), the sampling error grows with time, so that reliable estimates are very 
hard to obtain. 

The approach proposed in this paper is different from the one outlined above, 
insofar as it assumes, in the range of scales of interest, that the Lagrangian velocity 
field obeys a known statistical model, so that the velocity autocorrelation has a known 
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shape. The model depends on several parameters (i.e. the Lagrangian time scale T, 
the velocity variance a2 and the mean flow U), which can be estimated from the data. 
The main advantage of this approach (which is called “parametric”) is that it gives 
accurate parameter estimates by using the a-priori knowlege of the model. In 
particular, in the application presented here, all the estimates turn out to be 
independent of the lowest frequencies, but rather depend on measurements at scales 
on the order of T, resulting in greater estimate reliability and other benefits to be 
discussed. On the other hand, our approach has stronger a-priori constraints than 
nonparametric methods (e.g. Davis, 1991b) and thus the validity of the model must 
be checked in order to assure reliability of the estimates. Details on the choice of the 
model and on its validity are given in the following. The analysis presented here is 
only a first step in the use of the general method, and it is restricted to the case of 
energetic flows, such as flows in the upper ocean, occurring in approximately 
homogeneous and stationary regions. The attention is focused on the role of the 
mesoscale in the transport processes, whereas the impact of long time fluctuation is 
not included. Notice that in the presence of homogeneity and stationarity, a simple 
relationship exists between the model parameters cr2, T and the turbulent parameter 
K in (1) (K = a2T), so that estimates of T and a2 automatically provide estimates for 
K. 

The model that we use belongs to the general class of the “random flight” models, 
which have a long history in the literature (e.g. Chandrasekhar, 1943), and it has 
been used in a number of applications in the physics of the atmosphere and of the 
ocean (e.g. Thomson, 1986; Dutkiewicz et al., 1993). It describes the motion of single 
independent particles in a turbulent flow, such as a random mesoscale eddy field, by 
using a system of ordinary stochastic differential equations. The particles can be 
thought of as belonging to a tracer so that their concentration corresponds to the 
mean concentration of the tracer itself (Csanady, 1980). The basic assumption of the 
model is that the turbulent velocity sampled by the particles during their motion is a 
Markov process, characterized in the case of homogeneous turbulence, by an 
exponential autocorrelation. The exponential autocorrelation is an approximation of 
the real particle autocorrelation valid for flows where the time scales of the 
acceleration can be considered small with respect to the other velocity scales. 
Experimental (e.g. Colin de Verdiere, 1983; Davis, 1985; Krauss and Boning, 1987) 
and numerical (e.g. Verron and Nguyen, 1989; Davis, 1991b; Figueroa and Olson, 
1994) evidence shows that the approximation is appropriate for turbulent flows at the 
surface or in the upper portion of the ocean. The occurrence of the exponential 
shape in data taken in different geographical regions and in numerical simulations 
obtained with different wavenumber spectra suggests that it is indeed a “relatively 
universal” (Davis, 1991b) form for this type of flow. 

In Section 2 we introduce and discuss the Lagrangian model. In Section 3, the 
estimates for the parameters are derived using the method of moments. A discussion 
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on biases and sampling errors of the estimates is given in Section 4. The results of 
Sections 3 and 4 are tested using numerical simulations in Section 5, and an 
application to drifter data is presented in Section 6. A summary and a discussion are 
given in Section 7. 

2. Stochastic model for particle motion 

In this section we present the “random flight” stochastic model which describes 
the motion of single particles in a flow with a mean flow U and a turbulent velocity U. 
Each particle is considered as independently launched in a different realization of U, 
and the statistics are computed by averaging over the ensemble of all the particles. 
An important consequence of the assumption of independence of the particles is that 
u is considered as a purely time-dependent process representing the turbulent 
velocity as sampled by the particle during its motion. This allows for a substantial 
simplification with respect to the fully space dependent representation of u necessary 
to study two-particle or higher order statistics. 

In the following, we briefly summarize the basic characteristics of the model in a 
simple form, valid under the following assumptions: (1) the velocity field is 2-dimen- 
sional (on the free surface or on isopycnal surfaces), (2) the velocity field is 
homogeneous and stationary with constant U, and (3) the two components of the 
velocity are independent. Even though more general forms of the model are 
available (e.g. Pasquill and Smith (1983), Thomson (1987)), we think that the present 
assumptions, while providing useful simplifications in the analytical calculations, 
provide a valid starting point for discussion. Assumption (1) is usually valid for 
mesoscale phenomena (Davis, 1991b), and assumption (3) can be met, at least 
approximately, in selected regions of the ocean. Assumption (2) is more difficult to 
satisfy, especially for what concerns the stationarity since the ocean circulation is 
essentially a red spectrum process. The presence of low-frequency variability in the 
ocean is of course a problem not only for our analysis, but in general for any 
statistical analysis concerned with the description of average quantities or “typical” 
aspects of the ocean circulation and transport. As suggested by Davis (1991b), this 
difficulty might be overcome with a pragmatic approach, i.e. by substituting the 
notion of a true mean by that of “an average over some finite time, representative of 
a particular ocean climate.” In this sense, our analysis can be considered as focusing 
on the “typical” role of the mesoscale in the transport processes over the time 
interval of the available measurements, while the role of the long term fluctuations is 
not directly considered. 

We use assumption (3), which implies that each velocity component can be treated 
separately, to write the model for each component in l-dimensional form as follows 

o!x = vdt = (U + u)dt (4 

du = -8udt + a)/zkfW (3) 
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where 

tl = l/T. (4) 

In the above expressions, & is the displacement, in the considered component, of the 
particle during the time dt, v is the velocity, U is the mean velocity, u is the turbulent 
velocity, T is the turbulent time scale, u is the square root of the turbulent velocity 
variance a2, and dW is a random increment from a normal distribution with zero 
mean and second order moment (dW * dW) = dt where the increments corresponding 
to non-overlapping time intervals are statistically independent. The above properties 
of the continuous stochastic process imply that W(t) is a Brownian motion and that 
Eq. (3) should be understood in the sense of Ito calculus. Its solution is usually 
referred to as the Ornstein-Uhlenbeck process where we assume that the probability 
law of the initial condition u. is the steady state distribution (invariant measure). The 
Ornstein-Uhlenbeck process is a stationary Markov process. 

Physically, Eq. (3) states that the turbulent velocity u along a particle trajectory is a 
Markovian process. This means that at each time step as the particle moves through 
the fluid it loses a fraction of its momentum u$’ and in turn receives a random impulse 
proportional to dW due to the random turbulent interactions. As a consequence, the 
particle progressively “loses memory” of its initial turbulent velocity. The character- 
istic time scale over which the particle still “remembers” is given by T. 

Eq. (3) can be solved exactly, and its solution is well known (e.g. Yaglom, 1962). It 
is characterized by the exponential autocorrelation 

R(T) = $ (u(t)u(t + T)) = e-eT. 

From (5), T = ‘/e, turns out to be the Lagrangian integral time of the turbulent 
velocity. 

Notice that, although the model is physically much more acceptable than a 
Markovian model for the particle position x(t) which would imply a discontinuity in 
the velocity field (e.g. Zambianchi and Griffa, 1994a), it still is not completely 
realistic since it implies a discontinuity in the acceleration. This in turn implies that 
the scales of the acceleration are assumed to be negligible in the model and they are 
not explicitly resolved. A more realistic model, which would resolve the acceleration 
scales, would be characterized by a smoother autocorrelation than the exponential 
(5) at T = 0 (eg. Pope, 1994). Lagrangian observations and simulations (e.g. Colin de 
Verdiere, 1983; Davis, 1991b) show that the “exponential-like” behavior is a good 
approximation for mid-latitude mesoscale turbulent flows in the upper ocean. This 
can be understood by considering that for these flows the scale of the velocity T is of 
the order of 2-10 days, whereas the scale of the acceleration is of the order of one day 
or less. Since motions of the order of one day are characterized by high frequency 
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dynamics, such as inertial and tidal oscillations, they are usually filtered out and 
neglected in mesoscale studies. In the mesoscale range, then, the scales of the 
acceleration are not considered and the exponential approximation holds. Notice 
that the situation can be different for deep flows, where the time scales of the 
evolution are longer. This is suggested by deep float observations and simulations 
(e.g. Riser and Rossby, 1983) which show a smoother autocorrelation at the origin. In 
these cases, a second-order modification should be added to the model (3) (Sawford, 
1991). 

As a final remark, we notice that the model (2)-(3) can be generalized to include 
the effects of inhomogeneity by allowing the turbulence parameters to vary in space 
and by adding in (3) a term proportional to da2/& (Van Dop et al., 1985). For this 
modified model, the turbulent velocity autocorrelation is not necessarily exponential 
because of the inhomogeneous turbulence. 

3. Parameter estimation 

In this section estimates for the model parameters 0, CT and U are derived starting 
from the Lagrangian observations of particle positions and using the method of 
moments. We choose this method instead of the maximum likelihood method 
because, even when noise-free observations are available, the maximum likelihood 
approach does not yield a tractable analytic expression for the likelihood ratio, 
making the maximum likelihood estimates difficult to study. 

Lagrangian instruments such as drifting buoys are designed to move with the 
currents and to report their position at discrete times either acoustically or via 
satellite. In the range of scales we are interested in, the instruments follow the 
currents with good accuracy (Davis, 1991b) so that their motion satisfactorily 
approximates the motion of ideal particles. This allows us to write the discrete 
position measurements, s,, provided by drifting buoys as the sum of the true particle 
positions, x,, plus a random instrument error due to the acoustic or satellite 
transmission. 

s, = x, + E& = s d” v(t)& + ES” (6) 

where v is the particle velocity, which we assume to obey the model (2)-(3) e2 is the 
variance of the observation errors, and (.&, n = 1 . . . , N} is a standard Gaussian 
sequence of independent observation errors with mean zero and variance one. In the 
following we assume that E is an unknown parameter, which will be estimated 
together with the model parameters and that measurements are available at regular 
intervals 0 = to < tl < . . . < tN = Tabs, with t, - t(, - i) = h. The assumption of 
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regularity can be partially relaxed assuming irregular but comparable intervals with 
average h, as it has been shown by numerical experiments. 

From the position measurements (6), a sequence of finite difference approxima- 
tions for the velocity can be computed as 

sn - %-1 2, = 
h * 

The sequence of velocity approximations (7) can be written as a function of the 
particle velocity using (2), 

where 

represents the mean value of the turbulent component of the velocity on the time 
interval tn-, I t I tn. 

The method of moments is applied using the following procedure. First we 
compute theoretically four moments of z, using the known statistics of the model 
(2)-(3). Details on the theoretical computation of the moments are shown in 
Appendix A. Here we only present the final results, which turn out to be functions of 
the model parameters 8, cr, U and of the observation error parameter E, 

rn = (zjf) - (z,)” = g + &(eeeh - 1 + Oh) 
I 
02 

rl = (zn2,+1) - (zn)2 = - & + &(l - e-eh)2 12 

r2 = (zJ,+~) - (2J2 = &(l - e-eh)2e-eh. 

(10) 

We now observe that the moments ro, rl, r2 can be approximately computed from the 
data using the fact that the process z,, is stationary and ergodic (as evidenced by the 
exponential autocorrelation) so that the average ( ) can be approximated as a time 
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average over measurements from one particle trajectory or from a set of independent 
trajectories, 

(11) 

A system of approximate equations can then be obtained by equating the moment 
estimates (11) to the r.h.s. of the theoretical expressions in (10). The solutions of this 
system give the estimates of the parameters, &I?, i?, C. After a simple manipulation, 
the system can be rewritten as 

21 + ?” _ 2(1 - e-eh)2 + 2(eVeh - 1 + I%) 

t2 (1 _ ,-Gh)2,-ih 

(+= 

$$tih/2& 

1 - ,-eh 

(12) 

J 
6-2 ^ 

C = h m(l - e-eh)2 - ?r. 

The system (12) is quite simple to implement in practical applications. Eq. (12b) can 
be solved numerically for 13 and the other estimates are obtained by substitution. 
Notice that an estimate of the diffusion parameter K can also be computed as 

Before proceeding to the analysis of consistency and accuracy of the estimates that 
will be presented in the next section, let us make some remarks on the basic 
characteristics of the estimates as they appear in (12). A first remark is that the 
estimates depend only on the moments of the approximated velocities z, computed at 
time lags less than or equal to 2h, in contrast to the estimates for T (and K) commonly 
used in the literature (e.g. Krauss and Boning, 1987; Figueroa and Olson, 1989) 
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which are based on the definition 

(13) 

and which depend on asymptotically long lags. This is due to the fact that our 
estimates are derived from the assumption of an exponential autocorrelation (5). 
Conceptually then, the estimate of 0 = 1 /T in (12) depends on the slope of the 
autocorrelation computed at the time lag h, and it is therefore easier to compute 
from the data than the asymptotic estimate (13). A second remark is that the 
estimate for u in (12c) is different from the intuitive estimate 6 = ,/& which is 
commonly used in applications. As it will be explained in detail in the next section, 
the estimate (12~) has better properties than 6 = A. The reason for this is inherent 
in the nature of the Lagrangian measurements which are position and not velocity. 
The velocity is only approximately computed from the discrete position observation 
so that the statistics of the approximated velocity do not necessarily correspond to 
the statistics of the true velocity unless the time step h is sufficiently small. In this 
limit the estimates (12~) and 6 = J& coincide. 

4. Consistency and sampling errors of the estimates 
In this section we analytically investigate the basic statistical properties of the 

model parameter estimates, fi, 6, 6, 2 as given by (12). Also, for comparison with 
other results in the literature, we include the analysis of the estimate k, even though 
the parameter K does not enter in our model and its estimate does not play a direct 
role in our approach. 

a. Consistency properties 
The property of consistency is fundamental for acceptable estimates. An estimate 

AN of an arbitrary parameter A is said to be consistent if AN converges to A with 
probability one as N + ~0. Notice that consistency implies asymptotic unbiasness, 
limk,, &J = A where& is a subsequence taken from&. 

The proof of consistency for the estimates in (12) is straightforward. Given our n 
assumption of stationarity and ergodicity, the estimates of the moments U, FOo, P1, Pz 
defined by (11) converge to the true moments as N + w As a consequence, the 
solutions of the system (12) converge to the true parameters 8, u, U, E since the 
system has a unique solution. 

Notice that the commonly used estimate for a, 6 = & is not consistent even in the 
ideal case of E = 0. &, in fact, converges to & for large N, but J;;; is the square root 
variance of the approximated velocity and it does not necessarily correspond to the 
square root variance of the real velocity, u (this is shown also by the relationship 
lob). Only if h + 0, does 6 + u, because the approximated velocities .zn converge to 
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the real velocities. For Lagrangian estimates, where the velocity is not directly 
measured and the limit ash + 0 is not always approximated, the estimate 6 = & can 
give misleading results. The estimates in (12) are instead specifically derived 
assuming that only approximate velocities are known, and they guarantee consis- 
tency even in presence of a finite time step h and observation errors. 

As a last remark, we notice that the consistency property does not guarantee that 
the estimates are also unbiased for a finite number of sampling N. The estimates 
(1 l)-( 12) are actually biased for finite N, &&) = A + C/N, where C is a constant 
which depends on the values of the parameters. The bias term C/N, though, can be 
considered negligible because, as it is shown in Section 4b, it is of lower order than 
the accuracy of the estimates (l/ v?$. 

6. Sampling errors 

Here we discuss the sampling mean squared error, defined as 

Eg(A) = ((2 -A))* 
(A*) ’ 

for the estimates c, 6, 6, i and i. The analytical computations are performed using 
the definitions of the estimates given by (12) and the statistics of the model (2)-(3). 
The results are obtained in the asymptotic limit where the number of observations N 
is large and the sampling interval h is nonzero. The amplitude E of the observation 
error is arbitrary. In order to isolate the role of the observation error, in the following 
we discuss first the results for E = 0, and then for E f 0. The details of the calculations 
are quite lengthy and are reported in Appendix B. Only the final results are 
presented here and discussed. 

We remark that, for completeness, the theoretical analysis is carried out on a 
range including very small values of h and he, the sampling rate relative to the 
autocorrelation scale T. It is important to keep in mind, though, that in practical 
applications for mesoscale motions, he is always > 0.1. T = */, in fact, is of the order 
of 2-10 days and h is of the order of 1 day. Even when more data are actually 
available (possibly five or more data points per day), they are usually filtered at a one 
day interval, because higher frequencies obey different, inertial and subinertial, 
dynamics. 

i. Zero observation error, E = 0. We start by considering the sampling mean squared 
error for the mean velocity estimate 6, I+*(U). As shown in Appendix B (Bl), the 
expression for large N is 

W(U) = $$. (14) 
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The expression (14) states that the error in estimating U is directly proportional to 
the ratio between fluctuation and mean flow, a2/ U2, and inversely proportional to the 
number of independent samples, 

N* = Nh0. 

This coincides with the expression commonly used in the literature (e.g. Flier1 and 
McWilliams, 1977), derived assuming direct velocity measurements. 

We now discuss the asymptotic mean squared errors for 6,& and Z?. The analytic 
expressions, given in details in Appendix B (B2-B4), have a general structure of the 
form 

Es(e) =fg, 

E?(a) =f$, 

E+(K) =fg. 

(15) 

(16) 

(17) 

The expressions (15)-(17) indicate that the errors for the three estimates are 
inversely proportional to N*, as expected, and that at given N* there is a nontrivial 
dependence on h0. The dependence of the errors on h0 at fixed values of N* is shown 
in Figure 1 for the three estimates, and it is discussed in the following. The values of 
N* chosen are N* = 50, 100, 200, 400, and 1000 which correspond to the range of 
value found in the literature for Lagrangian statistical studies. 

Figure la shows the error for 6, Er2(a). As is evident, the error tends to a constant 
value for small sampling intervals, h0 -=K 1, whereas it increases at larger sampling 
intervals, h0 = 1. Intuitively this result can be explained as follows. When the 
number of independent observations N* is held fixed, reducing h to values much 
smaller than the autocorrelation scale, T, corresponds to over sampling the process 
and does not improve the quality of the estimate. On the other hand if h is increased 
to values of the order of T or larger, the scale of the variability is not resolved 
anymore, and the estimate deteriorates. 

The error for 6, shown in Figure lb, has a structure similar to Er2(u). Similarly to 
Er2(u), Er2(8) also converges to constant values for small values of he, but the 
absolute values of the errors are higher. This indicates that the estimate of 8 is more 
sensitive and less accurate than the estimate of u. This is not surprising considering 
that conceptually 8 depends on the autocorrelation slope, whereas u depends on its 
amplitude. In order to make a simple quantitative comparison, consider the value of 
the error for the two estimates at the lowest value of N* = 50. Er2(u) converges for 
small h0 to an approximate value 0.01, indicating a relative mean error on u of 10%. 
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Figure 1. Theoretical mean square sampling errors E$ versus he at fixed number of indepen- 
dent measurements N* = 50,100,200,400,1000 computed for E = 0. (a) Er2(u); (b) Er2(0); 
(c) Er2(K). 

Er2(0), instead converges to a value of approximately 0.04, with a relative mean error 
of 20%. 

In Figure lc the error for& Er*(K), is shown. The dependence on he shows some 
different characteristics than B*(a) and Er2(8). The basic difference is that the 
estimates I? and 6 deteriorate rapidly when he grows, (and the scale of the variability 
is not well resolved) while the estimate k is more stable. This can be understood 
intuitively by considering that K is a parameter characteristic of the asympototic 
behavior of the system, and therefore can be estimated satisfactorily even for 
relatively large he, whereas u and 8, which are parameters of the variability, cannot. 
On the other hand, the estimate i does not improve as much as the other estimates 
for small he. For the same value N* = 50 considered above, Er2(K) converges to 
approximately 0.16, with a relative mean error of 40%. 

We remark that the results (15)-(17) can be presented in an equivalent but 
alternative way. As an example, in some situations it is useful to consider the curves 
when the number of measurements N is fixed, instead of N*. These curves differ from 
the ones in Figure 1 only by a factor of l/he, but their direct visualization is useful in 
highlighting some interesting features of the error structure. Typically, this kind of 
curve is useful when planning an experiment, since the number of measurements N is 
approximately fixed a-@on’ (for instance by the life of the instrument batteries), 
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Figure 2. Theoretical mean square sampling errors Er2 versus h0 at fixed number of measure- 
ments N = 400,800,1600,3200,8000, computed for E = 0. (a) E?(u); (b) E?-(8); (c)E+(K). 

whereas the sampling interval must be chosen in order to optimize the estimate 
quality. The curves for fixed N, are shown in Figure 2. 

Figure 2a and 2b show that both ES(u) and l+*(9) are characterized by curves with 
finite minimum values, occurring at hf3 = 0.7 and 0.5 respectively. Intuitively this 
result can be explained as follows. When h becomes small at given N and 8, the total 
time of observation, TobS = Nh, becomes also small, reducing the number of 
independent measurements N* which are required for a good estimate. When h 
becomes too large, on the other hand, the scale T = l/O is not resolved, and the 
parameters cannot be satisfactorily estimated. In between these two tendencies there 
is an optimal range of sampling intervals. 

The behavior of Er*(K), shown in Figure 2c, is different in so far as it does not show 
a minimum value, but rather it tends to slightly decrease at increasing h8, (even for 
the range he > 1, which is not shown in the Fig. 2~). As previously discussed with 
reference to Figure lc, this is conceptually a consequence of the fact that K is an 
asymptotic parameter. Notice that the result suggests that, at least in principle, K can 
be estimated satisfactorily using long sampling intervals. On the other hand, it should 
be considered that the assumption of homogeneity in our analysis is at best only a 
local property in the ocean. Buoys launched in a region with certain local character- 
istics will tend to move out in a finite time sampling other regions, so that the use of 
long sampling intervals, which imply long Tabs, is usually not appropriate. 
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ii. Finite observation error, E f 0. The influence of the observation error E on the 
quality of the estimates can be directly evaluated (at least in the asymptotic limit of 
large N and finite h), using the complete expressions for the sampling errors derived 
in Appendix B. The results of Appendix B show that only I#( U) does not depend on 
E(BI), whereas Z+‘(O), Er2(u), Er2(ZC) (B2-B4) conserve the same structure shown in 
(1%17) but with& (i = 1, 2, 3) depending on E/ha as well as he. E/ha is the ratio 
between the typical error size E and the typical particle displacement due to 
turbulent motion during the time interval h, ha. 

The general behavior of the error is the following. For values of h greater than 
h* = E/U (i.e. the sampling for which the turbulent displacement has the same size as 
the observation error), the sampling errors are the same as for E = 0. For smaller 
values of h, instead, the errors increase rapidly ash decreases, making the estimates 
unreliable. The reasons for this can be understood intuitively by considering the fact 
that the estimates are based on the velocity approximations (8). When the sampling 
interval h becomes small, the terms U and U on (8) tend to constant values, whereas 
the term depending on the observation error, E (.& - L-,)/h, increases as l/h. As a 
consequence, the approximated velocity becomes more and more influenced by the 
observation error, and the parameters of the flow become progressively more 
difficult to estimate. Only the estimate of U is not influenced by the observation 
errors, because they average out. 

A specific example of the behavior of the sampling errors for a given set of 
parameters is given in Figures 3a-b-c, with Er2(u), Er2(0), Er2(K) plotted as functions 
of h0 at constant N*. The flow parameters, representative for oceanographical 
values, are u = 15 km/day, 8 = l/4 day-‘, U = 12 km/day, whereas E is chosen to be 
0.6 km, a conservative estimate for satellite tracked instruments. A comparison with 
the curves of Figure 1, corresponding to the case E = 0, shows that the observation 
error influences the quality of the estimates only for h8 K 0.1, as expected since 
h* = E/U = 0.04 and therefre h*8 = 0.01. This suggests that for realistic values of 
the parameters and of the sampling, the observation error can be neglected in the 
sampling error analysis. 

A formula similar to the ones for ci, I? and l?is valid also for the sampling error of E, 
Er2(e) = f4(h0, dhu)lNhO, where f4 is given in (B5). In Figure 3d, the mean squared 
sampling error for i is shown for the same parameters as before. The error appears to 
be small only for h0 < 0.1 or 0.2, depending on N”, and increases dramatically as hf3 
increases. This suggests that the parameter E is actually very hard to estimate in 
practical situations because of the large estimation error. 

5. Numerical simulations 

In Section 4 a theoretical analysis of the sampling errors for fi, &I?, C and i was 
performed, valid in the asymptotic range of large N and finite h. In this section, 



19951 Gtiffa et al.: Estimates of turbulence parameters 

Figure 3a 

::I 

0.5 

0.4 

72 
go.3 
m 
5 
7 0.2 
W 

0.1 

C 

Figure 3b 

h*theta 

Figure 3c 

h*theta 

Figure 3d 

‘I 

0.5 
h’theta 

385 

Figure 3. Theoretical mean square sampling errors Er* versus h0 at fixed number of indepen- 
dent measuresN* = 50,100,200,400,1000 computed for E = 0.6 km. (a) E$(u); (b) E$(O); 
(c) Er2(K); (d) Er2(E). 

results from numerical simulations are presented, aimed at verifying the theoretical 
asymptotic results. 

The numerical simulations are performed simulating the succession of approxi- 
mate velocities (8), 

where 

1 

s 

1, 
ri, = - 

h 
u(t)dt. 

G-1 

U, is simulated exactly without introducing finite differences or other types of 
approximations. This is done using the fact that, as shown in Appendix C, the process 
E,, can be represented as an autoregressive moving average process that satisfies 

u, = olzI,-1 + Prln + m-1 

where (q,, n = 1 . . . , IV] is a sequence of independent standard Gaussian random 

variables with mean zero and variance one. The parameters (Y, p, q (defined in 
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Appendix C) depend on the parameters u, 8 and on the time interval h, and the 
initial condition U0 can be computed using the statistics of ii,, also derived in 
Appendix C. 

The experiments have been performed in the following way. For each set of 
parameter values (U, 8, u and c) and for each value of N*, we have considered 60 
values of he equally spaced in the range 0 < h0 < 1. For each value of h0 we have run 
500 independent simulations characterized by different initial conditions and we 
have estimated the parameters using (12). We have then computed an approximate 
value of the mean square error by averaging over simulations. Thus we have the error 
expression, 

where M = 500. The values have been plotted as functions of he at given N*, and 
compared with the theoretical curves. 

We discuss here two sets of experiments, EXPl and EXP2, that are representative 
of the general results. The two sets differ by the value of the parameter E, which is E = 
0.0 km in EXPl and E = 0.6 km in EXP2. The values of the other parameters are the 
same in the two sets, and correspond to the ones used in Section 4b(ii) u = 
15 km/day, 0 = l/4 day-‘, U = 12 km/day. 

The results of EXPl are shown in Figure 4 as curves of the estimated mean 
squared errors for the parameters u, 0 and K. A comparison of these curves with the 
equivalent theoretical curves in Figure 1 shows that the trends predicted by the 
theory agree with the numerical results. The errors for u and 6 tend to constant 
values for small he and increase with increasing h0 as expected, whereas the errors 
for K are much less sensitive to the value of hf3. At a more quantitative level, for all 
the estimates, the theory appears to predict with good accuracy the values of the 
errors for small h0. At htl 2 0.5, instead, the theory seems to underestimate in some 
cases the errors for u and 0 with regard to the simulations. This effect is more evident 
for small values of N* (N* = 50,100) and it might be due to the fact that the number 
of actual observations N decreases at increasing h0 and fixed N*. The theoretical 
results, based on the assumption of large N, thus become less reliable in this range. 

The results of the second set of experiments, EXP2, are shown in Figure 5. In 
agreement with the theoretical results in Figure 3, Figures 5a-5c show that the errors 
for u, 8 and K are altered by the presence of the observation error E only at small 
h0 < 0.1. In this range of h0, the quantitative agreement with the theory is very good. 
The error in E is shown in Figure 5d. With respect to the theoretical curves in 
Figure 3d, the numerical curve is in good agreement. In conclusion, the numerical 
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50, 100,200,400, 1000 computed for 

results confirm the fundamental results of the theory, and suggest some quantiative 
corrections in the ranges of small N and small h. 

a. Comparison with other estimators 
Here we compare the properties of our estimates with some of the other estimates 

used in the literature. The comparison will be restricted to the case E = 0, since the 
results for the other estimates are usually obtained assuming that the velocity is 
measured directly and exactly, without an observation error. 

As remarked in Section 4, the expression for the sampling errors in U (14) is the 
same as the one known in the literature, which is derived assuming direct velocity 
measurements. The error in u (16) converges asymptotically for small h0 to the 
known expression given by Flier1 and McWilliams (1977) derived for direct velocity 
measurements. At values of h0 I 0.5, though, the error in (16) increases, due to the 
peculiar property of the Lagrangian measurements which cannot be captured by the 
analysis of Flier1 and McWilliams. Ash increases, in fact, the velocity approximations 
from the positions become less satisfactorily, degrading the estimate. As shown by 
the numerical simulations, this feature might be even more pronounced than that 
suggested by (16), at least for N* small. 
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Figure 5. Estimates of mean square sampling errors from numerical simulations I% versus he 
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As remarked in Section 3, the estimate 6 (12) is very different from the estimates of 
the corresponding parameter T = l/O which are usually found in the literature, and 
which are based on the equation (13). Eq. (13) depends on asymptotic time lags of 
the autocorrelation, and T is usually approximated by integrating up to a truncation 
time T, < Tabs. The choice of T,, plays a very important role because it can influence 
the value of T up to order one, and unfortunately there is no theoretical procedure 
for determining T,, (a common choice is the first zero crossing of the autocorrelation, 
e.g. Krauss and Boning, 1987). The uncertainty in the choice of Tt, introduces a 
strong element of subjectivity in the estimates, and the values of T computed in the 
literature are often not provided with error bounds. In comparison, our estimate 6 is 
based on the a-priori assumption of the stochastic model (2)-(3). With respect to this 
assumption, the estimate is “objective” and the error analysis is consistent. 

A similar discussion applies also to the estimates of K, which are often obtained 
directly from the estimates of T using the relationship K = u*T. Other, more general 
estimates of K have also been used in the literature. As an example, Davis (1991b) 
has proposed a time-dependent estimate of K valid for inhomogeneous flows. This 
estimate has the advantage of being more general than ours, but on the other hand it 
has the same fundamental problem of depending on the long time behavior of the 
system like the estimates based on (13). 
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Figure 6. Trajectories of the three SOS drifters 85,86,87. The dashed box correspond to the 
region where the estimates are computed. 

6. Application to drifter data in the Brazil-Malvinas extension 

a. The data 

In this section we present an application of the parameter estimation (12) based 
on a subset of data taken from a set of surface drifting buoys deployed in 1984 in the 
Brazil/Malvinas extension as part of the ONR sponsored SOS (Southern Ocean 
Studies) initiative. The total SOS data set has been analyzed by Figueroa and Olson 
(1989, FO in the following) in conjunction with another data set (FGGE, i.e. First 
Garp Global Experiments) to give a statistical description of several regions in the 
South Atlantic. The aim of the following analysis is not to add new oceanographical 
results to the ones of FO, but rather to provide a simple example of how our 
theoretical results can be applied in practice and of how they compare with results 
obtained with different methods. 

The SOS subset considered gives position data for three drifters (85,86 and 87) in 
the region extending from 35W to 5W in longitude and from 43s to 30s in latitude, 
for a total of 800 days. See Figure 6. The region lies in the open ocean extension of 
the Braxil/Malvinas current. As shown by FO, even though still highly turbulent, this 
region is characterized by less variability with respect to the more western region of 
the confluence, and has a well defined northeastern average current. The original 
data, provided by the Argos system, are taken at irregular time intervals with an 
average of about 5 fixes per day. Before being used in the parameter estimation, they 
have been filtered using a triangular filter to obtain one value a day (Zambianchi and 
Griffa, 1994b, ZG in the following). 

b. Model applicability 

In order to apply the estimation procedure (12) to the data, the applicability of the 
model (2)-(3) in the region of interest must be first verified. A preliminary analysis 
on the compatibility of the model with the data is presented in ZG. Here we 
summarize the main results of ZG and present some new evidence of the model’s 
applicability. First of all, we recall that the model (2)-(3) is based on the assumptions 
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that the flow is homogeneous and that the two velocity components are independent. 
Let us indicate with zEw and zNs the East-West and North-South approximations of 
the velocity computed from the data according to (7). The assumption of indepen- 
dence has been verified by ZG calculating the mean coherence between zEw and zNs. 
Regarding the homogeneity a first, rough test has been performed by ZG computing 
the parameters U and u from the data for both components, first over the whole 
region and then over two subregions, from 35 to 20W and from 20 to 5W respectively. 
The results are found to agree within the limit of the sampling error. This simple test 
is far from being conclusive, given the relatively small number of data available, but 
at least it indicates that there are no obvious discrepancies with the basic assump- 
tions. 

A more significant way of testing the model consists in verifying the exponential 
form of the assumed autocorrelation, or analogously, its spectral form. The spectral 
shape has been studied by ZG. Here we concentrate on the form of the autocorrela- 
tion. The autocorrelations computed from the data for the two velocity components 
zEw, zNs are shown in Figure 7a-7b (dashed lines). At a first inspection, it appears 
evident that the shape of the two autocorrelations for short time lags is, at least 
qualitatively, in agreement with the exponential shape assumed by the model, 
indicating that the scales of the acceleration can be safely neglected. At longer time 
lags, though, the shape of the autocorrelations significantly deviates from exponen- 
tial, showing zero crossings, negative lobes and oscillations. The point that we want 
to investigate is whether these effects are due to different dynamics than the one of 
the simple model (2)-(3) or whether the data can actually be considered as a 
particular realization of (2)-(3) which deviates from the exponential shape only 
because of the relatively small number of data points. In order to address this 
question, we have used the model to generate a set of realizations of simulated 
velocities, obtained by setting the parameters to the values estimated from the data 
(see Table 1). The number of measurements N and the sampling interval h for the 
simulations are taken to be the same as the ones of the data: N = 800, h = 1 day. We 
have then compared the data and the simulations by plotting together the autocorre- 
lation functions (examples for three realizations are shown in Figure 7a-7b, continu- 
ous lines). The results strongly suggest that the data are indeed consistent with the 
model, since data and simulations appear to be essentially indistinguishable, with the 
data autocorrelation falling right into the envelope of the simulated ones. Even 
though this test cannot prove positively that the model is completely accurate, it 
certainly indicates that it is a reasonable and valid starting point. 

c. Parameter estimation and error analysis 

Once the applicability of the model has been verified, the estimate of the 
parameters U, u, 8 and K can be evaluated in a straightforward way from the data, 
computing the moments (11) and then solving the system (12). The results for the 



19951 Griffa et al.: Estimates of turbulence parameters 

Fg~ro7r 
2001 

5 10 15 20 rUn~in&C 25 35 40 45 50 

T--==-- 

-50' 
5 10 15 20 25 30 35 40 45 

Time lag in daya 

391 

I 
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Table 1 

E.W. Component 
N.S. Component 

CK m/day &KmJday 

7.5 13 
2 14 

1 /i days 

5 
2.8 

k K m2/day 

845 
560 

two velocity components are shown in Table 1. As expected, they show that there is a 
well defined eastward average motion, with a small northward component. The 
turbulent motion appears to be quite energetic, and anisotropic in the time scales. 

In order to compute the errors in the estimates, the values of N* = NhO and hf3 for 
the two components are first evaluated using the estimate of 8 in Table 1. They turn 
out to be N* = 160 and hl3 = 0.2 for the East-West component and N* = 280 and 
htl = 0.35 for the North-South component. Notice that for these values the 
theoretical estimates of the errors are accurate (compare Fig. l-2 and 3-4), so that 
no corrections from the numerical results are needed. The values of the mean square 
errors for the four estimates are computed from (14)-(17), and the corresponding 
percentage errors are reported in Table 2. A very high error (88%) is found for the 
estimate of the North-South velocity. This is not surprising, since the fluctuation is 
much higher than the mean for this component. The errors in the variance u are 
quite small for both components (4-5%), and the errors in 6 are higher but still 
acceptable (lo-15%). Notice that the error analysis confirms that the difference in 
the East-West and North-South time scales is significant, so that the anisotropy 
suggested by the value in Table 1 is real. 

We conclude with a brief comparison of our results with the time scale estimates of 
T (and of the diffusivity K) given by FO. FO choose a truncation time T, coinciding 
with 50% of the longest velocity time series in the region. The arbitrary value of 50% 
is chosen in order to guarantee the stability of the estimate and, as shown by Figure 3 
in FO, plays an important role in determining the value of the estimates. The values 
obtained by FO in two regions overlapping with our region (see Fig. 2 FO) are 
qualitatively similar to ours, even though they show an overestimate of T in the 
East-West direction and an underestimate in the North-South direction. This is 
likely to be an effect of considering the individual “bumps” in the autocorrelations 
near the zero crossing, which are eliminated in our estimates. 

7. Summary and discussion 

A new parametric approach to the study of Lagrangian data is presented, based on 
a stochastic model for particle motion. The model assumes an exponential autocorre- 

Table 2 

E.W. Component 
N.S. Component 

N* h0 

160 0.2 
280 0.35 

WV 

20% 
88% 

Er(u) 

5.6% 
4.3% 

ErW 

14% 
12% 

ErW) 

23% 
18% 
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lation for the turbulent velocity and is appropriate for mid-latitude mesoscale flows 
in homogeneous regions of the upper ocean where the scales of the acceleration do 
not play an important role. Estimates of the mean velocity and of the turbulent 
parameters are derived from particle position data. A complete error analysis of the 
estimates is presented which specifically takes into account the Lagrangian nature of 
the data and considers the dependence of the errors on the sampling interval. The 
results are derived in presence of an arbitrary measurement error. For satellite 
tracked drifters and for realistic parameters and sampling, the quality of the 
estimates does not appear to be influenced by the observation error. 

If compared to nonparametric methods where less stringent assumptions are 
necessary (e.g. Davis, 1991b), our method has the disadvantage of more restricted 
applicability. Prior to using the method, the compatibility of the model with the data 
must be studied, as shown in the example of the Brazil/Malvinas data considered 
here. On the other hand, the method provides relevant advantages. The effects of the 
observation error are directly included in the estimates and in the error analysis, and 
the accuracy of the estimates is enhanced. In particular, the estimates of T and K 
depend on the slope of the autocorrelation and are computed using only the first two 
time lags. With respect to the other estimates in the literature which depend on 
subjective procedures of truncation of the long time lags of the correlations, they are 
“objective” and have a well defined associated error. 

Even though the results presented here are valid only for the simple homogeneous 
model, the methodology is very general and can be applied to more complete and less 
restrictive models. Work is presently under way on a generalization of the model 
which will include dependent velocity components, mean shear and simple turbu- 
lence inhomogeneity. Also, a model which includes deep ocean motion by explicitly 
resolving the acceleration scales, is under consideration. 
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APPENDIX A 

Method of moments 

Recall that the velocity approximations satisfy (S)-(9), 

WI 

We will now compute the moments of z, and we will often use the following facts in 
the derivation. First, the average value of cross terms involving I?,, and .& is zero since 
they are independent and (&) = 0. Second, (&Ej) = 6, where 6, is the Kronecker 
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delta. Using [Al] we see that, 

= (iii) + 2 - 
h* 

Forj 2 2 ((zn - u>tzn+j - u)) = b%Zz+j)- 

Hence, we have reduced the problem of calculating the moments of the velocity 
observations z, to the problem of calculating the moments of I&,. 

The calculation of the moments of E,, is as follows. 

In a similar fashion we calculate forj 2 1, 

(~,+jU,) = &e-(jmlPh(emeh - 1)2. 

Substituting these expressions for the moments of U, we find 

(zn) = u 

r. = (zi) - (z,)* = g + &(edeh - 1 + Oh) 
I 
d 

rl = (z,z,+~) - (z,)* = 
1 

E2 1 
- h2a2 + ~(1 - emeh)’ 

I 
a2 

r2 = (z,z,+*) - (z,)* = &(I - e-eh)2e-eh. 

Lw 

w+l 

(18) 
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We can approximate U, ro, rl and r2 with the estimates fi, ?a, i1 and 4 computed from 
the data as indicated in (11). Thus, the parameters will satisfy the approximate 
equations 

to = (2:) - (2n)2 = 
1 
j$Cg + &(e-” - 1 + Cl/r) 

I 
a2 

il = (znzn+l) - (zn)2 = 
I 

- & + A(1 - emeh)* 
I 
a2 

t2 = (z,z,+~) - (z~)~ = &(l - eCeh)2e-eh 

Notice that, 

where 

(19) 

f(x) = 
2(1 - e-x)2 + 2(e-” - 1 + x) 

(1 - e-x)2e-x * 

We solve Eq. (A4) numerically using the bisection method and substitute this result 
back into the system to obtain the estimates for the parameters given in the text. 

APPENDIX B 

Sampling mean squared error formulas 

First we will compute the error in U. We will then demonstrate the general 
procedure for estimating the mean squared error for the rest of the papameters by 
deriving in detail the mean squared error in 8. 

((ti - U)*) = (ti2) - U2 = higl ((ZiZj) - U”) 

1 m 1 
-2 =-( N,,-, rk N 

ro+2rI+2r2- 

WI 

where rk = ((Zi - u)(zi-k - U)), 0L = eehe and we used formulas [A21 and [A31 from 
Appendix A for ro, rl and r2. 

Now we proceed to the error estimates for the other parameters. Recall that the 
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parameter estimate for 8 is 

where f(v) is a known function specified in Appendix A, [A4]. Let F(a, b, c) = 
llhf-‘((a + 2b)/c) then 

F(rO, rl, r2) = 0 and F(?s,, i,, F2) = 6. 

The mean squared error is given by ((6 - t3)2) an d using the above definition we can 
write ((6 - t3)2) = ((F( ?,,, ir, t2) - F(rO, rl, r2))2). This expression can be approximated 
as 

((6 - ej2) = ( (t$(to - r-0) + $)?I - rl> + 34 - r2))‘) = (E~%o + ($j’%~ 

dF 2 

i i 

dF aF aF dF aF dF 
+ F Y22 + 2; po1 + 2% po2 + 2-g p12 

2 0 1 0 2 1 2 

where yPYpa = ((fP - rp)(Fq - rq)). Using the fact that FP -+ rp with probability one as N 
goes to infinity, we can write 

ypYpa = Pptq) - rprq 

where you will recall that rp = (z,z,,) and fP = l/ (N - p) CfZ[ z,+~z,,. Hence, 

Further it can be shown that z, is Gaussian and thus the latter expression can be 
simplified using the following standard fact about Gaussian random variables. If EJ, 
E2, &, .& are Gaussian random variables then 

&%253~4) = (5&2K%4) + &%2~,) + m.‘J(E253). 

Using the fact that (zizi+p)(ZjZj+q) = rprq we can thus write 

1 N-pN-q 

C C (ri-jri-j+p-q + ri-j-qYi-j+p). 

Since the subscripts in the above expression depend only on the i-j for large N we can 
write 

yp,q = j$ ,jj (N - 111 )(vi+p-q + rl-,rl+,) + o($)- 
N 
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Expanding this expression and keeping terms to 0(1/N) we get 

Since the series is convergent we can write 

yp,q = ilsrn (rf~+,-, + rk,rl+,) + o(i). 

This formula is the basis for further calculations. In particular if rk = r2akm2 for k r 2 
(as we have in our model) we obtain by summation of the above infinite series the 
following formulas for the first moments 

$0=2~+2r:+ i 1 26 1 - Cx2 

qlo = 4 ( rorl + rlr2 + - 4 1 1 - cd2 

q20 = 2 ( 6 + 2ror2 + 2rIr2a + 

2rg2 

- 1 1 - (Y2 

+oo + ?20 ?ll = 2 

j92 = F + 2 
- i 

r&l3 
ror2cw + rIr2(1 + 13~) + ~ 

1 - (Y2 1 

922 = T + 2rlr2cx(1 + (Y”) + 2ror2a2 + 
4(1 - (Y2 + 2cx4 

1 - (Y2 

where qpq = Nqpq. 
Substituting these results into the mean squared error expression we find 

(6 - fQ2) -flW 
82 Nh0 

where 

fd4 = x(f ,cxf,Ycx,‘“” + 4+01 + f ‘W22 - 2f (4(?02 + 2592)). 

WI 

Using a similar procedure we obtain the following mean squared error estimates for 
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the other parameters 
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((6 - ~1~) _ f2@‘9 
a2 Nh0 

where 

fi(X) = 5 + *wefl(4 + 
*ow 

2 r2f ‘(x) : + -g-- - 
( 

- 
2912 Q-0 + h)?22 

6 1 

((k - K12) _ f3W) 

P Nh0 

where 

f3(x) = 7 + *2(xyfl(x) + 
24JW 

- - 
r2f ,(x) 

i 
F $ 2Y12 G-0 + y22 

r2 2 -1 

and $(x) = 2$,(x) - L ; 

[53,3 

P31 

WI 

(G - 4’) -f4(W 

2 NhtI 

where 

1 
7x4 = 

4(r,e’ - rl> 
2 
1 
&+5fl(x) + +H 1 -f r(x) ( “‘) + q22e”(l -g) 

( 

(f(x) + 2e’) 

i 

2s 2eJ + 2j12e” 

- f ‘(4 1 + ?20f’o - 410f% 1 . 

Note that J(x) depend only onx when E = 0. However, when E > 0 we must keep in 
mind that&(x) = h(x;dha) b ecause ro, rl and yW depend on E/ha as well. 

APPENDIX C 
Autoregressive property 

Recall that i&, = l/h Jz-, u(t)& and that in Appendix A we derived the following 

G%%+j) = ' 

$$(eshH - 1 + he) j=O 
\ 
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We will show that the process ii,, can be represented as an autoregressive moving 
average process that satisfies, 

PI 
where {qn, n = 1 . . . , N] is an independent sequence of standard Gaussian random 
variables with zero mean and variance one, (Y = ewhe, and 

Let x,, be an arbitrary process that satisfies 

xn = cux,-1 + Prln + m-1. [C21 
Since x, and U, are both Gaussian showing that they have the same correlation 
function is equivalent to showing that they are the same process. So, let us begin by 
computing the correlation function for x,,. Let x0 be equal to a zero mean Gaussian 
random variable and let us adopt a compact notation for the correlation function 
hJrz+j)~ tit lxJn+ j) = j f r orj 2 0. Then taking the first moment ofx,, we find 

(4 = bn-I). 

This equation implies that (x~) = 0 for all n 2 0, since (x0) = 0 by assumption. Taking 
second moments yields 

b-4 = WC,) + 201 (xn-dPrl* + m-1)) + P2 + q2. 

Using [C2] we get 

(x&J = (d&) + 2a (xn-I(Xn - a&-l)) +p2 + q2. 

Using our compact notation this becomes 

r. = a2ro + 2a(rl - are) + p2 + q2. [C31 
Computing (x&+r) and using [C2] we get 

h&I) = (bn-I + Prln + 4%Ilk%2 + P%-1 + m-21) =~2(x,-lxn-2) 

+ ci bz-I(xn-I - w-2)) + 4%-2(4l - w-1)) + ((P% + 4%*)(P%-1 + 4-s-2)) 

or in a simpler notation 

rl = cd2r, + a(ro - WI) + cx(r2 - WI) + pq PI 
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which implies 

(1 + a2)r, - cxr2 - two = pq. 

Performing similar calculations we find for j 2 2 

(1 + Ci’)q = lX(rj-1 + 7j+*). F51 

Now let us check that U, satisfies these moment conditions. Let us define (Zi) = p. 
and notice that (un~~-j) = p&l where p = u2/h2t32(1 - e-he)2. Upon substituting the 
moments E,, for j 2 2 into [C5] we see that 

(1 + a2)2)pk1 = a(paj-2 + PC+ 

This implies that olj-’ + &l = c&l + &l; which is an identity. Thus, all of the 
moments of U, for j 2 2 agree with those of the autoregressive solution x,. Thus we 
must check that the first and second moments of U, and x,, agree. To do this, 
substitute the first and second moments of iz, into [C3] and [C4]. We see that 

po(1 + c?) - 2olp = p2 + q2 

p(l + o2) - 012p - olpa =pq. 

After substituting the value of p, po, p and q it can be shown that this system of 
equations holds. Thus, ii,, and x, have the same correlation function. Since U, and xn 
have the same correlation function and are both Gaussian, the random vectors X = 
(Xl, x2, . . . > 

x~) and Y = (Ur, U2,. . . , EN) have the same multivariate Gaussian 
distributions. Therefore, E, can be represented as a solution of the above autoregres- 
sive processx, provided that we set (xi) = (Zg). 
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