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Dispersion of wind-induced inertial waves 
by a barotropic jet 

by P. Klein’ and A. M. Treguier’ 

ABSTRACT 
This note attempts to reinterpret previous results on the dispersion of wind-induced inertial 

waves by a geostrophic barotropic jet in the ocean. The approach is to consider the jet vorticity 
influence on the different baroclinic modes using a vertical normal mode expansion. Numeri- 
cal and analytical analysis of the linear equations shows that vorticity effects on a single 
baroclinic mode strongly depend on the ratio of its Rossby radius and the length scale of the 
geostrophic vorticity: trapping of the near-inertial energy occurs when this ratio is small. When 
this ratio is of order one, inertial waves are almost unaffected by the geostrophic vorticity 
because dispersion efficiently overcomes the jet vorticity effects. A 2-D primitive-equation 
model is used to examine the scattering of wind-induced inertial waves in realistic situations. 
Results indicate that contribution of the lowest baroclinic modes, unaffected by the jet 
vorticity, explain some striking features reported in previous studies as the downward phase 
propagation of near-inertial waves in the positive vorticity region. 

1. Introduction 

Several studies have shown that the space-time spectrum of near-inertial motions 
is strongly modulated by ocean fronts and geostrophic shear. Kunze (1985) demon- 
strates that the vorticity 5 associated with a geostrophic jet shifts the near-inertial 
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wave frequency from the Coriolis valuef to an effective frequencyf, = f + 5/2. As a 
result phase differences accumulate in inertial waves within the jet, which leads to a 
spatial variability of these waves characterized by a wavenumber k = -tV5/2. 
Because of this evolving spatial variability, near-inertial waves are generally trapped 
within the negative vorticity region. 

Such evolving spatial variability is particularly relevant to the dispersion of an 
initially large-scale mixed layer inertial wave field resulting from the passage of a 
rapidly propagating synoptic atmospheric front. To address this question Rubenstein 
and Roberts (1986) used a linearized primitive-equations (PE) model to examine the 
scattering of an initially homogeneous wind-induced inertial flow contained within a 
50 m deep mixed layer by a geostrophic barotropic jet. They found that a large part of 
the inertial energy remains within the mixed layer, this energy being rapidly 
dispersed away from the positive vorticity region and partially trapped within the 
negative vorticity region. Only some inertial energy propagates within the stratified 
interior, mainly in the negative vorticity region. Wang (1991) using a PE model, 
examined the propagation of wind-induced inertial waves in the Subtropical Front 
and obtained results somewhat different from Rubenstein and Roberts (1986). His 
mixed-layer is deep ( = 100 m) and the geostrophic jet is baroclinic (300 m deep). His 
results clearly show an inertial energy depletion within the mixed layer in the whole 
jet area and two distinct inertial energy maxima below the mixed layer: one deep 
maximum at the base of the thermocline in the negative vorticity region and a 
subsurface maximum at the top of the thermocline in the positive vorticity region. 
Moreover Wang reported an anomalously low frequency of the near-inertial waves in 
the positive vorticity region. As a consequence the phase propagation is downward in 
this region whereas it is upward in the negative vorticity region. 

This note attempts to reinterpret these results in terms of the different influence of 
the vorticity on different baroclinic modes using a vertical normal mode analysis. 
Some preliminary findings using a linear approach are given in Section 2. Then two 
numerical experiments performed with a PE model in a spring and a fall situation, 
whose characteristics are close respectively to Rubenstein and Roberts’ and Wang’s 
situations, are briefly described in Section 3. The last section analyzes the velocity 
fields of these experiments in terms of the contribution of the different baroclinic 
modes in order to better understand the different spring and fall responses in light of 
the results of Section 2. 

2. Vorticity effects on baroclinic modes 

Let us consider the following linearized 2-D (X - z) primitive equations that 
describe the response of the ocean to a wind impulse when a geostrophic barotropic 



19951 Klein & Treguier: Dispersion of wind-induced inertial waves 3 

jet, V(X), is present: 

g-fi=-g 

;+f,u=o 

aP 
z= -I% (1) 

g;-N&O 

g+g=() 

with 

u, v and w are the horizontal and vertical velocity components; f is the Coriolis 
parameter and t the time. P is the pressure divided by density. p is the density 
perturbation from a state of rest for which the buoyancy frequency, N, is a given 
function of z. These equations can be reduced to only three equations involving the 
variables u, v and P. Let us expand these variables in terms of the vertical normal 
mode solutions,@,,(z), of the classical Sturm-Liouville problem: 

where u,, v,, and P,, depend only on x and t. The normal mode eigenfunctions satisfy: 

a 1 afin 

i 1 

1 - -- =---* 
a.2paz It c2p”’ (3) 

where c, = R,f with R, the Rossby radius for mode n. Using (2) and (3), we get the 
following equation for u,: 

2 2 

9 + ff&, - c; 2 = 0. (4) 

Some insights about the vorticity effects on the different baroclinic modes can be 
gained from the numerical integration of (4). The numerical model used is the same 
as the one and a half layer model described in Klein and Treguier (1993) with f = 
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1O-4 s-l. In the numerical experiment reported below, V(X) is a cosine-like jet: 

with 27rL = 80 km and V, = 0.15 m s-l for 1x1 < rL and 0 otherwise. This particular 
form of the jet does not affect the results insofar as the length scale L and the velocity 
at the jet center, 2V,, are not changed: numerical experiments performed with an 
exponential-like jet have displayed similar results. Initial conditions are u, = 0 and 
&,/at = fi/i with vi = 0.2 m s-l. Two length scales are involved in this problem: L, the 
length scale of the geostrophic jet vorticity, and R,, the Rossby radius of deformation 
associated with mode n. L is the appropriate length scale for the vorticity effects, 
while R, is related to dispersion (through c,). Results are shown on Figures 1 and 2 
for two cases: one with R,IL = 0.25, the other with R,,IL = 1. 

The case with R,IL = 0.25 (Fig. la) exhibits an asymmetric distribution of the 
inertial energy with a concentration on the negative vorticity side of the jet. After ten 
inertial periods, the ratio of kinetic energies (E,, - E,,)l E,,,, attains a value close 
to 3.2. Frequency of the inertial motions is affected as well by the jet vorticity: after 
ten inertial periods, motions on the positive vorticity side are r out of phase with the 
negative vorticity side and 7r/2 out of phase with motions far from the jet (Fig. lb). A 
physical explanation for this asymmetric inertial wave response in terms of horizontal 
dispersion has been given by Kunze (1985). Shift of the inertial wave frequency by 
the jet vorticity yields an increasing spatial variability of these waves characterized by 
a wavenumber (k = -t/2 a[/&) across the front that is positive at the jet center and 
negative on the edges. As a consequence waves at the jet center are forced to 
propagate eastward while those on the edges propagate westward. Therefore the 
positive vorticity side becomes energy depleted while waves concentrate on the 
negative vorticity side (Fig. la). Results from other simulations (not shown) indicate 
that these features hold with smaller R, except for the energy concentration which 
becomes smaller because of the lower horizontal propagation velocity, c,. 

The case R,/L = 1 (Fig. 2a) strongly differs from the previous one. The energy is 
still larger on the right side of the jet but it is no longer concentrated in a narrow 
region. Instead it is dispersed well away from the jet and the ratio (E,, - Emin)/ 
E mean is lower ( = 1.3) than before. A more astonishing feature, revealed by Figure 2b, 
is that the frequency of the inertial waves is very close to f and therefore appears to 
be unaffected by the vorticity effects, contrary to the preceding case. Other simula- 
tions performed with R,/L > 1 (not shown) have displayed qualitatively the same 
results, the only difference is the smaller value of the ratio (Emar - Emin)lE,,,, that, 
for example, attains 0.3 when R,IL = 2. 

These different vorticity effects on a baroclinic mode, depending on the ratio R,,/L, 
can be understood through an asymptotic analysis using L as a length scale, l/f as a 
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time scale and Vi as a velocity scale. The parameter E = vi/fL, is usually very small. So 
let us consider the two limits: R,/L = E% and RJL = e-l’% with c = B (1). 

For the first limit, nondimensionalized Eq. (4) is: 

a2u CPU 
--$ + co211 - EC2 2 = 0, (6) 

where all variables are now nondimensional and with 02(x) = 1 + [(x)/f. Using the 
truncated perturbation expansion in E, u = u. + EU~, solutions are: 

sin (ot) c2t2 a20 
uo = ~ w ’ Ul = 402 2 sin (ot). (7) 

Eq. (6) indicates that dispersion effects and therefore propagation of near-inertial 
waves are small in this case. Consequently these waves have time to be affected by the 
focal jet vorticity and, using (7) their resulting dimensional frequency is fe instead of 
f. This yields a spatial variability of the first order solution, uo, characterized by a 
wavenumber across the front growing locally as k = -t&o/&. Dispersion of this 
first-order solution forces a second-order motion, ul, that increases as t2 and is 
proportional to the second derivative of the vorticity. This explains the significant 
kinetic energy increase within the negative vorticity region and the decrease within 
the positive vorticity region. Amplitude of this variation also depends on c2, indicat- 
ing that this energy concentration should be smaller when R,/L is smaller. 

For the second limit, nondimensionalized Eq. (4) becomes: 

a224 i 1 a2u 
E - + w2u 

at2 
- c2s = 0. (8) 

When boundary conditions are taken into account (motions are unaffected by the jet 
vorticity well away from the center), the zero- and first-order solutions are: 

u. = sin (t), u1 = US-~ J V(X)&. (9) 

Eq. (8) shows that dispersion effects are now large and propagation of inertial waves 
is rapid. As a consequence the @ (1) motions, u o, are not affected by the jet vorticity 
and their frequency is equal to f. At the second order, the vorticity effects on the 
inertial motions ((02 - 1)~~) are instantaneously compensated by dispersion that 
induces an B(E) motion, ul, through the term c2(a2ullax2). The H(E) motion is 
spatially variable but does not increase with time. Its amplitude is proportional to c-~ 
and to the double integral of the vorticity. This explains the relatively larger kinetic 
energy that extends well away on the right side of the jet and the smaller one on the 
left side and that this energy amplitude difference is smaller when RJL (or c) is 
larger. 
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Figure 1. (a) Time-across-front plot of the kinetic energy (u2) averaged over one inertial 
period with RJL = 0.25 and v = 10. Contour interval is 0.006 m2 s-* and regions with energy 
larger than 0.02 m* s-* (mean value) are shaded. Velocity of the geostrophic jet (in m/s) is 
indicated below. (b) u-values at x = -120 km (continuous), x = -20 km (dashed-dotted), 
andx = 20 km (dotted). 

3. Numerical experiments 

A 2-D (x, z) nonlinear primitive-equation (PE) model is used to investigate the 
response of both the mixed layer and the ocean interior to a wind impulse. 
Stratification determines the horizontal and vertical propagation of the inertial 
waves below the mixed layer and therefore the distribution of kinetic energy in the 
ocean interior. Two realistic buoyancy Brunt-Vaisala profiles are considered (Fig. 3). 
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Figure 1. (Continued) 

The first one characterizes spring conditions: a 10 m thick thermocline capped by a 
26 m thick mixed layer. The second corresponds to fall conditions with a 100 m thick 
mixed layer above a 100 m thick thermocline. The wind impulse corresponds to a 
windstress of 2. 1O-4 m2 s2 for spring and 6. 10m4 m2 s2 for fall, acting for half an 
inertial period so that the inertial motions have maximum amplitude when the wind 
stops. This impulse might result from the passage of a synoptic-scale atmospheric 
front. Characteristics of the spring and fall situations are close to the ones considered 
respectively by Rubenstein and Roberts (1986) and Wang (1991). We study the 
ocean response over 15 days, in the presence of the same barotropic geostrophic jet 
as considered in section 2. The 2-D PE model is described in Klein and Treguier 
(1993). It is based on the SPEM code (Haidvogel et al, 1991) and uses a linear 
equation of state depending on temperature only. The rigid lid approximation is 
made. Finite differences are used in the horizontal and vertical. Turbulent fluxes are 
represented by diffusion for momentum and temperature, depending on the Richard- 
son number following the classical level two model of Mellor and Yamada (1982). 
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Figure 2. Same as Figure 1 but with R, = L and contour interval equal to 0.002 m2 s2. 

There are 114 levels in the vertical, with a grid spacing of 2 m down to 50 m depth, 
gradually increasing to reach 50 m at 1000 m depth, and then constant down to the 
bottom at 2000 m. The horizontal domain is 600 km wide with a grid spacing of 
1.5 km. The time step is 300 s. There is a background vertical diffusion of 5. 
1O-5 m2 s-r and a biharmonic horizontal friction equal to lo* m4 s-l for momentum 
and temperature. Free slip conditions are used at the bottom. 

a. Spting conditions. Time-evolution of the mixed layer kinetic energy (Fig. 4) 
displays the same qualitative features as Figure la; i.e., a significant concentration of 
inertial energy in the negative vorticity side and depletion on the positive vorticity 
side. Within the negative vorticity region, inertial energy attains a maximum of about 
3 times its value outside the jet at t = 5 inertial periods. Time-evolution of the kinetic 
energy between 30 m and 2000 m (not shown) reveals that most of the downward 
energy propagation occurs within the negative vorticity region and remains trapped 
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Figure 2. (Continued) 

in this region. In both regions we have checked that the wave frequency is close to 
fe = dfm = f + 5/2, confirming that the frequency of the inertial motions is 
affected by vorticity. 

b. Fall conditions. In the fall case, the mixed layer kinetic energy evolution (Fig. 5) 
displays a non-negligible energy concentration (depletion) in the negative (positive) 
vorticity side during the first three inertial periods. However, after six inertial 
periods, depletion of kinetic energy extends outside the positive vorticity region 
covering all the jet by 15 inertial periods. Time-evolution of the zonal velocity 
component within the mixed layer (not shown) indicates that frequency of these 
mixed layer motions is very close to f, i.e., very weakly affected by the jet vorticity. 
Time-evolution of the inertial waves in the positive and negative vorticity regions 
(Fig. 6) exhibits two large kinetic energy maxima building up within the thermocline 
on each side of the jet. A kinetic energy maximum first appears below the mixed layer 
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Figure 3. Initial vertical buoyancy frequency profiles (N(z)) used in simulations performed 
with the PE model. Solid (dashed) line describes spring (fall) conditions. 

in the positive vorticity region (Fig. 6a). In the negative vorticity region, kinetic 
energy below the mixed layer increases but remains smaller than that within the 
mixed layer (Fig. 6b). Later the maximum in the positive vorticity region shrinks and 
a thick maximum appears in the negative vorticity region and keeps growing. 
Furthermore Figure 6 indicates that below the mixed layer, near-inertial motions, 
during the first inertial periods, have downward phase propagation in the positive 
vorticity region. Classical upward phase propagation is observed in the negative 
vorticity region. These results are quite similar to those of Wang (1991) although the 
geostrophic jet considered here is barotropic. 

4. Vertical normal-modes analysis 

In order to investigate the mechanisms involved in the near-inertial wave dynamics 
we performed other simulations with the same PE model but with the linearized 
equations: all nonlinear advection terms have been dropped except jet vorticity in the 
equation for v and vertical advection of the background density in the density 
equation. Results over 20 inertial periods were virtually identical! Consequently 
wave-wave interactions have negligible effects. This, with the fact that the jet is 
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Figure 4. Time-acrossfront plots of the kinetic energy (u*) corresponding to spring conditions. 
Kinetic energy is averaged over one inertial period and averaged over the top layer 
(G30 m). Contour interval is 0.002 m2 sm2 and regions with energy larger than 0.0115 m2 sm2 
(mean value) are shaded. 

barotropic, allows us to analyze the numerical results of the PE model using vertical 
normal modes (Pollard, 1970 and Gill, 1984) to better understand the characteristic 
features of the preceding numerical experiments in terms of the different baroclinic 
modes contributions. This analysis has revealed that in the spring case motions are 
captured by baroclinic modes with Rossby radius wavelengths equal to or smaller 
than 20 km, i.e., a scale smaller than the geostrophic vorticity wavelength (80 km). 
The lower modes are much less energetic. This explains the similarity of Figure la 
and Figure 4. In the fall case the lowest modes (with Rossby radii close to or larger 
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Figure 5. Time-across-front plots of the kinetic energy (u’) corresponding to fall conditions. 
Kinetic energy is averaged over one inertial period and averaged over the top layer 
(O-100 m). Contour interval is 0.001 m* s2 and regions with energy larger than 0.008 m2 sm2 
(mean value) are shaded. 

than the vorticity length scale) are at least as energetic as the higher modes. We have 
found that the competition of these lowest baroclinic modes with the higher ones 
explains the differences between the spring and fall cases. This competition is 
examined and discussed in the next sections in the light of the results of Section 2. 

a. Modal analysis of the fall case. Time and space evolution of the zonal velocity 
component of the inertial waves is examined at two locations: in the positive 
(x = 20 km) and negative (X = -20 km) vorticity regions. When the wind stops (at 
t = n/f), numerical results show that u is nonzero in the mixed layer (U = u,) and 
zero below. Consequently we rewrite the u-field at each location as 

u(x, z, t) = u,S(x, z, t). 
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Figu Ire 6. Time-evolution of the cross-frontal velocity profile (a) at x = -20 km, (b) at x = 
20 km. Grey indicates positive velocities. Contour interval is 0.05 m s-l. 

-300 [ I I I I I I I I I I 
0 2 4 6 8 10 12 14 16 18 20 

TIME (Inertial periods) 



14 Journal of Marine Research [53,1 

Depth 50m 

0.06 1 3 
0.05 !i 

! 
! ! 
! \ 

0.04 ! i 

8 l/i 
/ i 
! i 

5 omo3 ,I . . . . . “’ \ 

I 
j ;i 
j 

,: 

I I I 
1 2 4 7 10 20 40 70 100 

Mode number 

Figure 7. Spectrum of the velocity field, U, at x = - 120 km (-),x = -20 km (..v), x = 20 km 
(-.--) for three depths. 

where S(X, z, r/f) is equal to 1 in the mixed layer and 0 below. Time-evolution of 
S(X, z;t), that is entirely determined from u(x, z, t), is then expanded in normal 
modes@,(z): 

Normal modes have been calculated from the buoyancy frequency profiles of 
Figure 3. a, (x, t) is calculated by projecting the numerical solution u (x, z, t) of the PE 
model onto up to 110 modes (ZV = 110). 

Figure 7 displays the maximum amplitude of each a,(~$)@,@) between the fifth 
and seventh inertial periods at three depths and at threex-locations. At a given depth 
the u,(x,t)@,(z) spectra display the same shape at the three x-locations. More than 
90% of the variance is captured by the first 100 modes. Moreover examination of 
these spectra at different times (not shown) has revealed the same features. This 
makes us confident about the number of modes considered. At all depths and 
x-locations modes 4 and 5 as well as modes 9 and 10 are always weak. Therefore we 
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Figure 7. (Continued) 

define three classes: the lowest modes (n = 2,3) whose Rossby radius wavelengths 
&IS,) are respectively 100 km and 60 km, the intermediate modes (4 I n < 9) with 
Rossby radii close to 20 km and the highest modes (n 2 10) with Rossby radii equal 
to or lower than 12 km. The barotropic mode (n = 1) is always negligible. Conse- 
quently S(X, 2, t) is rewritten as: 

S(x, z, t> = &(x, z, f> + &(x, 4 4 + &(x7 z, t> (12) 

where Sr(x, z, t) = Zi=,u,(x, t)fln(z), &(x, z, t) = E~=,u,(x, t)fin(z) and &(x, z, t) = 
Z~~r,,u,(x, t)pn(z) represent the contributions of the lowest, intermediate and highest 
modes respectively. 

Vertical profiles of the different mode contributions just after the wind impulse 
(t = T/f) are shown on Figure 8. Within the mixed layer the lowest baroclinic modes 
that are the dominant ones are in phase with the other modes. At z = -110 m, i.e., 
just below the mixed layer, the lowest modes and the highest modes dominate and 
are just n out of phase. Within the thermocline (at z = -150 m) the lowest and 
intermediate modes dominate and are also just n out of phase. These compensations 
explain the zero velocity below the mixed layer at t = T/f. Time evolution of Sr, S2 
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Figure 7. (Continued) 

and S3 is shown for the positive (Fig. 9) and negative (Fig. 10) vorticity regions. Close 
examination of the first eight inertial periods reveals that frequency of the lowest 
modes is almost equal to the inertial frequency f and therefore is not affected by 
vorticity. On the other hand, the intermediate and highest modes frequencies are 
close tofe = f + 5/2. This is illustrated in Figures 9a and 10a: Sr and &, initially in 
phase, become n out of phase at t = 8.3 inertial periods. S3 has experienced nine 
cycles in the 5 > 0 region (Fig. 9a) and only eight cycles in the 5 < 0 region (Fig. lOa), 
while evolution of Sr is identical in both regions. Maximum amplitudes of Sr and S3 
display very weak variations with time. One noteworthy feature is that the amplitude 
of Sr is larger on the negative vorticity side whereas that of S3 is the same in both 
negative and positive vorticity regions. On the other hand, the amplitude of S2 
decreases (increases) with time in the positive (negative) vorticity region. 

b. Discussion. The behaviors of the different modes described above compare well 
with the findings of Section 2 when these modes are classified with respect to their 
Rossby radius versus the vorticity length scale. The lowest baroclinic modes Sr, 
having their Rossby radius wavelength close to the vorticity wavelength 
(2~!, = 80 km), behave as found in Section 2 for the modes characterized by R,,IL 2 
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@ (1): their frequency is very close to f and their amplitude (slightly larger on the 
negative vorticity side) does not change much with time. On the other hand the 
intermediate and highest modes, SZ and S3, have their Rossby radii smaller than the 
vorticity length scale, i.e., R,/L < 1. Referring to the findings of Section 2, the very 
small Rossby radius of the highest modes explains the fact that these modes are very 
weakly affected by horizontal dispersion effects as shown by their almost steady 
amplitude (with the same value on both sides of the jet) although their frequency is 
shifted by the jet vorticity. The frequency of the intermediate modes is affected by the 
jet vorticity as well (since R,/L < l), but the large variation of their amplitude is 
explained by their larger Rossby radii that increase the dispersion effects. 

Let us now explain the subsurface maxima and the anomalous vertical phase 
propagation in terms of competition between the different baroclinic modes. At t = 
r/f lowest modes balance the highest or intermediate ones below the mixed layer. 
This yields a zero velocity there. As time goes on, near-inertial waves propagate 
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Figure 9. Time-evolution of the Sm’s functions during fall in the positive vorticity region at (a) 
z=50m,(b)z=110m,(c)z=150m. 

downward and the velocity becomes non-zero. This mechanism can be interpreted in 
terms of time evolution of the baroclinic modes as follows (Gill, 1984): each mode 
has a frequency that slightly differs from the others. Consequently a phase shift 
between the modes builds up with time, which leads to the appearance of a non-zero 
velocity below the mixed layer. Characteristic features revealed in fall conditions can 
then be explained as follows: 

The frequency observed within the mixed layer, close to f (see Fig. 6) is due to 
dominance of the lowest modes (S,). The relative kinetic energy depletion in the 
mixed layer is caused by an increasing phase shift between the low and higher modes 
because of their different frequencies (Figs. 9a and 10a). The larger and more rapid 
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Figure 10. Time-volution of the Sm’s functions during fall in the negative vorticity region at (a) 
z=50m,(b)z= llOm,(c)z= 150m. 

kinetic energy depletion in the positive vorticity region is due to the horizontal 
propagation of the intermediate modes (&) away from this region. 

Below the mixed layer, the increasing phase shift between the low and higher 
modes leads to the appearance of near-inertial motions and the build-up of the two 
maxima. This phase shift also explains the vertical phase propagation during the first 
inertial periods. Letting f be the frequency of the lowest modes that dominate within 
the mixed layer and fe = f + 5/2 the frequency of the higher modes that balance the 
lowest ones below the mixed layer, mixed layer (u,~) and deep velocities (ub) can be 
written: u,~ = U, cos(fi) and u b = u,(cos(ft) - cos(f,t)). Assuming f = fe (or 
c/f -=z 1) leads to: &, = 24,(5/2]t COS(- n/2 +fi) if 5 > 0 and ub = &,]5/2]t 
cos(rr/2 + ft) if 5 < 0. Thus, as illustrated in Figure 11, during the first inertial 
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Figure 11. Illustration of the apparent vertical phase propagation in (a) the negative vorticity 
region (with fe < f) and (b) the positive vorticity region (with fe > f). In each region two 
curves are shown: cos(ft) (continuous line) representing the velocity in the mixed layer and 
(cos(ft) - cos(f,t)) (dotted line) the velocity below. 

period there is a shift of -7rl2 (upward phase propagation) when f > fe, i.e. in the 
negative vorticity region. On the other hand there is a phase shift of ~rr/2, i.e. an 

anomalous downward phase propagation in the positive vorticity region (where 
f < fe). It is the sign of the difference between the frequency of the lowest modes 
(dominating the mixed layer) and higher modes that determines the sign of the 
vertical phase propagation. As time goes on, the deepening (shrinking) of the kinetic 

energy maximum in the negative (positive) vorticity region (Fig. 6), is attributed to 
the horizontal dispersion effects of intermediate modes that are the dominant modes 

within the thermocline (Figs. 9c and 10~). 
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5. Conclusion 

In this study we have re-examined the dispersion of wind-induced inertial waves by 
an oceanic geostrophic jet. It is shown that the nonlinear wave-wave interactions do 
not qualitatively affect the mixed layer response nor the propagation of the near- 
inertial waves into the thermocline and the ocean interior. In other words, most of 
the dynamics of the free near-inertial waves is captured by the linearized equations. 
This has allowed us to use a vertical normal mode approach to analyze the numerical 
results from a primitive equations model. 

A simple analytical model has revealed that vorticity effects on a baroclinic mode 
strongly depend on the ratio of its Rossby radius with the vorticity length scale. When 
this ratio is small, dispersion effects are small and the inertial waves are significantly 
affected by the local jet vorticity. As shown by Kunze (1985) and Rubenstein and 
Roberts (1986) the resulting wavenumber growing across the front induces a local 
asymmetric dispersion that significantly concentrates inertial energy in the negative 
vorticity region. On the other hand when this ratio is of order O(1) or larger, the 
large dispersion effects efficiently overcome the vorticity effects so that the resulting 
spatial variability of the inertial waves is small and does not increase with time. To 
our knowledge this result, although not surprising, has not been reported in the 
literature. 

We have assessed the consequences on the dispersion by a barotropic jet of a 
wind-induced inertial wave field, initially homogeneous and entirely contained 
within the mixed layer, in two different realistic situations. Results indicate that, for a 
buoyancy Brunt-Vaisala profile corresponding to a spring situation (characterized by 
a shallow mixed layer capping a thin thermocline), inertial energy rapidly concen- 
trates within the negative vorticity region. These results are in agreement with the 
preceding findings since a vertical normal mode analysis reveals that the inertial 
wave field energy is almost entirely captured by baroclinic modes whose Rossby 
radius is smaller than the vorticity length scale. On the other hand, when the 
buoyancy Brunt-VaisCla profile corresponds to a fall situation (with a deep mixed 
layer capping a thick thermocline) horizontal and vertical dispersion of the near- 
inertial waves differs from the preceding situation and is close to the one reported by 
Wang (1991). Two distinct inertial energy maxima are found within the stratified 
interior, associated with a classical upward phase propagation of the near-inertial 
waves in the negative vorticity region and an anomalously downward phase propaga- 
tion in the positive vorticity region. The vertical normal modes analysis clarifies these 
results. In this situation baroclinic modes with a Rossby radius close to the vorticity 
length scale capture a significant part of the inertial wave energy. These modes are 
not affected by the vorticity contrary to the higher modes. It is the competition 
between these two classes of baroclinic modes that lead to the characteristic features 
observed in the fall situation. 
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These results indicate that dispersion of the wind-induced inertial waves strongly 
depends on the mixed layer depth and on the stratification underneath. 
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