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Vorticity balance of boundary currents 

by G. T. Csanadyl and J. L. PelegrW 

ABSTRACT 
Friction at the seafloor acts as a source of potential vorticity (PV) for individual isopycnic 

layers of a boundary current. The rate of PV transport (flux times layer thickness) equals, to a 
good approximation, the divergence of alongstream shear stress in the bottom boundary layer 
at the seafloor, which in turn equals the alongstream gradient of Montgomery potential. Mean 
PV transport is continuous along isopycnals between the bottom boundary layer and a 
boundary current in statistically steady state. Within the boundary current, Reynolds flux of 
vorticity transports PV. The divergence of this transport balances planetary vorticity advection 
and other terms in the vorticity equation. PV transport is equivalent to horizontal shear force, 
and its continuity from the seafloor to the interior of the boundary current implies that the 
total shear force exerted by the seafloor over the broad footprint of an isopycnic layer acts as 
much increased shear over the shallow depth of the same layer offshore. 

A drag law of the bottom boundary layer connects shear stress at the seafloor to velocity 
outside the boundary layer, a similarity argument yields the functional form of the shear stress 
gradient-friction velocity relationship, and hence the boundary condition on PV transport 
from the seafloor. This is neither free-slip nor no-slip, but closer to the latter. 

1. Introduction 

The idea that individual isopycnic layers of the ocean move more or less independ- 
ently of one another is a theoretical distillation of much observational evidence to the 
effect that overlying water masses of different properties move in contrasting ways 
(see e.g. Worthington, 1976; Reid, 1981). Rossby (1936) and Montgomery 
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(1938) have already exploited the idea in discussing the circulation of the North 
Atlantic; recent work by Rhines and Young (1982), McDowell et al. (1982), and 
others, gave it renewed emphasis. For western boundary currents the idea implies 
that, to enable them to penetrate higher or lower latitudes, a mechanism must 
operate to counteract the advection of planetary vorticity, in each individual isopyc- 
nit layer separately. Our purpose here is to elucidate that mechanism. 

First a word about “isopycnic” terminology, prompted by a referee. As we 
understand recent evolution of this field, “isopycnal surface” means a surface of 
constant potential density. The conjunction is often shortened by dropping the noun, 
to “isopycnal,” the adjective turned noun. “Isopycnic” means something involving 
isopycnals, such as an isopycnic coordinate system (one using isopycnals for coordi- 
nate surfaces) or an isopycnic layer (between two isopycnals), isopycnic remaining an 
adjective. “Diapycnal” (-mixing, for example) denotes direction, and means across- 
isopycnal, “epipycnal” along-isopycnal, both always adjectives. While epipycnal is 
not in wide use, it seems preferable to the clumsy alternative, along-isopycnal. 

Haynes and McIntyre (1987, 1990) have crystallized key ideas, contained in the 
classical theorems on potential vorticity of Ertel(1942) and others, in an “imperme- 
ability theorem” for isopycnal surfaces, and what might be called an “indestructibil- 
ity theorem” for isopycnic potential vorticity (PV). According to these theorems, the 
total stock of PV within an isopycnic layer of the ocean remains constant, except for 
inward or outward directed flux at the intersection of the layer with the free surface 
or the seafloor. This makes it possible to treat vorticity balance of a single isopycnic 
layer independently of other layers. Boundary flux of PV into or out of a layer arises 
from tangential force or from diabatic heating or freshening. Exploiting Haynes and 
McIntyre’s analysis, Marshall and Nurser (1992) have recently discussed PV fluxes 
into the surface outcropping of isopycnic layers of the main oceanic thermocline. 
They have reviewed the theorems mentioned, and summarized their physical con- 
tent. Here we further exploit these theorems to explore the vorticity balance of 
isopycnic layers intersecting the continental slope along an ocean boundary. Bound- 
ary flux of PV into such layers comes mainly from tangential force, density flux across 
the seafloor being negligible, diapycnal mixing feeble. 

At the intersection of an isopycnal surface and the continental slope the tangential 
boundary force is the divergence (vertical gradient) of bottom stress. Because 
velocity and acceleration vanish at a solid boundary (including Coriolis acceleration), 
the stress gradient must be balanced by a pressure gradient, a constraint familiar 
from boundary layer theory. In isopycnic layers the Montgomery potential gradient 
plays the role of the pressure gradient. Transport of PV into a layer intersecting the 
seafloor thus comes to equal the alongstream gradient of the Montgomery potential. 
Away from the boundary intersection, turbulent shear stress decays, and PV flux 
must be handled in some other way. 
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As satellite images vividly illustrate, western boundary currents behave very 
irregularly, develop large meanders, cast off and reabsorb eddies, subduct surface 
water, and expose water from depth. Eddy-resolving numerical models also suggest 
that the irregular motions, collectively known as geostrophic turbulence, transfer 
vorticity. Observations of the epipycnal distribution of various scalar properties (e.g. 
oxygen concentration, Bower et al., 1985) show anomalies spreading across the flow 
in the manner of eddy mixing, implying Reynolds fluxes and fairly large epipycnal 
eddy diffusivity. It is therefore possible that Reynolds flux of PV takes over from the 
boundary force, and distributes the PV transport over a broader region of the 
boundary current. Implicit in such an idea is the postulate of statistically steady state, 
an isopycnic layer moving about a fixed stochastic mean position, in practice mean 
over a period long compared to the lifetime of meanders. The mean isopyctials 
intersect the seafloor in a fixed location, excluding the possibility of mean Ekman 
drift in the bottom mixed layer. 

The “handover” relation, PV transport through the seafloor equals PV transport 
via Reynolds flux outside the bottom boundary layer, then serves as a boundary 
condition for vorticity balance over the interior portion of an isopycnic layer. 
Integrated across a western boundary current, boundary input of PV balances 
planetary vorticity advection, as well as other terms in the vorticity equation. 

Continuity of PV transport between the bottom boundary layer and the interior of 
the boundary current implies continuity of an equivalent shear force, and absence of 
diapycnal Ekman transport, as already pointed out. Thus the isopycnic bottom 
boundary layer differs from the atmospheric (“planetary”) Ekman boundary layer, 
in that “Ekman veering” is absent. The shear stress divergence at the seafloor should 
nevertheless depend on the key parameters of Ekman layers, friction velocity u* and 
Coriolis parameter f. This, and a conventional drag law, then links PV transport to 
the velocity outside the bottom boundary layer. 

To proceed from vorticity balance to velocity distribution, a gradient transport 
model of PV diffusion is plausible, with eddy diffusivity derived from observations of 
scalar property spread. The resulting equation for PV transport and diffusion 
contains the layer depth, however, the cross-stream distribution of which cannot be 
determined from the vorticity equation alone. To illustrate the consequences of PV 
transport continuity nevertheless, we explore the somewhat overidealized case of 
constant isopycnic layer depth and constant velocity of inflow from gyre interior into 
a western boundary current. This is equivalent to barotropic western boundary 
current models of constant depth oceans, discussed by Moore (1963) Ierley (1987), 
Cessi et al. (1990) and others. The boundary condition is, however, different, neither 
free slip nor no slip. The solutions are qualitatively similar to the no slip ones, their 
main message being that the classical results apply with little change to individual 
isopycnic layers. 
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2. Potential vorticity conservationa. 

a. The Jlux form of Ertel’s theorem. Conservation of potential vorticity may be 
expressed in the following “flux” form (Haynes and McIntyre, 1987): 

Z,V.J=O (1) 

with the definitions: 

q = VB. (fk+o) 

o=vxu 

J= uq + Vf3 x F+ i(fk+ 0). 

Here q is, potential vorticity (PV), 0 negative potential density anomaly (buoyancy, 
for short), 8 = dO/dt, p = po(l - t3), p. a deep reference density, f Coriolis parameter, 
u velocity vector, k vertical unit vector. J is PV flux vector, containing advective flux 
and contributions from the nonconservative force vector F (in kinematic units, i.e. 
divided by the reference density) and from density tendency 6. Our discussion here 
centers on the magnitude and properties of the PV flux vector on an isopycnal 
surface, at and near the intersection of such a surface with a solid boundary. 

b. The theorems of Haynes and Mclntyre. Haynes and McIntyre (1987) summarized 
the physical content of Eq. 1, having in mind atmospheric applications, in the 
following statements: 

(1) There can be no net transport of PV across any isentropic surface (“imperme- 
ability theorem”). 

(2) PV can neither be created nor destroyed, within a layer bounded by two 
isentropic surfaces (“indestructibility theorem”). 

Haynes and McIntyre (1990) discussed these theorems further, especially the 
continuity of PV “transport” (flux times layer depth). Marshall and Nurser (1992) 
reviewed the ideas involved in an oceanographic context, isopycnals replacing 
isentropes. Our analysis relies on those ideas, primarily on the continuity of PV 
transport. 

3. Isopycnic layer in contact with the continental slope 

a. PI/ transport through the seafloor. Figure 1 illustrates the intersection with the 
seafloor of two adjacent isopycnal surfaces enclosing an isopycnic layer. Locally, the 
seafloor is a plane of small inclination, parallel to the y-axis, the x-axis pointing 
offshore. There is no density flux across the seafloor, so that the isopycnals intersect 
the seafloor at right angles. Outside a bottom boundary layer a boundary current 
flows toward positive or negativey, causing the isopycnals to slope up or down in the 
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8 

Figure 1. Stylized sketch of an isopycnic layer where it meets the seafloor. Isopycnals intersect 
the seafloor at right angles, merging into their interior quasi-horizontal position outsidesthe 
bottom boundary layer. 

x-direction, at a small angle to the horizontal. The exact shape of the isopycnals in 
between is unimportant for our analysis; the figure shows a smooth connection. 
Recent articles dealing with bottom boundary layers over sloping bottom contain 
similar illustrations (Garrett, 1990; McCready and Rhines, 1993). 

Advective PV flux across the seafloor is nonexistent, 0 due only to diapycnal 
mixing, contributing ftl to cross-bottom PV flux. Subject to later justification, we 
neglect this contribution, and suppose that V0 x F provides most of the cross-bottom 
PV flux. The bottom buoyancy gradient V6 is parallel to the seafloor, hence nearly 
horizontal, so that the cross-bottom PV flux is to a good approximation: 

de a7 
Jb=zz. (2) 

In a “left-bounded” current (e.g. in boundary currents of a northern subtropical 
gyre) both gradients in this expression are negative, in the coordinate system chosen, 
hence PV flux into the isopycnic layer of such a current is positive. This is a direct 
consequence of stable stratification and retardation of the current by friction, and is 
true for any layer of a left-bounded boundary current in contact with the seafloor, 
along the eastern, western or any other ocean margin. 

PV transport (flux times width of an isopycnic layer between isopycnals 8 and 
8 + 80) into the isopycnic layer is now, putting -ax/a& a positive quantity in the 
present coordinates, for layer width: 

-Jb$ -$ W 

At a solid boundary, where all accelerations vanish, (including the Coriolis 
acceleration) alongstream pressure gradient must balance the divergence of along- 
stream shear stress. In an isopycnic layer on the continental slope, a gradual 
alongstream rise (or fall) of the isopycnals makes it necessary to take into account the 
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force of gravity, and the force balancing shear stress comes to be the gradient of the 
Montgomery potential. This may be shown from first principles, or from writing 
down equation of motion in generalized coordinates, see e.g. Dutton (1976). The 
result is: 

(3) 

with 4 the Montgomery potential, 4 = p + pgz. 

b. Handover of PV/fEux. When an isopycnal surface moves up and down over the 
continental slope with the meanders of the boundary current, its bottom trace 
(intersection with the seafloor) moves across-stream. Boundary currents may be 
taken to exist, however, in a statistically steady state, with the stochastic mean 
position of the bottom trace in a fixed position at some x = Xb(t3,y). This is an 
idealization of a quasi-steady long-term mean state, long-term standing for long 
compared to meander period. The mean cross-stream fluid velocity then vanishes at 
the seafloor and in the immediately adjacent portion of the isopycnic layer. We will 
take Figure 1 to show the mean position of isopycnal surfaces near the seafloor in an 
xz cross-section. 

Consider now mean PV inputs and outputs to a control volume of the isopycnic 
layer indicated in Figure 1, bounded by the seafloor, two adjacent isopycnals 8 and 
8 + 68, vertical= planes aty andy + Sy, and a “handover section” or verticalyz plane 
at &,, far enough seaward so that at this section both isopycnals enclosing the 
isopycnic layer are outside the boundary layer, and nearly horizontal. The mean PV 
transport into the layer through the seafloor is as in Eq. 2a, but with overbars added. 
The divergence of the mean PV flux 5 vanishes according to Eq. 1, so that by Gauss’s 
theorem mean PV fluxes across the boundaries of the control volume integrate to 
zero. In virtue of the impermeability theorem there is no PV flux across the isopycnal 
portions of the boundaries. The balance of other mean PV transports out of the 
control volume is: 

(4) 

where Jh is PV flux through the handover section, and QY is the divergence of 
integrated alongstream PV transport: 

Qy = $ s vq 6n ds 

with the integration extending over the curved centerline of the isopycnic layer in the 
m-plane sections. The velocity v is small near the seafloor, but q may not be. From the 
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definition of q, approximately (neglecting &ldy and dwl+): 

q=E fsinq-$cosq+zsinq 
i 

dV 

1 

where cp is the angle of the normal to the centerline, so that sin cp = a!xlds, cos cp = 
dz/a!x, and the velocity gradients exactly cancel. This leads to: 

Qy = 80;~j-vds. 

Substituting into Eq. 4, also using Eq. 2a, we find for PV transport through the 
handover section: 

e7 uJh = - - - a az ay s fvds (5) 

where we put u = dzlde for layer thickness at the handover section. Velocities near 
the seafloor are small, and vary on a long alongstream scale, so that the contribution 
of the integral on the right is small. Instead of dropping it, however, it is more 
illuminating to include it on the left-hand side, by increasing Jh slightly. This may be 
thought of as extending the nearly-horizontal portion of the isopycnals backward 
toward the bottom intersection, and applying the full PV transport, - ar/dz, there. 

At the handover section the friction force vanishes by hypothesis, leaving only 
advective PV transport, uJh = ouq = u(f+ c), with q = (f+ 5)/a, 5 the isopycnic 
relative vorticity, 

The fact that layer thickness cancels in the product uq greatly simplifies PV transport 
balances. The mean value of the PV transport at the handover section is - 
uJh = U(f + i) + u’c’. The mean velocity U at the handover section is vanishingly 
small under the supposed statistically steady conditions. In this respect, the seafloor 
terminus of an isopycnic layer behaves like a vertical wall. It allows, however, 
fluctuating velocities and vorticities, hence PV transport. One must then suppose 
that PV transport coming from the seafloor is carried into the interior of a boundary 
current (“handed over” at xh) by the Reynolds flux of vorticity, u’{‘. Hydrodynamic 
instability of the boundary current is responsible for the eddy motions that make 
such vorticity transport possible. 

Putting our results so far together, neglecting small quantities, we have for the 
handover transport of PV: 
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The result implies a horizontal force exerted on the isopycnic layer at xh: the 
handover transport Jh(,3z/L30) is equivalent to a shearing force inyz planes, or shear 
stress divergence, 

It is interesting to note that while the equivalent shear force +r/ax equals the bottom 
shear stress force d+r/az, the equivalent shear stress r in yz planes is much larger, 
because the x-scale of variation is the boundary current width, a distance some 3 
orders of magnitude greater than the depth of the bottom boundary layer on the 
seafloor. In physical terms, the broad footprint of an isopycnic layer experiences a 
braking force from the seafloor that, distributed over the shallow depth of the layer 
offshore, acts as huge shear stress. Continuity of PV transport establishes a connec- 
tion between a realistically small bottom stress on the footprint and high equivalent 
shear stress offshore. 

c. Boundary current vorticity balance. Seaward of the handover section, continuity of 
PV transport yields: 

$ [ii(f+ ij] + ; [iqf + Z)] = - $ (u’i’) - & (W) (7) 

showing a simple balance between mean advection and Reynolds flux of vorticity 5’. 
To express the bulk PV balance of a boundary current, we integrate this equation 
between xh and another vertical yz plane at xi, at the outer edge of the boundary 
current. There we postulate vanishing vorticity 5 and streamwise velocity v, no 
friction force F, a small mean inflow velocity -6, and negligible fluctuations of 
velocity and vorticity. The resulting PV balance is made simple again, here and in the 
last equation, by the cancellation of the layer depth in PV transport: 

(u’t’)h =fi + fJx; (v(f+ i) + (v’l;‘)]dx. 

The terms under the integral sign include planetary vorticity advection, l3 s V &. 
--i-i In a left-bounded boundary current the positive handover flux (U 5 )h helps balance 

planetary vorticity advection at the western boundary of a northern subtropical gyre, 
-7-i while the two combine to add positive PV at an eastern boundary. Replacing (U 5 )h 

by the alongstream pressure gradient, from Eq. 6, yields an equation that can also be 
derived directly from thex-component isopycnic equation of motion, integrating with 
respect to x across the boundary current, and differentiating with respect to y. 
Appropriate streamwise pressure drop, and the balancing shear force at the seafloor, 



19951 Csanady & Pelegri: Vorticity balance of boundary current 179 

are necessary corollaries of planetary vorticity advection by a boundary current in 
statistically steady state. 

The remarkable aspect of the above results is that they apply to any isopycnic layer 
in contact with the seafloor, independently of any other layer. They also imply that 
mechanical turbulence at the seafloor maintains the stress gradient at the required 
strength, while geostrophic turbulence is vigorous enough to transmit PV input from 
the seafloor to the body of the boundary current. Two kinds of instability and chaotic 
motion are apparently key determinants of boundary current behavior. How exactly 
these two kinds of turbulent motions discharge the functions imputed to them, or 
what conditions or consequences their role entails, remains to be further investi- 
gated. 

4. The bottom boundary layer 

A pardonable mistake would be to believe that the bottom boundary layer at the 
seafloor-isopycnal intersection is an “ordinary” turbulent Ekman layer associated 
with the bottom shear stress, similar to the planetary boundary layer of the atmo- 
sphere. That this cannot be so, however, is at once clear from the vanishing mean 
cross-stream velocity outside the boundary layer. In a turbulent Ekman layer over an 
infinite plane the cross-shear component of velocity increases from zero to its 
“geostrophic departure” value above the boundary layer. Cross-shear Ekman trans- 
port in the boundary layer balances the boundary shear stress. 

In an isopycnic layer in contact with the seafloor, by contrast, continuity of PV 
transport implies continuity of shear force, as we already discussed. The shear 
force-pressure gradient balance varies only slowly with distance from the seafloor 
within the layer, at first up and then seaward, as dictated by the divergence of 
alongstream PV transport. This bottom boundary layer behavior shows some resem- 
blance to what MacCready and Rhines (1991,1993) have found in a boundary layer 
over sloping bottom, in a stratified fluid, after the “shutdown time”: diapycnal 
Ekman transport decays to insignificance, and boundary layer thickness increases, as 
without rotation. An alongstream pressure gradient, however, makes the boundary 
current case quite different: in MacCready and Rhines’ analysis the shear stress 
divergence vanishes at the seafloor, alongstream pressure gradient being absent. 

Although conditions imposed at the top of the isopycnic bottom boundary layer 
differ from those of classical turbulent Ekman layer theory, much the same similarity 
arguments should apply. The shear stress may be written as a drag coefficient cd times 
squared velocity at the top of the isopycnic bottom boundary layer, which we take to 
be the alongstream velocity at the handover section, vh. In the classical turbulent 
Ekman layer the “geostrophic departure” is ud = -Cu*, where Use = cdv$ and C a 
universal constant (Csanady, 1967). The shear stress force at the boundary equals 
f&, and thus equals &r/&z = - fC&v,. Allowing for the differences between the two 
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cases, we take the same law to apply to the isopycnic bottom boundary layer, with vh 
in place of vg, and the constant adjusted on the basis of observation. In physical 
terms, we take the shear stress divergence to depend only on u* and f, the same key 
parameters that determine the properties of the turbulent Ekman layer. The friction 
velocity derives from a drag law, and connects to velocity above the boundary layer. 
The latter is sustained by the geostrophic turbulence of the boundary current at a 
value required for steady state, i.e. for closing the vorticity balance. 

Weatherly (1972, 1977) reported observations in the bottom boundary layer of the 
Florida Current. This boundary layer should by typical of what one finds under swift 
boundary currents. The velocity above the boundary layer, and the bottom shear 
stress, varied with strong tidal currents, and with the upward-downward movements 
of the isopycnal surfaces, manifested by temperature changes at the observation site. 
Averaged over longer periods, a mean (kinematic) stress ~~/p = u** of 2 x 1O-5 m*s-* 
was associated with a mean velocity above the boundary layer of v = 0.15 m s-l, a 
stress 3.2 times higher with a velocity 2.6 times greater. These observations yield drag 
coefficients of 103cd = 0.9 and 0.5, but do not directly shed light on the shear stress 
divergence, a quantity rarely reported in similar studies. 

According to Eq. 3, the shear stress divergence equals the alongshore Montgomery 
potential gradient. An approximation to the latter, for the isopycnals in the main 
thermocline, should be the alongshore pressure gradient acting on the continental 
shelf of the South Atlantic Bight, known to be about 2.10m6 m s-l (Lee et al, 1984). 
For the combined constant C& this estimate, and Weatherly’s observations, yield 
the values of 0.18 and 0.075, with C of 6.0 and 3.3 respectively. If, as seems likely, the 
pressure gradient is an overestimate for the isopycnals to which Weatherly’s observa- 
tions apply, C should be reduced. 

Putting our results here together with Eq. 6, we express the handover transport 
of PV: 

(u’t’)h = fcd+h. (9) 
Viewing this as a condition imposed at the effective lateral boundary of the 

isopycnic layer, it is a boundary condition somewhere between “free slip” and “no 
slip.” 

5. Boundary current structure 

To explore the structure of a boundary current within an individual isopycnal 
layer, i.e. to solve Eq. 7, we have to connect PV transport to other flow variables. This 
requires further assumptions which impair the realism of our model. The results 
nevertheless add some insight into the role of an isopycnic layer’s footprint in 
boundary current dynamics. 
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a. Gradient transport of PV. The conservation property of PV justifies a mixing length 
argument for two-dimensional epipycnal eddy motions, similar to what G.I. Taylor 
introduced many years ago for the turbulent boundary layer (1915, see Goldstein 
1938). If local fluctuations of PV occur on account of a mean PV gradient dq/ak, then 
they are of magnitude Z’dqlh, with 1’ the random cross-stream displacement of a 
parcel on an isopycnal surface. The resulting Reynolds flux of PV is: 

- 
u’q’ = -KZ (10) 

-7-7. where K = u 1 1s an eddy mixing coefficient. Because irregular horizontal excursions 
of an isopycnal over the seafloor are essentially unrestricted (unlike at a vertical wall) 
the mixing coefficient should behave more as in free turbulent flow, than as in a wall 
layer: it should not vary much across the boundary current. 

Alongstream velocity fluctuations in a boundary current are of the same order as 
cross-stream ones, but the alongstream scale of variations in 4 is much larger. On this 

7. -7-i boundary layer approximation we neglect v q m comparison with u q . To connect 
mean PV, 4, to mean vorticity t, PV fluctuation to c’, we find from the definition of q: 

5’ = aq’ + a’4 
- - 
u’<’ = a u’q’ + q u’u’ 

7i-i. The correlation u q 1s difficult to determine by observation, requiring the simulta- 
neous recording of velocity- and density-gradient. Keyser and Rotunno (1990) 
analyze the physical implications of such a correlation, and suggest that cr’q’ becomes 
significant only in the presence of diapycnal mass transfer. We neglect this term, and 
take mean PV to be (f + <)/a. As argued elsewhere, the Reynolds volume flux u’u’ 
may play an important role in energy dissipation (Csanady, 1989). It also transports 

-7-i. mean PV, as substitution of u 5 into Eq. 7 reveals, but only from one part of the 
boundary current to another, the divergence of the Reynolds volume flux vanishing. 
We also neglect this term. 

I The above expression for u 5 , using the flux-gradient relationship of Eq. 10, now 
yields: 

to be substituted into Eq. 7. 

b. Quasi-barotropic boundary current model. Unfortunately, the mean depth distribu- 
tion, a(x), on an isopycnal layer cannot be determined independently of other layers. 
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Thus in the vorticity balance this remains an externally impressed variable. Hydro- 
graphic sections of the Gulf Stream do not show major cross-stream variations of 
isopycnic layer depth, suggesting the simple model, 5 = constant. Such an assump- 
tion is of course overidealized, leading to a quasi-barotropic model. Advance over 
classical barotropic ocean circulation models lies in the more realistic treatment of 
boundary conditions at an isopycnal-seafloor intersection. 

Given constant layer depth, and absence of diapycnal mixing, the divergence of the 
mean velocity vanishes, so that a streamfunction may be introduced, v = a$/&, u = 
-&J~/ay, 5 = V2+, having deleted the overbars. Putting also 8f lay = p, 3f ldx = 0, for 
the western boundary current of a (northern) subtropical gyre, the vorticity equation 
becomes: 

f4k.x + *y*xxx - *&?a - P4Jx = 0. 
This equation, and a similarity solution of the form: 

(12) 

* = uiy &IL) 

where L = (K/f3)‘13 is a constant length scale, have been discussed in the literature 
on several occasions, in connection with constant-depth ocean circulation models 
(Moore, 1963; Ierley, 1987; Cessi et al., 1990). Boundary conditions are, at infinity 
u = -ui, or F = 1, all derivatives vanishing, at the coast F = 0, plus usually a no-slip, 
sometimes a free-slip condition. The conditions at infinity yield: 

-F”‘(O) = -RFr2(0) + 1. 

The left-hand side is nondimensional vorticity input, the right-hand side the 
cross-stream integral of nonlinear terms and planetary vorticity advection. F’(0) is 
nondimensional velocity at the handover section. The new feature of our model is the 
boundary condition expressed by Eq. 9, replacing free slip or no slip. For the 
similarity solution this translates into: 

C&F'(O) = -EF"'(O) 

where E = K/fL2, Ekman number. This is a second equation connecting F'(0) and 
F"'(O), and together with the previous one leads to: 

RoP=+C&P-E=O 

where P = F’(O), and Ro = Ui/fL is a Rossby number. Both E and Ro being small, the 
positive root of the last equation is approximately P = E/C&. This supplies a second 
condition at the handover section. 

A first integral of Eq. (12) is, observing conditions at infinity: 

F”’ = RF’2 - WF” + F - 1 (13) 
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where primes denote differentiation with respect to the argument x/L, and R = 
u,LlK, an eddy Reynolds number. 

Eq. 13 can now be integrated, starting at x = 0 with a trial value of F”(O), which is 
adjusted until the boundary conditions at infinity are satisfied, that is, F asymptoti- 
cally approaches unity. Except for the presence of F (which is the scaled p-term), and 
different constants, Eq. 13 is the Falkner-Skan equation, familiar in boundary layer 
theory (see Schlichting, 1960, p. 143). Ierley (1987) discussed solutions of this 
equation for a range of the Reynolds number (parameter X of Ierley). Our analysis 
here makes this and other classical results applicable to individual isopycnic layers of 
a boundary current, overidealized as our model may be (yet not as extremely as a flat 
bottom ocean with a vertical wall for a coast). 

The remaining question is, how the boundary condition of Eq. 9 affects ‘the 
solution of Eq. 13. 

c. Calculated example. We have carried out calculations for a latitude where l3 = 2 x 

lo-l1 m-l s-i, taking the inflow velocity to be Ui = 0.02 and 0.04 m s-l. For the eddy 
diffusivity we have used K = 250 m* s-l, the value estimated by Bower et aZ. (1985) for 
the epipycnal diffusivity of dissolved oxygen in the Gulf Stream. The same coefficient 
yields a rate of epipycnal spread for salinity, also in the Gulf Stream, in agreement 
with observation (Csanady and Hamilton, 1988). The length scale L is then 23.2 km, 
the Reynolds number R 1.86 and 3.71, at the two inflow velocities, both rather larger 
than the limit of A = 1 to which Ierley’s investigations extend. Empirical values for 
eddy diffusivity are responsible for the relatively high R. The least certain quantity is 
the value of C&, 0.075 to 0.18 according to our order of magnitude estimates above. 
As an extreme lowest likely value, we have taken C& = 0.025. The Ekman number 
with the chosen parameters is E = 0.005, the Rossby number Ro = 0.01, so that the 
highest likely value of the nondimensional velocity at the handover section is F’(0) = 
0.2, the lowest value very close to zero. 

Integration reveals the boundary value of nondimensional vorticity F”(0) to be 
about 0.82 at R = 1.86, F’(0) = 0, about 0.58 at the same R, but F’(0) = 0.2. Figure 2 
shows the profiles of streamfunction, velocity and vorticity across the boundary 
current for these two limiting cases. There is no qualitative difference between them, 
nor does the higher inflow velocity we have experimented with cause significant 
changes. The velocity profile for the no slip case (Fig. 2a) is similar to those shown by 
Cessi et al. (1990) obtained using different parameters. 

6. Discussion 

The argument for the continuity of PV transport from the seafloor to the interior 
of the boundary current rests on the idealization that the mean position of an 
isopycnal trace is fixed on the continental slope, implying that the mean cross-stream 
velocity vanishes immediately outside the bottom boundary layer as well as at the 
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Figure 2. Distribution of streamfunction, velocity and vorticity in model isopycnic western 
boundary current: (a) F’(O) = 0; (b) F’(0) = 0.2. 

seafloor. This comes from observation. One may then suppose that the eddy motions 
of the boundary current maintain the requisite eddy fluxes of PV and momentum to 
prevent cross-shear drift characteristic of Ekman layers. If they did not, such drift 
would move the mean isopycnal trace shoreward and upward, an action that might 
well increase the cross-stream Montgomery potential gradient, hence the speed of 
the current. A plausible speculation is that this would increase the eddy fluxes 
mentioned, and act as negative feedback. 

To justify our neglect of PV transport through the seafloor due to diapycnal 
mixing, we note our estimates of mass exchange between surface and thermocline 
layers, from the Florida Straits to Cape Hatteras: about 2 sverdrups compared to 
flows of 2G and 40 sverdrups in the two layers (Pelegri and Csanady, 1991). The 
buoyancy difference is of the order of 10e3, and if all ?f the flow changed its density by 
this amount, estimating mean travel time at 2.106 s, 8 would amount to 5 x lo-lo s-l. 
Given that only between 5 and 10% of the fluid changes density, and most of that in 
the high speed core of the current (Pelegri and Csanady, 1994), a realistic estimate is 
8 = lo-” s-l. Thus fb is about lo-l5 ss2, versus &l/ax &/az = 2.10-l4 sm2, with our 
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previous estimate of ar/az, and 83lax = lo-* m-l, or the buoyancy difference used in 
the 6 estimate distributed over a 100 km wide footprint. 

Reviewers criticized our quasi-barotropic boundary current model on the grounds 
that constant layer depth is unrealistic and that the model is mathematically identical 
with nonlinear Munk models well explored by earlier workers. While the latter point 
is valid, except for the different boundary condition at the seafloor, the finding that 
such a model applies to an isopycnic layer makes the earlier studies that much more 
relevant to the real world. Constant depth is a blemish common to both models, 
although variations over the width of a boundary current are much greater in the 
depth of the entire water column than of an isopycnic layer. Also, if one layer’s depth 
increases seaward, another one’s must decrease. There must be some layers to which 
the constant depth model applies with tolerable approximation. In any case, some 
other distribution of layer depth, while undoubtedly influencing the details of 
velocity and vorticity distribution, does not at all affect various bulk relationships of 
forces and fluxes, and is therefore not likely to change the character of the boundary 
current within an isopycnic layer. 
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Early in the course of the project, some illuminating discussions with Scott Condie on 
Reynolds fluxes of vorticity were most valuable. 
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