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Dispersion of wind-induced inertial waves
by a barotropic jet

by P. Klein! and A. M. Treguier!

ABSTRACT

This note attempts to reinterpret previous results on the dispersion of wind-induced inertial
waves by a geostrophic barotropic jet in the ocean. The approach is to consider the jet vorticity
influence on the different baroclinic modes using a vertical normal mode expansion. Numeri-
cal and analytical analysis of the linear equations shows that vorticity effects on a single
baroclinic mode strongly depend on the ratio of its Rossby radius and the length scale of the
geostrophic vorticity: trapping of the near-inertial energy occurs when this ratio is small. When
this ratio is of order one, inertial waves are almost unaffected by the geostrophic vorticity
because dispersion efficiently overcomes the jet vorticity effects. A 2-D primitive-equation
model is used to examine the scattering of wind-induced inertial waves in realistic situations.
Results indicate that contribution of the lowest baroclinic modes, unaffected by the jet
vorticity, explain some striking features reported in previous studies as the downward phase
propagation of near-inertial waves in the positive vorticity region.

1. Introduction

Several studies have shown that the space-time spectrum of near-inertial motions
is strongly modulated by ocean fronts and geostrophic shear. Kunze (1985) demon-
strates that the vorticity { associated with a geostrophic jet shifts the near-inertial
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wave frequency from the Coriolis value f to an effective frequency f, = f + (/2. As a
result phase differences accumulate in inertial waves within the jet, which leads to a
spatial variability of these waves characterized by a wavenumber k = —tV{/2.
Because of this evolving spatial variability, near-inertial waves are generally trapped
within the negative vorticity region.

Such evolving spatial variability is particularly relevant to the dispersion of an
initially large-scale mixed layer inertial wave field resulting from the passage of a
rapidly propagating synoptic atmospheric front. To address this question Rubenstein
and Roberts (1986) used a linearized primitive-equations (PE) model to examine the
scattering of an initially homogeneous wind-induced inertial flow contained within a
50 m deep mixed layer by a geostrophic barotropic jet. They found that a large part of
the inertial energy remains within the mixed layer, this energy being rapidly
dispersed away from the positive vorticity region and partially trapped within the
negative vorticity region. Only some inertial energy propagates within the stratified
interior, mainly in the negative vorticity region. Wang (1991), using a PE model,
examined the propagation of wind-induced inertial waves in the Subtropical Front
and obtained results somewhat different from Rubenstein and Roberts (1986). His
mixed-layer is deep (= 100 m) and the geostrophic jet is baroclinic (300 m deep). His
results clearly show an inertial energy depletion within the mixed layer in the whole
jet area and two distinct inertial energy maxima below the mixed layer: one deep
maximum at the base of the thermocline in the negative vorticity region and a
subsurface maximum at the top of the thermocline in the positive vorticity region.
Moreover Wang reported an anomalously low frequency of the near-inertial waves in
the positive vorticity region. As a consequence the phase propagation is downward in
this region whereas it is upward in the negative vorticity region.

This note attempts to reinterpret these results in terms of the different influence of
the vorticity on different baroclinic modes using a vertical normal mode analysis.
Some preliminary findings using a linear approach are given in Section 2. Then two
numerical experiments performed with a PE model in a spring and a fall situation,
whose characteristics are close respectively to Rubenstein and Roberts’ and Wang’s
situations, are briefly described in Section 3. The last section analyzes the velocity
fields of these experiments in terms of the contribution of the different baroclinic
modes in order to better understand the different spring and fall responses in light of
the results of Section 2.

2. Vorticity effects on bareclinic modes

Let us consider the following linearized 2-D (x — 2) primitive equations that
describe the response of the ocean to a wind impulse when a geostrophic barotropic
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jet, V(x), is present:
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u, v and w are the horizontal and vertical velocity components; f is the Coriolis
parameter and ¢ the time. P is the pressure divided by density. p is the density
perturbation from a state of rest for which the buoyancy frequency, N, is a given
function of z. These equations can be reduced to only three equations involving the
variables u, v and P. Let us expand these variables in terms of the vertical normal
mode solutions, §,(z), of the classical Sturm-Liouville problem:

lu,v, P} = i {tny vy PlPn(2) )

n=1

where u,, v, and P, depend only on x and ¢. The normal mode eigenfunctions satisfy:
(1 op, 1
% (m 5) == abe &)
where ¢, = R, f with R, the Rossby radius for mode n. Using (2) and (3), we get the

following equation for 1,

0u,, aZu,,
o " ax?

= 0. )

Some insights about the vorticity effects on the different baroclinic modes can be
gained from the numerical integration of (4). The numerical model used is the same
as the one and a half layer model described in Klein and Treguier (1993) with f =
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104 s~ In the numerical experiment reported below, V(x) is a cosine-like jet:

V) = Vo(l + cos (1%)) )

with 2L = 80 km and V, = 0.15 m s~! for {x| < =L and 0 otherwise. This particular

form of the jet does not affect the results insofar as the length scale L and the velocity

at the jet center, 2V,, are not changed: numerical experiments performed with an

exponential-like jet have displayed similar results. Initial conditions are 1, = 0 and

du,/dt = fv; withv; = 0.2 m s~1. Two length scales are involved in this problem: L, the

length scale of the geostrophic jet vorticity, and R,, the Rossby radius of deformation

associated with mode n. L is the appropriate length scale for the vorticity effects,
while R, is related to dispersion (through c,). Results are shown on Figures 1 and 2

for two cases: one with R,/L = 0.25, the other with R,,/L. = 1.

The case with R,/L = 0.25 (Fig. 1a) exhibits an asymmetric distribution of the
inertial energy with a concentration on the negative vorticity side of the jet. After ten
inertial periods, the ratio of kinetic energies (E,..c — Emin)/ Enmesn attains a value close
to 3.2. Frequency of the inertial motions is affected as well by the jet vorticity: after
ten inertial periods, motions on the positive vorticity side are w out of phase with the
negative vorticity side and /2 out of phase with motions far from the jet (Fig. 1b). A
physical explanation for this asymmetric inertial wave response in terms of horizontal
dispersion has been given by Kunze (1985). Shift of the inertial wave frequency by
the jet vorticity yields an increasing spatial variability of these waves characterized by
awavenumber (k = —t/2 d{/dx) across the front that is positive at the jet center and
negative on the edges. As a consequence waves at the jet center are forced to
propagate eastward while those on the edges propagate westward. Therefore the
positive vorticity side becomes energy depleted while waves concentrate on the
negative vorticity side (Fig. 1a). Results from other simulations (not shown) indicate
that these features hold with smaller R, except for the energy concentration which
becomes smaller because of the lower horizontal propagation velocity, c,.

The case R,/L = 1 (Fig. 2a) strongly differs from the previous one. The energy is
still larger on the right side of the jet but it is no longer concentrated in a narrow
region. Instead it is dispersed well away from the jet and the ratio (E,..c — Epin)/
E,can 18 lower (= 1.3) than before. A more astonishing feature, revealed by Figure 2b,
is that the frequency of the inertial waves is very close to f and therefore appears to
be unaffected by the vorticity effects, contrary to the preceding case. Other simula-
tions performed with R,/L > 1 (not shown) have displayed qualitatively the same
results, the only difference is the smaller value of the ratio (.. — Epnin)/Emeqn that,
for example, attains 0.3 when R,/L = 2.

These different vorticity effects on a baroclinic mode, depending on the ratio R,,/L,
can be understood through an asymptotic analysis using L as a length scale, 1/fas a
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time scale and v; as a velocity scale. The parameter € = v;/fL, is usually very small. So
let us consider the two limits: R,/L = €1/?c and R,/L = e~ >c withc = # (1).
For the first limit, nondimensionalized Eq. (4) is:

Fu , u 0 6

<+ ou—e-—=0,

o ax? )
where all variables are now nondimensional and with w?(x) = 1 + {(x)/f. Using the
truncated perturbation expansion in €, u = uy -+ €uy, solutions are:

sin (wf) i dw

Uy = U = —
o 4o? ox?

sin (wt). 0

Eq. (6) indicates that dispersion effects and therefore propagation of near-inertial
waves are small in this case. Consequently these waves have time to be affected by the
local jet vorticity and, using (7), their resulting dimensional frequency is f, instead of
f. This yields a spatial variability of the first order solution, u,, characterized by a
wavenumber across the front growing locally as k = —tdw/dx. Dispersion of this
first-order solution forces a second-order motion, u;, that increases as t? and is
proportional to the second derivative of the vorticity. This explains the significant
kinetic energy increase within the negative vorticity region and the decrease within
the positive vorticity region. Amplitude of this variation also depends on ¢?, indicat-
ing that this energy concentration should be smaller when R,,/L is smaller.
For the second limit, nondimensionalized Eq. (4) becomes:

u
e|— + o'u
ot

zazu o
LA ®

When boundary conditions are taken into account (motions are unaffected by the jet
vorticity well away from the center), the zero- and first-order solutions are:

up=sin (1),  wu; = upe? f V(x)dx. 9)

Eq. (8) shows that dispersion effects are now large and propagation of inertial waves
is rapid. As a consequence the ¢ (1) motions, u,, are not affected by the jet vorticity
and their frequency is equal to f. At the second order, the vorticity effects on the
inertial motions ((w? — 1)u,) are instantaneously compensated by dispersion that
induces an # (e) motion, u;, through the term c¢?(6%,/dx?). The & (€) motion is
spatially variable but does not increase with time. Its amplitude is proportional to ¢ 2
and to the double integral of the vorticity. This explains the relatively larger kinetic
energy that extends well away on the right side of the jet and the smaller one on the
left side and that this energy amplitude difference is smaller when R,/L (or ¢) is
larger.
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Figure 1. (a) Time-across-front plot of the kinetic energy (u2) averaged over one inertial
period with R,,/L = 0.25 and v = 10. Contour interval is 0.006 m? s~2 and regions with energy
larger than 0.02 m? s~2 (mean value) are shaded. Velocity of the geostrophic jet (in m/s) is
indicated below. (b) u-values at x = —120 km (continuous), x = —20 km (dashed-dotted),
andx = 20 km (dotted).

3. Numerical experiments

A 2-D (x, z) nonlinear primitive-equation (PE) model is used to investigate the
response of both the mixed layer and the ocean interior to a wind impulse.
Stratification determines the horizontal and vertical propagation of the inertial
waves below the mixed layer and therefore the distribution of kinetic energy in the
ocean interior. Two realistic buoyancy Briint-Viisilad profiles are considered (Fig. 3).
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Figure 1. (Continued)

The first one characterizes spring conditions: a 10 m thick thermocline capped by a
26 m thick mixed layer. The second corresponds to fall conditions with a 100 m thick
mixed layer above a 100 m thick thermocline. The wind impulse corresponds to a
windstress of 2. 10~* m? s=2 for spring and 6. 10-* m? s~2 for fall, acting for half an
inertial period so that the inertial motions have maximum amplitude when the wind
stops. This impulse might result from the passage of a synoptic-scale atmospheric
front. Characteristics of the spring and fall situations are close to the ones considered
respectively by Rubenstein and Roberts (1986) and Wang (1991). We study the
ocean response over 15 days, in the presence of the same barotropic geostrophic jet
as considered in section 2. The 2-D PE model is described in Klein and Treguier
(1993). It is based on the SPEM code (Haidvogel et al., 1991) and uses a linear
equation of state depending on temperature only. The rigid lid approximation is
made. Finite differences are used in the horizontal and vertical. Turbulent fluxes are
represented by diffusion for momentum and temperature, depending on the Richard-
son number following the classical level two model of Mellor and Yamada (1982).
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Fignre 2. Same as Figure 1 but with R, = L and contour interval equal to 0.002 m? s=2.

There are 114 levels in the vertical, with a grid spacing of 2 m down to 50 m depth,
gradually increasing to reach 50 m at 1000 m depth, and then constant down to the
bottom at 2000 m. The horizontal domain is 600 km wide with a grid spacing of
1.5 km. The time step is 300s. There is a background vertical diffusion of 5.
10-3> m?s~! and a biharmonic horizontal friction equal to 108 m* s~! for momentum
and temperature. Free slip conditions are used at the bottom.

a. Spring conditions. Time-evolution of the mixed layer kinetic energy (Fig. 4)
displays the same qualitative features as Figure 1a; i.e., a significant concentration of
inertial energy in the negative vorticity side and depletion on the positive vorticity
side. Within the negative vorticity region, inertial energy attains a maximum of about
3 times its value outside the jet at ¢ = 5 inertial periods. Time-evolution of the kinetic
energy between 30 m and 2000 m (not shown) reveals that most of the downward
energy propagation occurs within the negative vorticity region and remains trapped
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Figure 2. (Continued)

in this region. In both regions we have checked that the wave frequency is close to

f. = f(f+ 0 = f + {/2, confirming that the frequency of the inertial motions is
affected by vorticity.

b. Fall conditions. In the fall case, the mixed layer kinetic energy evolution (Fig. 5)
displays a non-negligible energy concentration (depletion) in the negative (positive)
vorticity side during the first three inertial periods. However, after six inertial
periods, depletion of kinetic energy extends outside the positive vorticity region
covering all the jet by 15 inertial periods. Time-evolution of the zonal velocity
component within the mixed layer (not shown) indicates that frequency of these
mixed layer motions is very close to f, i.e., very weakly affected by the jet vorticity.
Time-evolution of the inertial waves in the positive and negative vorticity regions
(Fig. 6) exhibits two large kinetic energy maxima building up within the thermocline
on each side of the jet. A kinetic energy maximum first appears below the mixed layer
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Figure 3. Initial vertical buoyancy frequency profiles (N(z)) used in simulations performed
with the PE model. Solid (dashed) line describes spring (fall) conditions.

in the positive vorticity region (Fig. 6a). In the negative vorticity region, kinetic
energy below the mixed layer increases but remains smaller than that within the
mixed layer (Fig. 6b). Later the maximum in the positive vorticity region shrinks and
a thick maximum appears in the negative vorticity region and keeps growing.
Furthermore Figure 6 indicates that below the mixed layer, near-inertial motions,
during the first inertial periods, have downward phase propagation in the positive
vorticity region. Classical upward phase propagation is observed in the negative
vorticity region. These results are quite similar to those of Wang (1991) although the
geostrophic jet considered here is barotropic.

4. Vertical normal-modes analysis

In order to investigate the mechanisms involved in the near-inertial wave dynamics
we performed other simulations with the same PE model but with the linearized
equations: all nonlinear advection terms have been dropped except jet vorticity in the
equation for v and vertical advection of the background density in the density
equation. Results over 20 inertial periods were virtually identical! Consequently
wave-wave interactions have negligible effects. This, with the fact that the jet is
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Figure 4. Time-acrossfront plots of the kinetic energy (1?) corresponding to spring conditions.
Kinetic energy is averaged over one inertial period and averaged over the top layer
(0-30 m). Contour interval is 0.002 m? s=2 and regions with energy larger than 0.0115 m? s—2
(mean value) are shaded.

barotropic, allows us to analyze the numerical results of the PE model using vertical
normal modes (Pollard, 1970 and Gill, 1984) to better understand the characteristic
features of the preceding numerical experiments in terms of the different baroclinic
modes contributions. This analysis has revealed that in the spring case motions are
captured by baroclinic modes with Rossby radius wavelengths equal to or smaller
than 20 km, i.e., a scale smaller than the geostrophic vorticity wavelength (80 km).
The lower modes are much less energetic. This explains the similarity of Figure la
and Figure 4. In the fall case the lowest modes (with Rossby radii close to or larger
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Figure 5. Time-across-front plots of the kinetic energy (12) corresponding to fall conditions.
Kinetic energy is averaged over one inertial period and averaged over the top layer
(0-100 m). Contour interval is 0.001 m? s~2 and regions with energy larger than 0.008 m? s~
{mean value) are shaded.

than the vorticity length scale) are at least as energetic as the higher modes. We have
found that the competition of these lowest baroclinic modes with the higher ones
explains the differences between the spring and fall cases. This competition is
examined and discussed in the next sections in the light of the results of Section 2.

a. Modal analysis of the fall case. Time and space evolution of the zonal velocity
component of the inertial waves is examined at two locations: in the positive
(x = 20 km) and negative (x = —20 km) vorticity regions. When the wind stops (at
t = w/f), numerical results show that u is nonzero in the mixed layer (¥ = u,) and
zero below. Consequently we rewrite the u-field at each location as

ux,z,t) = u,S(x, z, ). (10)
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Figure 6. Time-evolution of the cross-frontal velocity profile (a) atx = —20km, (b) atx =
20 km. Grey indicates positive velocities. Contour interval is 0.05 m s~L.
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Figure 7. Spectrum of the velocity field, u, atx = —120 km (—),x = —20km (-),x = 20 km
(—-—) for three depths.

where S(x, z, w/f) is equal to 1 in the mixed layer and 0 below. Time-evolution of
S(x,z;t), that is entirely determined from u(x, z, t), is then expanded in normal
modes p,(z):

N
S@,z,1) = 2, 0,(x, 0P,(2)- (11)
n=1
Normal modes have been calculated from the buoyancy frequency profiles of
Figure 3. g,,(x, t) is calculated by projecting the numerical solution u(x, z, t) of the PE
model onto up to 110 modes (N = 110).

Figure 7 displays the maximum amplitude of each o, (x,t)p,(z) between the fifth
and seventh inertial periods at three depths and at three x-locations. At a given depth
the o, (x,t)p.(z) spectra display the same shape at the three x-locations. More than
90% of the variance is captured by the first 100 modes. Moreover examination of
these spectra at different times (not shown) has revealed the same features. This
makes us confident about the number of modes considered. At all depths and
x-locations modes 4 and 5 as well as modes 9 and 10 are always weak. Therefore we
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Figure 7. (Continued)

define three classes: the lowest modes (n = 2, 3) whose Rossby radius wavelengths
(2mR,) are respectively 100 km and 60 km, the intermediate modes (4 < n < 9) with
Rossby radii close to 20 km and the highest modes (» > 10) with Rossby radii equal
to or lower than 12 km. The barotropic mode (n = 1) is always negligible. Conse-
quently S(x, z, t) is rewritten as:

S, z, 1) = Si(x, 2, 1) + Sa(x, 2, t) + S3(x, 2, 1) (12)

where S1(x,z,t) = =3_,0,(x, )Pn(2), S2(x,2, 1) = =) _,0,(x, 1)pa(2) and S3(x,z,t) =
110 0.(x, £)P.(z) represent the contributions of the lowest, intermediate and highest
modes respectively.

Vertical profiles of the different mode contributions just after the wind impulse
(t = w/f) are shown on Figure 8. Within the mixed layer the lowest baroclinic modes
that are the dominant ones are in phase with the other modes. Atz = —110m, i.e.,
just below the mixed layer, the lowest modes and the highest modes dominate and
are just 7 out of phase. Within the thermocline (at z = —150 m) the lowest and
intermediate modes dominate and are also just w out of phase. These compensations
explain the zero velocity below the mixed layer at ¢ = w/f. Time evolution of S;, S,
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Figure 7. (Continued)

and S5 is shown for the positive (Fig. 9) and negative (Fig. 10) vorticity regions. Close
examination of the first eight inertial periods reveals that frequency of the lowest
modes is almost equal to the inertial frequency f and therefore is not affected by
vorticity. On the other hand, the intermediate and highest modes frequencies are
close to f, = f + {/2. This is illustrated in Figures 9a and 10a: S and .53, initially in
phase, become w out of phase at r = 8.3 inertial periods. S; has experienced nine
cycles in the { > 0 region (Fig. 9a) and only eight cycles in the { < 0 region (Fig. 10a),
while evolution of S, is identical in both regions. Maximum amplitudes of S, and S,
display very weak variations with time. One noteworthy feature is that the amplitude
of §, is larger on the negative vorticity side whereas that of S; is the same in both
negative and positive vorticity regions. On the other hand, the amplitude of S,
decreases (increases) with time in the positive (negative) vorticity region.

b. Discussion. The behaviors of the different modes described above compare well
with the findings of Section 2 when these modes are classified with respect to their
Rossby radius versus the vorticity length scale. The lowest baroclinic modes S,
having their Rossby radius wavelength close to the vorticity wavelength
(2nL = 80 km), behave as found in Section 2 for the modes characterized by R, /L >
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Figure 8. Vertical profiles of the S; (—), S, (—-—) and 85 (----) at ¢ = =/f for fall conditions.

@ (1): their frequency is very close to f and their amplitude (slightly larger on the
negative vorticity side) does not change much with time. On the other hand the
intermediate and highest modes, S, and S5, have their Rossby radii smaller than the
vorticity length scale, i.e., R,/L < 1. Referring to the findings of Section 2, the very
small Rossby radius of the highest modes explains the fact that these modes are very
weakly affected by horizontal dispersion effects as shown by their almost steady
amplitude (with the same value on both sides of the jet) although their frequency is
shifted by the jet vorticity. The frequency of the intermediate modes is affected by the
jet vorticity as well (since R,/L < 1), but the large variation of their amplitude is
explained by their larger Rossby radii that increase the dispersion effects.

Let us now explain the subsurface maxima and the anomalous vertical phase
propagation in terms of competition between the different baroclinic modes. Atz =
w/f lowest modes balance the highest or intermediate ones below the mixed layer.
This yields a zero velocity there. As time goes on, near-inertial waves propagate
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Figure 9. Time-evolution of the S,,’s functions during fall in the positive vorticity region at (a)
z=50m,(b)z=110m, (c)z = 150 m.

downward and the velocity becomes non-zero. This mechanism can be interpreted in
terms of time evolution of the baroclinic modes as follows (Gill, 1984): each mode
has a frequency that slightly differs from the others. Consequently a phase shift
between the modes builds up with time, which leads to the appearance of a non-zero
velocity below the mixed layer. Characteristic features revealed in fall conditions can
then be explained as follows:

The frequency observed within the mixed layer, close to f (see Fig. 6), is due to
dominance of the lowest modes (S;). The relative kinetic energy depletion in the
mixed layer is caused by an increasing phase shift between the low and higher modes
because of their different frequencies (Figs. 9a and 10a). The larger and more rapid
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kinetic energy depletion in the positive vorticity region is due to the horizontal
propagation of the intermediate modes (S5,) away from this region.

Below the mixed layer, the increasing phase shift between the low and higher
modes leads to the appearance of near-inertial motions and the build-up of the two
maxima. This phase shift also explains the vertical phase propagation during the first
inertial periods. Letting f be the frequency of the lowest modes that dominate within
the mixed layer and f, = f + {/2 the frequency of the higher modes that balance the
lowest ones below the mixed layer, mixed layer (u,,) and deep velocities (i,) can be
written: u,; = u, cos(ft) and u, = u,(cos(ft) — cos(ft)). Assuming f = f, (or
{/f = 1) leads to: u, = u,|L/2|t cos(— w/2+ft) if L > 0 and u, = u,|L/2]|t
cos(mw/2 + ft) if { < 0. Thus, as illustrated in Figure 11, during the first inertial
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Figure 11. Tllustration of the apparent vertical phase propagation in (a) the negative vorticity
region (with f, < f) and (b) the positive vorticity region (with f, > f). In each region two
curves are shown: cos( ft) (continuous line) representing the velocity in the mixed layer and
(cos(ft) — cos(fet)) (dotted line) the velocity below.

period there is a shift of —w/2 (upward phase propagation) when f > f,, i.e. in the
negative vorticity region. On the other hand there is a phase shift of w/2, i.e. an
anomalous downward phase propagation in the positive vorticity region (where
f < f.). It is the sign of the difference between the frequency of the lowest modes
(dominating the mixed layer) and higher modes that determines the sign of the
vertical phase propagation. As time goes on, the deepening (shrinking) of the kinetic
energy maximum in the negative (positive) vorticity region (Fig. 6), is attributed to
the horizontal dispersion effects of intermediate modes that are the dominant modes
within the thermocline (Figs. 9c and 10c).
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5. Conclusion

In this study we have re-examined the dispersion of wind-induced inertial waves by
an oceanic geostrophic jet. It is shown that the nonlinear wave-wave interactions do
not qualitatively affect the mixed layer response nor the propagation of the near-
inertial waves into the thermocline and the ocean interior. In other words, most of
the dynamics of the free near-inertial waves is captured by the linearized equations.
This has allowed us to use a vertical normal mode approach to analyze the numerical
results from a primitive equations model.

A simple analytical model has revealed that vorticity effects on a baroclinic mode
strongly depend on the ratio of its Rossby radius with the vorticity length scale. When
this ratio is small, dispersion effects are small and the inertial waves are significantly
affected by the local jet vorticity. As shown by Kunze (1985) and Rubenstein and
Roberts (1986) the resulting wavenumber growing across the front induces a local
asymmetric dispersion that significantly concentrates inertial energy in the negative
vorticity region. On the other hand when this ratio is of order O(1) or larger, the
large dispersion effects efficiently overcome the vorticity effects so that the resulting
spatial variability of the inertial waves is small and does not increase with time. To
our knowledge this result, although not surprising, has not been reported in the
literature.

We have assessed the consequences on the dispersion by a barotropic jet of a
wind-induced inertial wave field, initially homogeneous and entirely contained
within the mixed layer, in two different realistic situations. Results indicate that, for a
buoyancy Brunt-Viisila profile corresponding to a spring situation (characterized by
a shallow mixed layer capping a thin thermocline), inertial energy rapidly concen-
trates within the negative vorticity region. These results are in agreement with the
preceding findings since a vertical normal mode analysis reveals that the inertial
wave field energy is almost entirely captured by baroclinic modes whose Rossby
radius is smaller than the vorticity length scale. On the other hand, when the
buoyancy Brunt-Viisila profile corresponds to a fall situation (with a deep mixed
layer capping a thick thermocline) horizontal and vertical dispersion of the near-
inertial waves differs from the preceding situation and is close to the one reported by
Wang (1991). Two distinct inertial energy maxima are found within the stratified
interior, associated with a classical upward phase propagation of the near-inertial
waves in the negative vorticity region and an anomalously downward phase propaga-
tion in the positive vorticity region. The vertical normal modes analysis clarifies these
results. In this situation baroclinic modes with a Rossby radius close to the vorticity
length scale capture a significant part of the inertial wave energy. These modes are
not affected by the vorticity contrary to the higher modes. It is the competition
between these two classes of baroclinic modes that lead to the characteristic features
observed in the fall situation.
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These results indicate that dispersion of the wind-induced inertial waves strongly
depends on the mixed layer depth and on the stratification underneath.
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