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Local and remote forcing of the barotropic transport 
through a periodic gap in a basin with bottom topography 

by Alexander Krupitsky’ 

ABSTRACT 
The effect of bottom topography H on the barotropic transport through a periodic gap in a 

basin with large-scale bottom topography is studied. The results obtained generalize previous 
findings for the case of a zonal channel (Wang and Huang, 1995; Krupitsky and Cane, 1994). 
An asymptotic approximation is found for the zonal transport on a B-plane when all f/H 
isolines are blocked by the solid boundaries. It is shown that to leading order, the transport 
through the gap (i) is independent of friction similar to a western boundary current; (ii) is 
inversely proportional to R, the range of values of f/H that exist on both parts of the solid 
boundary. The transport depends on the latitude of the equatorward side of the gap, but not 
on the poleward one. The transport is forced by a mean wind in the area poleward of the 
equatorward side of the gap and in two remote forcing regions discussed in the text. 

1. Introduction 

Simple barotropic models of the Antarctic Circumpolar Current (ACC) have 
attracted researchers for more than forty years. Their appeal continues for at least 
two reasons. First, since the Southern Ocean is weakly stratified one expects that the 
barotropic model would be a zero order approximation to reality. Second, most 
numerical models integrate the vertically averaged equations separately from the 
rest. Thus a simple barotropic model may give significant insight into the results of 
complicated general circulation models. 

The key question of circumpolar dynamics is what balances the input of momen- 
tum and vorticity by wind. In the early models of the ACC developed by Kamenkov- 
ich (1960, 1962) and extended by Johnson and Hill (1975) the wind input was 
balanced by the bottom friction. In these models it was assumed that the contours of 
potential vorticityf/H (fbeing the Coriolis parameter and H the depth) close around 
Antarctica. Such a configuration effectively stipulates the breakdown of the Sverdrup 
balance in the circumpolar domain. Since the pressure gradient cannot build up on 
the closed contour, the friction, no matter how small the coefficient is, must balance 
the wind input. This is the essence of a problem encountered by many flat-bottomed 
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models (e.g. Hidaka and Tsuchiya, 1953; Bryan and Cox, 1972): either the friction 
coefficient or the ACC transport was unreasonably high (Hidaka dilemma). 

Munk and Palmen (1951) were the first to suggest that it is topographic pressure 
torque that balances the input of vorticity by the wind stress curl. There are 
significant submarine ridges which allow transfer of horizontal momentum to the 
solid earth. Eddy resolving experiments by McWilliams et al. (1978) Wolff and 
Olbers (1989) Wolff et al. (1990), and Wolff et al. (1991) have shown that the 
topographic pressure drag is the major term in momentum balance. 

Krupitsky and Cane (1994) (h ereafter KC) considered almost inviscid wind driven 
flow in a zonal channel with the large-scale piecewise linear topographic relief 
sufficiently high that all f/H contours are blocked by the sidewalls. They found that 
the zonal channel transport is independent of friction, similar to the Sverdrup 
transport in a basin. Certain parts of the sidewalls act as “quasi-western” boundary 
layers where the circulation closes. Similar results were obtained by Wang and 
Huang (1995) who studied the case of a ridge in an otherwise flat channel. 

A key assumption in these models is that the sidewalls are vertical. If the depth 
were allowed to gradually vanish at the sidewalls, then inevitably there would be a 
band of closed f/H contours around Antarctica and the dynamics suggested by 
Kamenkovich (1960, 1962) would apply. There are several reasons to choose the 
vertical sidewalls over the gradually sloping bottom: (i) the width of the shelf is small 
compared to the width of the ACC which varies between 800 and 1500 km; (ii) even a 
small horizontal viscosity (neglected in the analytical models mentioned above) is 
likely to shut down the shelf-trapped circumpolar current allowed by the existence of 
f/H contours closed near boundaries; (iii) shallow coastal currents along the closed 
f/H contours are not observed in reality. 

Since the path of the real ACC is remote from solid boundaries except in the 
Drake Passage, removing the zonal walls which artificially separate the circumpolar 
region from the rest of the World Ocean is a useful extension of the previous work, a 
step toward improving the verisimilitude of the simplified analytical models. We still 
assume a highly idealized geometry: a rectangular basin with a large-scale topogra- 
phy and a periodic gap of zero length imitating the Drake Passage. The essential 
assumption here is that the sides of the gap are not connected by f/H contours. This 
means that zonal scale of topographic variations is assumed large compared to the 
length of the Drake Passage. Wang (1994) considered a geometry in which the only 
topographic feature was a narrow ridge fully contained within the Drake Passage, 
and high enough to block all f/H contours. Our results coincide in finding an inviscid 
limit of the transport through the gap but differ significantly in dependence of the 
transport on model parameters. 

2. The model 
The geometry of the model is sketched in Figure 1. The model domain is a 

rectangular basin 0 I x I 1, y, I y I yg with a periodic gap 0 I y I d on the 
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Figure 1. A schematic of the characteristics f/H, bottom topography and and boundary layers. 
Points A, A’, B and B’ are discussed in the text. 

meridional sides. We assume that the longitudes of the gap and the depth minimum 
coincide. We could treat a more complicated geometry with three separate oceans to 
the north of the circumpolar region but since the mathematical treatment would be 
essentially the same, we consider the simpler case of a single ocean. The part of the 
solid boundary to the north of the gap is designated I?,, the part to the south of the 

gap Ts. 
The equations of the present model are identical to those of KC. A barotropic flow 

on a P-plane driven by a zonal wind r is governed by the nondimensional potential 

vorticity conservation equation 

v.(+v*) +J(*,&) = -& (1) 

where J is the Jacobian and 
IJJ is the transport stream function: V+ = (vH, -&I); 
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U, v are the vertically averaged zonal and meridional velocities, 
respectively; the X, y and z axes are directed eastward, south- 
ward and downward, respectively, withy = 0 at the latitude of 
the northern (equatorward) side of the gap; 

H = 1 + 6h is the depth, h = h(x) is O(1) nondimensional topography, - 1 
I h I 1; 6 I 0 (10-l); 

f = 1 + P(Y -YJ2) is the Coriolis parameter increasing to the south;2 
E is the bottom friction coefficient. 

The boundary conditions are 

* Igap,x=o = * Igap,x=l? (4 
*ir, = 0, (3) 

Nr, = --To (4) 

The problem is to find T, the unknown transport through the gap. 
As in KC, the wind stress 7 is taken to be purely zonal and depends only on 

latitude. As discussed in KC, if the topography is small enough then there are closed 
f/H isolines encircling Antarctica and a rather large transport results. There is a 
minimum topographic height 6,, such that f/H lines no longer close: if 6 = a,, one f/H 
isoline connects the southern tip of IN (the analog of Cape Horn in our model) with 
the point of maximum depth of I,. This occurs for the value S,, such that 

f(Y = 0) =f(Y =Ys) 

1 - 6, 1 + &r 

or 

s =f(Y=YJ-f(Y=O)=YJ 

cr f(Y=Ys)+f(Y=O) 2 * 
(5) 

If 6 > 6, there is a range R of f/H lines that intersect both boundaries: 

R = max ( f/H)rN - min ( f/H)rs 

1 -y,p/2 1 +y,p/2 
= l-6 - 1+6 = & (6 - SC,) = 2(6 - 6cr). 

KC have shown that if 6 > 6, then there is an inviscid limit to the transport in the 
channel with vertical walls. Here we extend this result to the more realistic geometry 

2. Our unconventional right-handed coordinate system is convenient for the Southern hemisphere 
because H, f and p are all positive. 
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sketched in Figure 1. In addition, we shall consider the question of what forces the 
flow through the gap. 

3. The transport through the gap on a P-plane. Local and remote forcing 

Our solution procedure closely follows KC. Since we assume the friction param- 
eter E +X 6, the zero order solution can be found by integration of the inviscid version 
of (1) along the characteristics, i.e., lines of constant q = f/iSH. KC have shown that 

where (x0, yo) is the origin at a solid boundary of the characteristic which passes 
through the point (x, y). As long as dyldx’ = &qH’IP f 0 along the characteristics 
(6a) can be rewritten as 

4&y) = ~J(XO,YO) - -r’[ $I$ 1 W. 
11 

A schematic of the characteristics rl = f/6H = constant [the coefficient l/6 is 
introduced to ensure that Vq = O(l)] is given in Figure 1. The direction of 
integration, shown in Figure 1 by arrows is, as in the Stommel problem, dictated by 
consideration of which side allows a boundary layer. The location of boundary layers 
is shown by bold lines. Boundary layers arise at the boundaries where the character- 
istics end, and inside the channel, where critical characteristics separate regions in 
which information comes from the different parts of the solid boundary I, and Is. 
Since we consider only the case 6 > a,, where no f/H lines close in the domain, there 
are a number of f/H isolines connecting I, and Is with the critical characteristic qc 
being the westernmost. KC have shown that in the vicinity of the critical characteris- 
tics there is an internal boundary layer of width O((E/$)~/~). Notice that the width of 
the near-wall boundary layer is substantially less: O(E/&). 

We find the transport using the auxiliary condition suggested by Kamenkovich 
(1961) applied aty = y,/2: 

Here we assumed without loss of generality that y,/2 < d: it is convenient (but not 
essential) to apply (7) at the latitude where f = 1. Using (6a), (6b) in (7) and 
manipulating expressions yields (see Appendix) 
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where A, B are the intersections of the critical characteristics with the line y = yJ2 
(Fig. 1). The points A, B are defined by 

f (YJ2) f (0) f (YJ2) f (YJ ---=-. -=- 
H(A) Hmin ’ HW Knax 

so 

H(A’) = H(A), H(B’) = H(B) (Fig. 1). They.%, the intersections of the characteris- 
tics with the lines x = ‘/2 and x = 1, respectively, are determined by 

1 1 + P(Y* -Y&3 - = 
H(x) 1+6 ’ 

(The plus sign applies for x = 1/2, the minus sign for x = 1.) The conditions of validity 
of (8) are discussed in Appendix. For the piecewise linear profile depicted in Figure 1 

(8) is exact. 

h = 1 - 41x - l/21 (10) 

Since the range ofy. is (y,/2,y,) in the first integral and (O,yJ2) in the second, the 
transport is a weighted integral of the wind stress at all latitudes to the south of 
“Cape Horn” and at the “forcing regions”-loci of origins of characteristics passing 
through the line y = y,/2 within the intervals (A’, B) and (B’, A). If the longitudes of 
the gap and the depth minimum did not exactly coincide then a band of latitudes to 
the north ofy = 0 would enter in (8). This is illustrated in Figure 2. In any event the 
longitudes of the gap and the depth minimum cannot be too different (4 should lie to 
the east of B’) because we assume that the f/H lines do not close. The region to the 
south of the gap, on the other hand, enters the integration in all cases. Changing the 
variable of integration according to (9) and assuming little curvature we obtain 

P ysl2 
@ - ‘CdT = - H’(B) y, s P ysi:! s F 

‘(Y) dY - H’(A) ,, ‘(Y) h + 5 7 (11) 

where 

With the piecewise linear topography (10) H’(B) = -H’(A) = 46, hence 

(13) 
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Figure 2. A variant of Figure 1: the latitudes of the gap and topographic high differ. 

where 

is the average wind stress to the south of “Cape Horn.” 
This is an asymptotic approximation to the transport in the case 6 > 6,. As in KC, 

the transport is inversely proportional to the range of crossing isolines R = 2 
(6 - 8,). The novelty here is the remote forcing term F. It follows from (13) that the 
throughflow can be forced not only locally (i.e., by the wind at the latitudes of the 
gap) but also remotely by winds at the latitudes to the south of the gap and at two 
“forcing regions”: one to the south and one to the north of the gap (shown by ticks in 
Fig. 1). 

4. Discussion 

In this paper we investigated the effects of the topographic pressure drag on the 
wind driven circumpolar current through the periodic gap in a rectangular basin in 
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the case when all lines of constant f/H are blocked by the solid boundaries. We 
obtained an asymptotic approximation to the transport (13) which is a generalization 
of the result of KC. As in KC, the transport through the gap does not depend on 
friction to leading order and the momentum input from wind is balanced by 
topographic pressure drag. If the remote forcing term F vanishes (13) reduces to the 
expression obtained by KC for the case of the zonal channel with vertical walls where 
the wind was assumed to vanish. 

The important difference with KC is that the definitions of both 6,, and (7) in (13) 
are based on the distance between “Cape Horn” and “Antarctica” y,, not on the 
width of the gap. Inspection of Figure 1 allows one to conclude that for a given 
latitude of “Cape Horn” the location of remote forcing regions is independent of the 
width of the gap. Then it follows from (13) that the transport is independent of the 
width of the gap. Physically it means that topographic high is as effective in balancing 
the momentum input from wind as a solid boundary. The explanation to this 
paradoxical result is that a,, (and thus R) depends any, but not on the width of the 

gap d. 
We took the gap to have zero length in our model but the results would be the 

same as long as the sides of the gap were not connected by f/H contours. This means 
that the horizontal scale of topographic variations is large compared to the length of 
the Drake Passage. Wang (1994) considered the opposite case where the Drake 
Passage had finite length and the only topographic feature is a narrow ridge fully 
contained inside the Drake Passage. (As is true here, it is high enough to block all the 
f/H contours.) His solution differs from ours in dependence of the transport on 
model parameters. In particular, he found the transport to depend on the coordi- 
nates of both “Cape Horn” and the poleward boundary of the gap, the latter being 
more important. These differences emphasize the importance of the representation 
of bottom topography in ocean models. 

Acknowledgments. Mark Cane’s numerous comments helped significantly to improve the 
manuscript. This work was supported by NSF grant OCE-90-00127 and by UCSIO P.O. 
#100.58161 under Prime Agreement NA 37GP0518. This is Lamont-Doherty Earth Observa- 
tory contribution number 5330. 

Derivation of (8) 

APPENDIX 

After integration by parts the left-hand side of (7) can be written using (6a) as 
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Since ~J~r(x,,,y,,) = 0 for B < x < A and +(x0, ya) = -T otherwise, 

s dH-’ o’ *(x0, Yo) - 
B 

~ dx = -TH-’ 
2(S - &r) 

= 
-l+A 

1 _ s2 T = 2(6 - 6,,)T + 0(6*T). (A2) 

For the integrals Z2, Zd it is convenient to split the internal integrals at the extrema of 
H where dyldu changes sign (Fig. 1). For example for Zz 

643) 

The integrals Zr, Z3 and those on the right of (A3) can be evaluated as in (6): 

4 = s-‘rl-‘Wf’)-‘lb(~) - ~(Yo>I, G44) 
rl 

where the braces denote the appropriate average. This average exists if the topogra- 
phy is reasonably well behaved. We further assume that 

{(HI)-‘1 = &+l + 009) = &> 

where X is the point where the characteristic T = q(x) crosses y = yJ2 (i.e. f is the 
point of the interval (x0,x) such that H(Z) = H(x); for II, Z, and the second terms on 
the right of (A3) 2 = x). Eq. (A5) will hold if either: (i) there is little change in x 
between y and y. (e.g. 6 x=- 6,,) or (ii) there is little curvature. For the piecewise 
linear profile depicted in Figure 1 the curvature is zero and this is exact. 

Since q-r (x,yJ2) = 6H(x), using (A4), (A5) in (Al) and (A3) results in 

- S o’;g&- 2(64,)T+~&x 

I (A61 

+ 1 dH(x)-’ 
s ----H(x)~t~*tl,x)) A dx 1 k 

where they.‘s are defined in (9). Assuming symmetry about the extrema of H implies 
H’(x) = -H’(Z). Finally, substituting (A6) in (7) yields (8). 
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