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Lateral entrainment in baroclinic currents II 

by Melvin E. Stern’ and Jean-Raymond Bidlot 

ABSTRACT 
The strong mesoscale velocity fluctuations (“eddies”) observed in the deep Gulf Stream 

region may be dynamically necessary to incorporate the Recirculation Gyres which account for 
the downstream increase in transport. The eddy-current interaction leading to entrainment is 
studied in a two layer quasi-geostrophic model with piecewise uniform potential vorticity. It is 
shown that the volume entrained by a bottom eddy of strength I*, initially located near the 
edge of a bottom current depends mainly on the lateral shear s2 of this current, rather than on 
the much stronger shear of the upper layer. It is suggested that the “mean entrainment 
velocity” into an isopycnal layer of nearly uniform vertical thickness is proportional to 
(m2)“2, where I? (cm2/sec) is proportional to the integrated potential vorticity anomaly of 
the eddy. 

1. Introduction 

Although the large downstream increase in total Gulf Stream transport observed 
south and north of Cape Hatteras is eventually supplied by meulz current inflows 
(“gyres”) on either side (Hogg et al., 1986) the much larger velocity fluctuations 
present in mesoscale eddies (Luyten, 1977) may be dynamically important in 
incorporating the gyre water across the stream’s edge (Stern and Bidlot, 1994, 
hereafter cited as SB). In the latter paper the entrainment mechanism is discussed 
for a 1% layer model, in which an upper eddy interacts with the upper stream flow, 
and in which the deep lower layer is stationary. But most of the observed increase in 
stream transport occurs in the lower layer, and therefore we shall now consider the 
full two layer entrainment problem in which the barotropic influence appears. This 
effect, considered previously in apure barotropic model (Stern, 1991, hereafer S91), 
is summarized below because the barotropic component will be shown to be most 
relevant to entrainment in the present two layer quasi-geostrophic model. 

The pure barotropic problem (Fig. 1) consists of a semi-infinite basic current with 
uniform cyclonic (+) vorticity 5 = s2 on one side of an interface y’ = L (x’, t), and 
irrotational (5 = 0) fluid on the other side. In addition, the initial (t = 0) state 
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Figure 1. Schematic diagram of pure barotropic entrainment (after Stern, 1991). (a) An 
initially circular eddy of vorticity L& with its center at y’ = R’ interacts with a semi-infinite 
shear layer of piecewise uniform vorticity (0, s2). The wiggly arrows indicate the transverse 
velocity induced on the interface (solid curve). (b) The resulting interfacial deflection L 
bounds clockwise (+) vorticity anomalies downstream and negative ones upstream. These 
cause the eddy controid to move into the shear flow. (c) The clockwise winding of L results 
in the entrainment of the eddy and its surrounding irrotational fluid (stipled) inside a “new” 
shear flow interface (see text). 
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contains a circular eddy with vorticity {L > 0 and strength 

R’ = j-j- c;, a!x’ dy’, 

with its center at some “relatively small” distance y’ = R’. The eddy circulation 
perturbs L, and thereby induces vorticity anomalies (denoted by + and -), as 
defined by the difference between the actual vorticity and the undisturbed flow 
vorticity at any point. These anomalies determine the total transverse velocities, 
which cause the centroid of the eddy to move closer to the shear flow (Fig. lb). This 
motion will increase both the interfacial deflection and the total amount of the 
vorticity anomalies subtended by L, thereby augmenting the motion of the eddy 
towardy’ < 0. As this occurs the eddy circulation causes the downstream branch.of 
L to wind counterclockwise around the eddy until close contact is made (at time tf ) 
with the upstream L-branch, thereby “virtually” (e.g., Fig. lc) encircling the eddy 
and some of its surrounding (5 = 0) fluid. This means that an essentially multi- 
connected L-curve tends to form, as is made explicit by “cutting and reconnecting 
(four) ends” (S91, SB) at the close contact point. One of the two simply connected 
L-curves so formed extends fromx’ = --cc, tox’ = +w, and this defines a “new” shear 
flow interface; on one side of this there is only irrotational fluid, and on the other side 
is the second L-curve, which is closed and contains both the R’ eddy and its 
surrounding 5 = 0 fluid. Their combined areas A’ measures the net mass transfer 
across the new interface and into the stream, where it will eventually be mixed and 
advected downstream, thereby increasing the total stream transport. The value ofA’ 
depends on s2, a’, R’ and on the initial geometry. It was found (S91) that if R’ is not 
large compared to the “natural’ length scale (fi’/~#~, and if &, > s2 is not too large 
then the entrained area scales as 

(1.1) 

The large R’ case, on the other hand, leads to a weak (linear theory) eddy-shear flow 
interaction (Stern and Flierl, 1987) in which the distant vortex is not entrained. 
Likewise, the 5&.ls2 z+ 1 case corresponds to a dynamically passive shear flow whose 
interface is merely wound around a nondisplaced eddy. 

A qualitatively similar entrainment process occurs in the 1% layer model (SB), 
where piecewise uniform potential vorticity domains replace the piecewise uniform 
vorticity regions of the barotropic problem. In both cases the contour dynamical 
procedure (Meacham, 1991) is used in the numerical calculation of the nonlinear 
evolution. These relatively simple models (compared to spectral calculations) reduce 
the number of degrees of freedom, thereby facilitating understanding, and allowing 
quantitative exploration of a greater parametric range. 

The effects in both of the previously cited studies will appear in the two layer case 
(Fig. 2) where the lower layer has finite mean depth H2 and a basic velocity u,(y’). 
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Figure 2. Perspective sketch of a two layer model with undisturbed velocities u,(y’), u,(y’) in 
the upper and lower layers respectively. +T, $5, are the respective dynamic pressures and h* 
is the downward displacement of the density interface. Piecewise uniform potential vorticity 
is achieved by choosing the bottom topography M* such that the undisturbed lower layer 
thickness is uniform. This basic state is disturbed by piecewise uniform potential vorticity 
eddies, but for clarity only an upper layer point vortex (strength lY\) is shown. The eddies 
induce transverse displacements Li, Li of the potential vorticity interfaces. 

In order to achieve the simplification of a piecewise uniform potential vorticity model 
we will consider the particular bottom topography 

M *(y’) = h*(y’). (1.2) 

Although this is somewhat artificial, it does correspond to the oceanographically 
relevant case of a deep isopycnal layer having nearly constant thickness. This bottom 
layer will then have piecewise uniform potential vorticity if a,(~‘) has piecewise 
uniform shear, and piecewise uniform potential vorticity in the upper layer will be 
achieved by choosing appropriate values of H1 + h*, aI( as will be seen. In 
addition, the upper and lower layers will contain eddies of piecewise uniform 
vorticity whose integrated values define the respective strengths r;, r$, but for clarity 
only (part of) an upper eddy is shown in Figure 2. 

2. Two layer equations and the deep bottom layer limit 

As in SB, the quasi-geostrophic potential vorticity o* of an isopycnal layer of mean 
thickness H, is defined by CO* = [*/f - h*/H,,, where h*(x’,y’, t’) is the deviation of 
the layer of thickness from H,,f is the (constant) Coriolis parameter, {* = f -‘V2+* is 
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the relative vorticity expressed in terms of the dynamic pressure $*, and f-l 
(-&Jr*lay’, &jr*/&‘) are the (x’, y’) velocity components. If subscript “1” denotes the 
upper layer of density p, and “2” denotes the lower layer of density p + Ap, then 
V$T = V+I + g*h* is the hydrostatic relation (g* = gAp/p), and 

co; = f -2V2+l - h*lH,, 

w; = f -2V2+2 + (h* - M*)IH,, 

are the piecewise uniform fields of conservative potential vorticity. When the 
corresponding equations for the undisturbed fields Or, O2 are subtracted from the 
total fields, we obtain equations for the piecewise uniform residual fields w;, w; as 
functions of the disturbance fields JI;, +i, h’. The well known diagnostic equations for 
the barotropic component HI+; + H23r; and the baroclinic component $; - +;, 
obtained by linear combination of the o;, o; equations, are 

V2(fW; + H2W = f 2Ws4 + HP;), (2.1) 

(V2 - l/AX)($i - *;) = -f "(co; - o;), (2.2) 

A = (g*/f 2)1’2(1/H1 + 1/H2)-“2. (2.3) 

The residual wi are composed of two parts, one of which is due to the eddy strength 
defined by 

and the second is the interfacial potential vorticity anomaly which depends only on 
the transverse deflection LI of the interface and on 0, in the layer i. The Lagrangian 
velocity (dxlldt, dLl/dt) at each point (x[, LI) on the Li interface is obtained by 
solving the inhomogeneous equations (2.1)-(2.2) forf -r( -@,!/a~‘, a+;/&‘), evaluat- 
ing these components on the Li interfaces, and adding in the basic velocity (vi, 0). 
Each of the points used to discretize Li is then moved with this velocity in one time 
step, and iteration then gives L/ (xi, t). 

The Green’s function for solving the Poisson equation (2.1) is logarithmic, and the 
Green’s function for Eq. (2.2) is the Bessel function (&). By adding and subtracting 
the (integral) solutions for H,$; + H24& and $; - $5 we obtain the individual 
pressure disturbances: 

f2 *; = 241 + e) ssdSd71((o;+ro;)ln(~)+(wi-w;)Ko(~)), (2.4) 

*i=,,(i:,,)SSdSdri((o;+rw;)In(~)-~(~;-~;)KO(~)), (2.5) 
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where 
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R = [(x’ - E)* + (y’ - r))*]“*, 
HI 

E=-, 
H2 

and where the normalizing constant Rh may be chosen as convenient (see below). 
Note that the upper layer anomalies (o;d.$d$ in (2.5) must be integrated over all 
(x’, y’) in the upper layer to obtain their contribution to the lower layer +;, whereas 
the o;@dq terms are to be integrated over the lower layer in (2.5); likewise for the 
integrations in (2.4). 

Before turning to the numerical calculations, some simple but important proper- 
ties of (2.4)-(2.5) will be noted for the asymptotic limit 

HI e=-< 1, 
H2 

and for the case in which only a lower layer eddy I; > 0 (i.e. Ii = 0) is present to 
disturb the basic flow with fixed 

Si = -dUildy aty = O-, (2.7a) 

s=s1-s*. (2.7b) 

Then the E + 0 limit of (2.5) is 

44 = ;j-j-dSd~ 05 In {[(x’ - c)* + (y’ - T$*]~‘*(R~)-~), (2.8) 

where Rb may be taken as the initial centroid ordinate of the eddy. Because (2.8) is 
independent of the perturbations it induces in the upper layer, the asymptotic 
contour dynamical equations for L&x’, t’) are the same as for an analogous pure 
barotropic problem (S91), and thus the entrained area A’ should be independent of sl. 
The importance of this conclusion lies in the fact that in the limit of large H2, a finite 
A’ implies a large entrained volume H2A’ in the two layer problem. 

Since an increase in s1 increases the 10; 1 associated with the Li deflection, the 
question arises as to whether the EWi terms in (2.5) are negligible, and whether the 
E -+ 0 limit is valid when s1 is large (with fixed s2, I;). But the increase of s1 also 
increases the intrinsic restoring force on the interface, so that the area occupied by 
the wi anomalies decreases, thereby offsetting the increase in 10; 1. In order to show 
that the integrated effect of 10; 1 yield velocities independent of s1 + CO we develop 
the following scale analysis to obtain asymptotic equations when E -+ 0, s1 + co. Let 
the lower layers;’ be the time scale, (f I’;ls2)“* the “natural” length scale, and L, = 
Q/s, the upper interface deflection, where Q is independent of s1 + 03. Thus the y’ 
interval over which the o; - s1 are integrated is s dq - L, - Q/sl, and 
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consequently $ o’, dq - Q is independent of sr. The net contribution of 0; to Eq. 
(2.5) is then uniformly O(E) -+ 0, so that (2.8) holds, and Lz is indeed independent of 
s1 + 03. The asymptotic equation for Q is obtained by noting that dLI/dt - s;’ + 0, 

and therefore a$;/&’ -+ 0 ony’ = L1 - s;’ + 0. By collecting terms in (2.4) which 
are independent of (s, + ~0, E + 0), we find one group coming from the o;dtdq 
terms, which involve only the aforementioned L2 anomalies and the lower layer r;. 
The remaining contributor to (2.4) and to a$;/&’ = 0 is JJK&dl;dq - JKO(sId$)Q/sI 

which is also independent of sl, and which requires an x-integration over the Q(x, t) 

contour. The resulting asymptotic balance for the upper interface is an inhomoge- 
neous integral equation for Q, which corresponds to a quasi-static response to the 
independently determined evolution of L2 and the lower layer eddy. We must note, 
however, that this analysis implicitly assumes a stable undisturbed state, for otherwise 
the small eddy induced L1 - l/s1 might amplify on the relatively fast time of a 
baroclinic instability. These inferences will be useful in organizing the numerical 
results which follow. 

For the finite values of (E, sl) used in the numerical calculations of (2.4)-(2.5) the 
non-dimensionalization will employ A as the length scale (except as otherwise noted), 
and 3-l (2.7b) as the time scale. Then the non-dimensional baroclinic shear aty = O- 
in the basic state is unity, and the corresponding non-dimensional shear of the lower 
layer is 

r, = s21s. (2.9) 

The corresponding non-dimensional potential vorticity anomalies are denoted by 
mi = w&~/f)-‘, the nondimensional area is A = A’lX2, and the non-dimensional 
strength r2 of the eddy in the lower layer is related to the previous value (r$) by 

r; = ~y~if.j JJ ok d-rcdy = hydf)r,. 
The asymptotic result (2.8) suggests that for fixed geometry (e.g. radius and location 
of the initial lower layer eddy) the dimensional entrained area A’ should be 
proportional to the pure barotropic value (1.1). Since c;, = f& when H2 -+ CO Eq. 
(1.1) yields 

and when this is converted to non-dimensional units, using A’ = AX2 and (2.10), we 
get the suggested asymptotic scaling relation 

A - X,/s, = r2/r,. (2.11) 

How do the following two-layer calculations forfinite E, r, compare with this? 
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3. Numerical results and discussion 
In the numerical calculations x-periodic boundary conditions with a (sufficiently) 

large wavelength are used, in which case the logarithmic Green’s function in 
(2.4)-(2.5) is replaced by the well known formula for a periodic barotropic vortex 
array; the periodic K0 array is, however, approximated by the sum over a finite 
number of wavelengths. This procedure, as well as other aspects of the implementa- 
tion of the contour dynamical method is the same as in SB. 

For the case of the semi-infinite shear layer (Fig. 2) with piecewise uniform 
potential vorticity, the non-dimensional basic velocity profiles are 

I 0 
%(Y) = 

Y>O 

- p’ sinh (ky) - r,y y < 0, 

~z(Y) = 
1 

0 y>o 

-rsy Y < 0, 

(3.1) 

(3.2) 

p = (1 + c)-1’2, (3.3) 

and the nondimensional Eqs. (2.1)-(2.2) are 

v2w1 + *21 = -1 + 02, 

(V2 - l)(*l - 4J2) = Wl - 02. 

(3.4a) 

(3.4b) 

If (L,, L2) denote the non-dimensional deflections of the shear flow interfaces, and 
mle, Ok denote the uniform eddy potential vorticities of strength lYl, 12, then 

1 + r, O<y<L, 

6+ = ule +. -Cl + rs> 

I 

0 > Y > L (3.5) 
0 otherwise, 

rs O<y<L, 

w2 = 02 + 

1 

-r, 0 >y > L2 (3.6) 
0 otherwise, 

where the bracketed quantity gives the anomaly due to the interfacial deflection. For 
the case of a baroclinicjet, Eqs. (3.1) and (3.5) are respectively replaced by 

’ 1 

G e-py Y>O 
qY> = ’ 1 

- #’ - r,y y < 0, 
,2P 

(3.7) 
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I r, - 1 O<y<L, 

ml = % + -(rs - 1) 0 > y > L1, (3.8) 

and i&, o2 are unchanged. Most of the following calculations, however, are for the 
shear layer (3.1). 

Consider first the case of apoint potential vortex with I2 > 0 (and I1 = 0) located 
initially at ye(O) = 0.2 in a lower layer with everywhere vanishing potential vorticity 
gradient (I&(y) = 0, r, = 0). The L2-curve then merely provides a passive tracer for 
Lagrangian parcels advected directly by 12, and indirectly by the upper layer vortex 
anomalies associated with L1. It appears (Fig. 3a) from the contour dynamical 
calculations that the latter are so small for E = .5, I2 = 1 that their induced lower 
layer velocities hardly change the vortex position (~~(26)) so that it is not entrained 
under the shear flow. A merely kinematic response occurs in the lower layer, as the 
Lz-tracer is wound around the vortex (Fig. 3a) by its own circulation. 

When s2 is finite (Fig. 3b), on the other hand, the Lz-deflection induced by the eddy 
produces positive (negative) potential vorticity anomalies downstream (upstream) 
from ye(t), and both anomalies produce a lower layer velocity which causes ye(t) to 
decrease. (These effects are analogous to those described for Fig. 1.) The approach 
of the vortex to L2 then increases the latter deflection, thereby increasing both the 
total vorticity anomalies and their effect in decreasing y,(t). Eventually (Fig. 3b) the 
point vortex enters the lower layer shear region (y < 0), and the continued counter- 
clockwise winding of L2 results in a “close contact” (at x = -.5) of the original 
downstream branch of L2 with its upstream branch. By “cutting and reconnecting” 
(as previously mentioned) a new shear flow interface is formed, inside of which is the 
vortex and its surrounding low potential vorticity fluid (unstipled). The total en- 
trained area A represents a net transfer of mass across the lzew interface of the mean 
shear flow in the lower layer. 

When the run in Figure 3a was repeated with the lower vortex transferred to the 
upper layer (i.e. I, > 0, I2 = 0, r, = 0), entrainment occurred across the upper layer 
interface (not shown), in a manner dynamically similar to that which occurs in the 1% 
layer model (SB), and the passive L2-curve was merely wound in a spiral about a 
stationary central point. In a second repetition, using an initially depth independent 
vortex (i.e. I1 = I2 > 0) at y = 0.2, and s2 = 0, the upper (I’, > 0) vortex interacted 
with L1 as occurred previously (for I2 = 0), but the lower layer vortex (I,) remained 
near y = 0.2, and merely wound L2 around it; i.e. the depth dependent vortex split 
and entrainment occurred in the upper layer but not in the lower one. These results 
indicate that, in addition to a bottom eddy (I2 f 0), a bottom layer potential vorticity 
gradient (s2 f 0) is necessary for a net mass transfer underneath the surface current. 

Next to be considered are finite area bottom eddies, or more generic fluctuations 
of potential vorticity, such as a “patch” (Fig. 4) which is in close contact with the edge 
of the stream. In addition to the computational efficiency (cf. SB) provided by such a 
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Figure 3. The interfacial deflections L1, L2 at t = 26 produced by a lower layer (e = 0.2) point 
vortex of non-dimensional strength I2 = 1, initially at ye(O) = 0.2. The x = 0 origin moves 
with the vortex center in all that follows. (a) No lower layer shear flow (s2 = 0). The L2-curve 
is merely wound around the vortex center whose positiony,(26) = .16 is almost unchanged. 
The nearly horizontal curve is Lr. (b) Same as (a) except that a lower layer shear flow (rs = 
S) has been added. This results in ~~(26) = -.86, and an entrainment of irrotational 
(unstipled) fluid inside the shear flow (stipled). The deflection of the upper layer curve is 
larger than in (a). 

structure (as compared with an eddy separated from the interface), it might fairly 
represent part of a complex eddy field which is near the stream at a certain time; our 
model attempts to isolate a subsequent interaction with the stream which leads to 
entrainment. In all the following runs, I, = 0, and the semi-circular patch radius was 
chosen so that its initial centroid was at the same ordinate y,(O) = 0.2 as in the runs 
using point vortices. Except for the smaller I2 = .5, the parameters used in Figure 4 
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Figure 4. A semi-circular patch (cyclonic “eddy”) of radius 0.471 (y,(O) = 0.2), potential 
vorticity = 1.43, and strength r2 = 0.5 is initially in close contact with L&q 0) = 0, when 
r, = S, E = .2, f’r = 0. At t = 20 the eddy and its surrounding (unshaded) fluid are entrained 
inside the “new” interface formed by cutting Ll at x - -1.75 (see text). The nearly 
horizontal curve is the slightly deflected &-interface. 
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E = .2 r2= 1 

y,(t) -0.4 

-0.6 

-0.8 

-1 

0 10 20 30 40 50 

time 
Figure 5. Time variation of the centroid of initially semi-circular eddies with radius 0.471 

(ye(O) = 0.2). (a) I2 = 1, E = 0.2. (b)r, = .5, E = 0.2. (c) r, = .5, E = 1. The entrainment of the 
eddy is clearly implied in Figure 5a by its rapid motion into the region (y < 0) occupied by 
the shear flow. 

are the same as for the point vortex used in Figure 3b. The lower layer vorticity 
anomalies, induced by the eddy at t = 5 causes it to move into the shear layer at t = 
10, and the winding of L2 results in complete entrainment of the eddy at t = 25; but 
the deflection of the upper layer interface is notably small. 

The large number of runs summarized in Figure 5 indicate the way the entrain- 
ment depends on the parameters; e.g., increasing r, (Fig. 5a) decreases the time it 
takes for an eddy and its surrounding water mass to pass from the outside to the 
inside of the lower layer interface. It should be mentioned that in the runs with very 
small r, (e.g., r, = 0.1) the L2 plot (not shown) contains many spiral windings of the 

rs =.l 

rs =.25 

rs =.5 

rs =.75 

rs=l. 

I I I I 
I I I 
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I I I I 

0 10 20 30 40 50 

Figure 5. (Continued) 

interface around the eddy before “close contact” and definitive entrainment occur; 
this greatly increases the number of Lagrangian points and otherwise causes prob- 
lems in resolving the windings. For this reason smaller r, values were not considered, 
and when r, -+ 0 the nonentraining regime, typified by s2 = 0 (cf. Fig. 3a), is 
approached. Figure 5b suggests that for fixed E, r, there is a critical value of Tz below 
which entrainment also does not occur [see the small L, amplitude (linear) calcula- 
tion of Stern and Flier1 (1987) when r2 + 01. There also appears to be little 
difference in the displacement of a point vortex, a semi-circle, and a semi-ellipse with 
the same r2 = 1. Figure 5c shows that the rate of entrainment of a Tz = 1 eddy does 
not differ much from that for the smaller E in Figure 5b, indicating a rapid approach 
to the asymptotic (E + 0) theory. 

The entrained area for a shear layer interacting with a semi-circular eddy of fixed 
strength r2 = 1 is plotted in Figure 6 as a function of r, for E = 0.2. (The curve should 
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Figure 5. (Continued) 

not be extrapolated to r, < 0.1, for reasons mentioned previously in connection with 
Figure 5a, viz no entrainment occurs for much smaller r, when TZ is held constant.) 
The second set of points in this figure will be discussed subsequently. All of our two- 
layer entrainment runs are plotted in Figure 8 using the barotropic scaling (2.11) of 
the asymptotic theory. It is noteworthy that this collapses all of the runs, covering a 
large range of (E, rs), into a single (nearly linear) curve. These baroclinic results were 
also compared with apure barotropic one in which E = 0 (in Eq. 2.5), and for which A 
is independent of r,. In this run we set r, = 1, which makes s;’ the time scale, and 
calculated A for each I, using an initially semicircular barotropic eddy with centroid 
at y,(O) = 0.2. The computed value ofA for each T/r, = I/l was entered in Figure 8 
and, as expected, the pure barotropic points overlap those for other values of r,, E. 

Further verification of the dominant barotropic effect was obtained by changing 
the upper mean field from a shear layer (3.5) to a jet (3.7), for which the difference in 
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Figure 6. Nondimensional entrained area (A) produced by semi-circular bottom eddy as a 
function of r, for E = 0.2, ye(O) = 0.2. The open symbols are for an upper layer shear flow 
(Eq. 3.1) when r2 = 1, and the solid symbols are for an upper layer jet (3.7) when IT2 = .5. 

undisturbed lower layer shear acrossy = 0, as well as the values of (E, yo, r,), are the 
same as for the shear layer in Figure 4; but the difference in baroclinic shear across 
y = 0 has an opposite sign in the two cases. The computed A is the same in both cases, 
and the main difference is the larger L1 amplitude in the jet problem (Fig. 7). This is 
attributed to a baroclinic instability, since the upper and lower layers of the jet model 
have oppositely directed potential vorticity gradients [see the remark at the end of 
the scale analysis in the paragraph preceeding Eq. (2.9)]. Figure 6 compares the 
variation ofA with r, for this jet and for the shear layer. Figure 8 shows that both sets 
of points lie on the same normalized curve, thereby verifying that for E = .2 the upper 
layer does not affect the entrained area in the lower layer. 

4. Conclusion and suggestions 

A simple scale analysis was used to show that the entrainment of a lower layer eddy 
into a shear flow depends mainly on the deep layer, and not on the stronger potential 
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Figure 7. Same as Figure 4 except that the undisturbed baroclinic flow is a jet (3.7) with its 
maximum velocity ony = 0. 

vorticity gradients in the thin overlying layer. The scaling relation (2.11) for total 
entrained area was numerically verified (Fig. 8) not only for small H,IH,, but also for 
a larger range of two layer parameters in an ensemble (Fig. 8) consisting of a bottom 
eddy which is initially near the edge of the lower shear layer. The somewhat artificial 
topography (Eq. 1.2) used to achieve model simplification restricts our entrainment 
calculations to a deep isopycnal layer of uniform thickness. 

The oceanographic significance of the finite entrained areaA’ in the large H2 limit 
is due to the large entrained volume. This represents a potentially significant addition 
to the transport of the thin and fast upper layer of the Gulf Stream, assuming that the 



19951 Stem & Bidlot: Lateral entrainment in baroclinic currents 265 

Ye 0 = -2 unit barotropic shear 

21 
1.8 -- 

1.6 -- 

1.4-- 

A 1.2-- 

1 -- 

0.8 -- 

0.6 -- 

0.4 -- 

0.2 -- 

A 
0 

& 
r 

A0 B 

?T 
A 

g 

0 &=.2 shearflow 

q &=l. shearflow 

+ &=.2 shearfl0wPt.V 

x E= 1. shearflowF’t.V 

+ &=.2 fulljet 

A barouopic 

01 E: I I I I I 
I + 

0 0.5 1 1.5 2 2.5 3 

Figure 8. Summary of non-dimensional area (A) entrained in the bottom layer as a function of 
the scale (T2/ls) suggested by the asymptotic theory. All runs have El = 0 and the same 
initial value for the center of the bottom layer eddy. These runs include the point vortex, the 
semi-circular eddy, and a correspondingpure barotropic eddy (see text). The points labeled 
“full jet” are for Eq. (3.7) and the others are for Eq. (3.1). The collapse of these points onto 
a single curve indicates that entrainment in the bottom layer depends mainly on the strength 
of the eddy therein and on the lower layer shear; independent of the upper layer current. 

entire entrainment event (e.g. Figs. 4 and 7) is repeated intermittently in space-time, 
as successive patches of eddy potential vorticity are advected toward the stream’s 
edge by a broad mean current (“gyre”) on either side of the deep Gulf Stream. 

These suggestions may be elucidated in the context of the simple barotropic model 
(Fig. 1). Suppose the shear flow interface is initially undisturbed (L(x, 0) = 0), and at 
some distance R’ outside this there is a compact eddy having equal and opposite 
amounts of vorticity in an inner core and in an outer annular shell (respectively), so 
that no velocity is induced on L. Now add a steady weak mean flow directed toward 
the shear flow interface; e.g. by inserting afixed vortex at some distant point (as was 
done in SB Sec. 3). The velocity produced by this weak mean field will cause the 



266 Journal of Marine Research [53,2 

compact eddy to move slowly toward the shear flow, and eventually to interact with it. 
The outer vertical shell will then be advected downstream faster than the core, 
thereby tending to separate the regions of positive and negative eddy vorticity into 
two “patches” in close contact with L(x, t). As in the case of Figure lc, the 
subsequent interaction may result in the entrainment of the patch whose vorticity is 
of the same sign as the shear flow. The patch with opposite vorticity can be entrained 
in the basic flow only if the latter contains vorticity of both signs, such as occurs in a 
full jet (for an example see Sec. 5 of SB). In addition to such a calculation we might 
also consider a model with a staggered array of such compact eddies, which are 
successively (and independently) advected to the vicinity of the shear flow front, 
where they (and the ambient irrotational fluid) are successively entrained inside a 
“new” interface, thereby providing a time averaged downstream increase in transport 
of the fluid at each point along the mean interface. 

A simple estimate of the magnitude of this transport can be obtained in terms of a 
barotropic “entrainment velocity,” as computed in S91, Table 4. This is based on the 
previously mentioned (Sec. 1) interval tf between the initial time of approach (e.g. 
Fig. la) and the time at which the entrainment (of areaA’) is “essentially” complete 
(e.g. Fig. lc). From the computed (A’, tf) a time averaged entrainment velocity V, = 
A’I(tfA,) can be obtained, where A, = (~R’/s#‘~ is the natural length scale determined 
by s2 and the eddy strength. On dimensional grounds the time average transport 
velocity across the current interface is 

v, = C(wsp (4.1) 

where the nondimensional C might depend on 5&/s2 and on the initial geometry, 
where &. is the eddy vorticity. The numerically determined (S91) value of C for an 
initially circular eddy of radius a in the limited range a/X, = (.46, .40, .32) for 5&ls2 = 
(1.5,2,3) respectively was 

c = .ll + .02. (4.2) 

We mention that during the interval tf the eddy was advected approximately two 
diameters downstream inside the shear flow. Of greatest significance is the fact that 
the computed momentum flux was directed toward the shear flow (“counter- 
gradient” flux), so that in addition to incorporating mass the eddy was supplying 
momentum and energy to the stream. 

The major uncertainty in (4.2) is due to the subjective factor in determining the 
cutoff time tf Consequently an independent determination (by JRB) was made for 
the pure barotropic calculations considered herein. These consisted of an initially 
semi-circular eddy (centroid sty,(O) = 0.2) in flush contact with the horizontal edge 
of a shear layer (unit vorticity). For seven values of the eddy strength (a’ = .25, .5, 
.75, 1.0, 1.5, 2, 2.5) the value of (4.2) was C = .081 + .OOl, and slightly lower (5%) 
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values were found when the (appropriately normalized) baroclinic runs were in- 
cluded. 

Now consider an ensemble of such (separated) eddies located outside the shear 
flow, and being slowly advected toward its interface by a weak exterior mean flow 
(the “Recirculation Gyre”). At t = 0 the first eddy arrives at the interface and is 
entrained at t N tf Then the entire process is intermittently repeated in time 
intervals O(t,>, and also at downstream position intervals of O(a). All the statistical 
aspects of this ensemble will be parameterized by a single “intermittency factor” y, 
so that the mean entrainment velocity at each downstream location is given by 

(V,) = y(.ll)(R’s,)? 

Thus in a downstream distance W the total transport through one of the edges 
bounding the jet is increased by (I/,)WH2. For illustrative purpose we take s2 = 
10 cm/set/50 km, a’ = 1r(30 km)*(3s2) and y = 1/2, thereby obtaining (VJ = 
1 cm/set. Eddies of this size (30 km radius), and r.m.s. velocity 3430 km) = 18 
cm/set are ubiquitous features (Luyten, 1977) of the deep ocean in the region of the 
synoptic Gulf Stream. 

The suggested generalization for a deep isopycnal layer of nearly uniform thick- 
ness is that (VJ is proportional to the product of the maximum mean shear at the 
edge and the mean eddy strength (integrated potential vorticity). 
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