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Instability waves in the Gulf Stream front 
and its thermocline layer 

by Sang-Ki Lee1 and G. T. Csanady’ 

ABSTRACT 
We carried out linear instability calculations on a three layer Gulf Stream front model in an 

attempt to elucidate the interaction of the thermocline layer with surface slopewater shore- 
ward of the front. The basic state is geostrophic balance and constant potential vorticity in the 
two active layers, but the perturbations are ageostrophic. We found the flow to be unstable to 
long wave perturbations, the wavelength of the most unstable wave to be of the order of 10 
radii of deformation. The instability is mainly baroclinic, 75-85% of the energy supply to the 
growing perturbation coming from basic flow potential energy. Calculated wavelengths, phase 
speeds and growth rates, using parameters typical of the Gulf Stream, are similar to those 
observed. The eigenfunctions of the perturbations show peak cross-front thermocline motions 
near the inflection points of a frontal wave, and a cyclonic eddy with closed streamlines under 
a trough, an anticyclonic eddy under a crest. The combined flow (basic state plus perturbation) 
in the thermocline layer follows the surface streamlines closely, except for small cross-stream 
anomalies, shoreward just upstream of a wave crest, seaward upstream of a trough. Calculated 
trajectories have characteristics similar to those observed by RAFOS floats, except that they 
suggest exchange of thermocline waters exclusively with slopewater. 

1. Introduction 

a. Slope Sea and Gulf Stream thermocline 

Upon separation from the coast, western boundary currents develop unstable 
waves of spectacular amplitude, affecting a large neighboring region. The instability 
of the Gulf Stream, in particular, is responsible for great variability of currents and 
water properties north of Cape Hatteras, in the Slope Sea, the 100 km or so wide 
strip of the ocean between the Stream and the continental slope. Where not 
occupied by Gulf Stream meanders or rings, the surface layers of the Slope Sea 
contain the distinctive water mass known as slopewater (Iselin, 1936). As Rossby 
(1936) recognized, this water mass is in contact along isopycnal surfaces with 
thermocline waters under the Gulf Stream, and differs from them only by a slight 
salinity deficit (McLellan et al., 1953). Csanady and Hamilton (1988) pointed out that 
the seasonal cycle of pycnostad formation and erosion in the surface layers of the 
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Slope Sea requires constant replenishment of thermocline waters from under the 
Gulf Stream. Because there is no significant net shoreward advection along the 
isopycnal surfaces in question (Bower et al., 1985), the replenishment must be 
effected by eddy mixing. It is reasonable to suppose that unstable wave motions, 
developing into eddies at finite amplitude are responsible for this. 

Another aspect of Gulf Stream influence on the Slope Sea was brought to light by 
Bane et al. (1988) who reported that when a Gulf Stream meander approaches the 
continental margin, displacing surface slopewater, the southward flow of the upper 
slope current of the Mid-Atlantic Bight speeds up. Csanady and Hamilton (1988) 
suggested that the upper slope current is one leg of a closed western Slope Sea gyre. 
If this is true, squeezing the gyre by a Gulf Stream meander apparently speeds it up. 
The approach to the coast of a meander of course means that the surface layer of the 
Gulf Stream moves shoreward. Thermocline waters, which are in contact with the 
surface waters of the Slope Sea, may conceivably move seaward at the same time, 
creating a void which the upper slope current has to fill. Whatever the exact 
explanation, there is clearly a connection between the movements of Gulf Stream 
thermocline waters and Slope Sea waters, associated with the unstable waves of the 
boundary current. The motivation for our study was the desire to understand 
movements of thermocline waters under and around a separated western boundary 
current. 

b. Modeling requirements 

In order to portray motions in the thermocline of a separated boundary current by 
a simple model, a minimum of two active layers are necessary: one, the surface layer, 
terminating in a surface outcrop, two, a layer under the surface layer seaward of the 
outcrop, becoming the surface layer shoreward. Underlying both, in the simplest 
approach, there is a deep inert layer. In the belief that meander and eddy motions 
observed in a separated boundary current are finite amplitude developments of 
instability waves, we analyze the stability of a basic state containing an upwelled front 
and a baroclinic current. As is standard in such analysis, we suppose a frictionless 
fluid, and small perturbations leading to linearized equations of motion. It is 
reasonable to suppose that this approach correctly quantifies such key properties of 
Gulf Stream meanders as phase speed, growth rate, and wavelength of the dominant 
wave, provided that the basic state is physically realizable and representative of the 
separated boundary current. The structure (eigenfunctions) of the instability waves 
should also give clues to the character and range of eddy motions developing as the 
amplitude of the disturbances becomes large. Detailed agreement with observed 
finite amplitude motions should not, however, be expected of small perturbation 
theory. 

The requirement of a realistic and representative basic state excludes the quasigeos- 
trophic approach, as Garvine (1984) and Killworth et al. (1984) have pointed out: in 
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the separated Gulf Stream the Rossby number is of order one. Both these papers 
treat a single active layer model of the Gulf Stream, with Stommel’s (1965) constant 
potential vorticity surface layer as the basic state (Killworth et al. explored other 
basic states, too). Constant potential vorticity in two or three active layers yields 
models of finite amplitude coastal upwelling (Csanady, 1982), and is also a suitable 
basic state for instability wave analysis on a separated boundary current with an 
active thermocline layer. We used a two active layer version of this model, with the 
third, bottom, layer at rest in the basic state, but containing perturbation motions. 
Boundary conditions were evanescent motion at infinity on both sides of the outcrop, 
or a coastal wall limiting the surfaced thermocline layer, where the normal velocity 
vanishes. 

c. Earlier studies offrontal instability waves 

Theoretical studies of oceanic frontal instability originate from Orlanski’s (1968) 
pioneering paper, in which he examined the instability of the (atmospheric) Norwe- 
gian polar front. The basic state was a plane inclined interface intersecting rigid top 
and bottom boundaries, and separating two fluids of different density. Model results 
showed that the front was unstable at all wavelengths. Rayleigh shear instability, 
Kelvin-Helmholtz instability and baroclinic instability were all found to operate in 
some portion of wavenumber space. 

Following Orlanski’s work, a number of stability studies have been carried out on 
atmospheric and oceanic fronts using quasi-geostrophic theory (a basic state with 
small Rossby number). The trend of recent work has been away from QG theory, 
notable examples being the studies of Paldor (1983) Killworth (1983) and Killworth 
et al. (1984) all using the shallow water equations. 

Paldor (1983) studied the instability of an “isolated” (upwelled) surface front 
using a simple reduced gravity model (l’/ layer model). The basic state in the model 
had an active top layer of constant potential vorticity, and an infinitely deep bottom 
layer. He found this state to be unconditionally stable, but supporting trapped waves 
of zero growth rate moving either downstream or upstream. Killworth (1983) 
examined a slightly extended model. He allowed non-uniform potential vorticity in 
the basic state, and showed that the flow was unstable if the basic potential vorticity 
decreased toward the front. Interestingly, the criterion for instability found by 
Killworth (1983) is clearly different from what QG theory suggests, which is that the 
basic potential vorticity must change sign somewhere inside the fluid (Pedlosky, 
1987). Or in a two-layer QG model, the basic potential vorticity gradients in the two 
layers must have different signs (Phillips, 1954; Pedlosky, 1962; Orlanski, 1969). 

The 1% layer models include stratification in a highly simplified form, but 
eliminating perturbations in a second layer prevents baroclinic instability. The 
models of Killworth (1983), Garvine (1984) and Kubokawa (1985) all suffer from this 
constraint. Laboratory experiments (Chia et al., 1982; Griffiths and Linden, 1982), 
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which all have active bottom layers, reveal frontal instability growth rates much 
larger than found by Killworth (1983). In order to account for this, Killworth et al. 

(1984) developed a two-layer model, allowing perturbations in the bottom layer, 
although in the basic state only the top layer was in motion, the bottom layer stagnant 
(a similar model was previously studied by Orlanski (1969)). Killworth et al. (1984) 
obtained unstable waves regardless of the distribution of the basic potential vorticity. 
This model reproduced the growth rate of the most unstable wave in the laboratory 
experiments of Chia et al. (1982) and Griffiths and Linden (1982). 

Two-layer models, laboratory or analytical, cannot in principle portray thermo- 
cline motions in a separated boundary current. Therefore we use a simplified 
three-layer model of a separated boundary current, in an attempt to understand the 
effect of an active thermocline layer on the stability of the flow and especially to 
reveal details of instability wave motions in the thermocline layer. 

We also analyze energy exchange between the geostrophic basic flow and the 
perturbations. 

2. Formulation of the problem 

a. The model 

The model configuration, Figure 1, shows two fluids of uniform densities p1 and p2, 
flowing above a fluid of density p3 where p1 < p2 < p3. The basic flow is taken to be 
geostrophic in the upper two layers, parallel to thex-axis, and stagnant in the bottom 
layer. The interface between the upper two layers intersects the surface at y = 0 and 
their depths approach constant values, ZZt and ZZ2, asy -+ +m for an “isolated” front. 
A “coastal” front terminates motion at y = y, where the depth is h2(y,) 2 H2. The 
model domain is divided into two zones: to the right of the front (fromy = 0 toy = m 
for the isolated front, from y = 0 toy = y, for the coastal front) is a two-layer fluid 
defined as Zone Z and to the left (fromy = --03 toy = 0) is a three-layer fluid defined 
as Zone ZZ. Let y be the ratio of the total depth (ZZr) to the top layer thickness (Hi) 
and 6 be the ratio of the thermocline layer thickness (Hz) to that of the top layer (Hi) 
aty = ---cc so that, after some minor manipulations, the bottom layer thickness 
becomes Hi(y - 1 - 6) at y = -CQ, and ZZt(y - 6) at y = ~0 for the isolated front, 
h3 5 H, (y - 6) at y = yc for the coastal front. 

The variables are made nondimensional as follows: 

t* = tf-’ 

x* =.&alf-l, Y* =y&xf-l, 

u* = u ,gE,,H~, v* = v p2,H1, 

TT = TI~~I> h; = hIHI, 

rl; = 712~21ff1, h; =ML 

(1) 
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Figure 1. The configuration for the three-layer model: (a) isolated front, (b) coastal front. 
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where f is the Coriolis parameter, g is acceleration of gravity, hT and h; are the 
dimensional layer thicknesses of top and thermocline layers, 11; and 7; are the free 
surface elevations for Zone II and Zone I respectively, &xf-l is the internal 
deformation radius, and e21 is given by 

E21 = 1 - ;. 

b. The basic state 

In the basic state we prescribe geostrophic balance and constant potential vortic- 
ity, for both active layers (Csanady, 1982; Huang and Stommel, 1990). Nondimen- 
sional equations describing this state are: 

El = -(a + l)FziY - &h,, 
h, = 1 - IiIY I 

Y < 0, (2) 

ii2 = -cdily - ash,, 

h2 = 1 - uzy 

El = h, = 0 

where 6 is defined in Section 2a and 

(3) 

(4) 

Y > 0, (5) 

&2..I.e 
P2 - Pl 

is a stratification ratio. 
The solution satisfying the boundary conditions at infinity (& = 0 aty + +CQ) is: 

El = alerlY + as”Y + 1 

h2 = blerlY + b@Y + 1 I 
y I 0, 

h, = 0 

X2= c3emmY+ 1 I 
y 2 0, 

(7) 

(8) 

where 

r1,2 = (9 

w r3 = -~l/cx6, 
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bi = 
1 - c&rf 

ar’ 
ai, i = 1,2. (11) 

The constants al, a2 and c3 follow from matching conditions at y = 0: h, = 0, h2 and 
E2 continuous: 

1 + al + a2 = 0, 
1 + bI + b2 = 1 + c3, 

rlal + r2a2 + 6rIbI + 6r2b2 = -Br3c3. I 
(12) 

For (Y = 1 and 6 = 1, the constants are: 

-0.381966 

+0.618034 

+0.236068 

+1.618030 

a2 

bz 

r3 

r2 

-0.618034 

-0.381966 

+1.000000 

+0.618034 

The basic state for the coastal front is obtained with vanishing velocity at the coast. 
Figure 2 illustrates the interfaces and the flow velocities in the basic state for the 
isolated front. 

c. The perturbation equations 

We superimpose small wavelike perturbations of the form 

(4 Q,P) = (U’(Y), v’(~>,p’(y))e’(“-~) (13) 

on the basic flow, where o is complex frequency and K is wave number. The linearized 
perturbation equations expressed in terms of pressure variables are, in Zone ZZ (Lee, 

\ I 
(1 + CY) 1 

& Pi-gP;-$Pi ZZ- 
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Figure 2. Basic geostrophic flow of the isolated front: (a) Layer thickness, (b) Velocity when 
cr=1,6=1andy=8. 
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d2p; - - 
dy2 

where 
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(cl? - 1) 
(16) 

= - a(y - h, - ah,) 
(P; - P;)t 

j = 1, 2. 

In Zone Z, the equations reduce to: 

The three equations in Zone II and two in Zone I are the equations to be integrated, 
with boundary conditions representing: (i) an isolated front, (ii) a coastal front. 

d. Boundary conditions 

For the isolated front, at y = 203 all perturbations vanish: 

P;(Y) =P;(Y) =PXY) = 0, at y = +w. (20) 

At y = 0, where the front intersects the surface, five boundary conditions must be 
satisfied: a kinematic boundary condition at y = 0 expressing continuity of the free 
surface plus the continuity of pressure and velocity of the second and third layers. 
The kinematic condition is: 

Dyf- 
Dt 

i&K - o)yf = O1 at y=o (21) 

where yf is the horizontal displacement of the front. To first order in the small 
quantityyf, this is equivalent to 

& 
lpi -h;(i&K-0)=0 at y = 0. c-4 

The result also follows directly from the continuity equation for the top layer, with 
h,(O) = 0. Reduced to pressure variables, the result is: 

g&O) + (i&(o)K - CO)2 K hly(o) - k(o)K - 0) 1 p;(o) _ (~l(O>K - oj2 UO) p;(O) = 0. (23) 
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The continuity of pressure of the second layer is 

Pf<Yf) = P’,(Yf) (24) 

where superscripts I, ZZ indicate Zone Z and Zone ZZ respectively. A Taylor expansion 
ofpt(yf) abouty = 0, after linearization, gives 

4% 
P%Yf) = Yf dy (0) + zto> + Pf’ (0). 

Similarly, forpi we get 

P’,(Yf) = Yfd$ (0) + Ato) + P<‘(O). 

Using the continuity of pressure and the pressure gradient of the basic flow aty = 0, 
we get from the last three equations 

piI’ =pi’(O). 

The continuity of surface elevation: 

(27) 

rl?(Yf) = d(Yf) (28) 

gives the same boundary condition as we found from the continuity of second layer 
pressure, becausepr (yf) = pz( yr) at y = yf where hl = 0. The continuity of third layer 
pressure gives 

piI’ = pi’(O). (29 

Finally, the continuity of cross-frontal velocity in the second and third layers, after 
linearization, gives 

v;‘(o) = vi’(O) (30) 

v?‘(O) = vi’(O) (31) 

since the basic state cross-front velocity is zero everywhere. In terms of pressure 
variables those conditions yield: 

(33) 

Summarized, the five boundary conditions aty = 0, written in terms of the pressure, 



19941 Lee & Csanady: Gulf Stream front model 847 

are: 

4; 

dy 
- (iil(o): _ w) pi(O) - “l(;f;, o)2P2w = 0, 1 

Pf’(0) = P?(O), 

P:I’ (0) = Pi’ (O), 

2$ (0) = d$ (O), 

%!J (0) = dg (0). 

(34) 

Together with the five boundary conditions at infinity, we now have a total of 10 
boundary conditions for 5 second order ODES. 

3. Method of solution 

At infinity, the perturbation equations 12 to 16,18 and 19 reduce to homogeneous, 
constant coefficient ordinary differential equations for the three pressure variables in 
Zone ZZ, two in Zone Z. The three equations applying at negative infinity can be 
satisfied by exponential solutions of the form A exp(ky), where k satisfies a third 
degree algebraic equation, the determinant of the matrix of coefficients set equal to 
zero. Each of the three roots ki yields amplitude ratios between the pressure 
variablespj with one amplitude remaining arbitrary. The total solution is then of the 
form: 

P; =&PI, + Abplb +Ac~lo 

P; = A,P, + AbPzb + A,P,, 
(35) 

P; = A,P, +&PM +A,P~~T w-9 

whereA,,Ab andA, are yet to be determined, but thep::I are fully defined exponential 
functions for given K and o, of the same e-folding scale of k-l for the same letter 
index. 

Similarly, at y + +a~, the solutions which satisfy boundary conditions: 

p$ =pj = 0, aty + +a~, 

are pairs of simple exponential solutions, which we may write as 

P; = 4~2~ + B,P,, 

P; = 47~3~ + B,P,, 

where BP and B, are also yet to be determined. 

(37) 

(38) 

(39) 
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We integrated equations (12-16, 18, 19) numerically using a fourth-order Runge- 
Kutta scheme. The analytical solutions at y + +m (Eqs. 35 and 37) were used as 
initial conditions and the solutions were marched fromy = fm (practicallyy = &lo) 
to y = 0, with a trial complex eigenvalue o and a fixed wave number K. Three 
nondimensional parameters 01, 6, and y specifying the physical characteristics of the 
front were also prescribed. 

The five constants A, to A,, BP and B, were determined from the matching 
conditions aty = 0. Those conditions, (Eqs. 34), are in matrix form, 

Fa Fb Fc 0 0 Aa 
P2a P2b P2c -J-b -Pzm A, 

72YP -pqtr, A, = o 

P3a p3b P3c -P3P -P3m BP 

-p3YP -~3ym _ Jr, _ 

(40) 

where F,, Fb and F, are defined as follows: 

Fa = P?,(O) + 

(&(o)K - 6.$2 

sly 

- (u,(o): _ o) p*a(O) - @l(;;;, w)2Pd% 1 (41) 

Fb = Plyb(O) + 

(&(o)K - 6.$2 

&y(O) 

- (iilco); _ o> p&o) - “‘(;;;o, w)2Pdo), 1 (42) 

Fc =~~yc(o) + 

(i&(o)K - 6J)2 

sly 

- (Ei(o); _ w) PI,(O) - (“l(;;, w)2Pz@). 1 (43) 

The determinant of the matrix must vanish in order for nontrivial eigenfunctions to 
exist: this yields an equation for the calculation of the complex eigenvalue 6.1 for 
chosen K. The matrix contains the values of eigenfunctions at y = 0. These were 
obtained from the numerical integrations, and then used to calculate the determi- 
nant. The trial eigenvalue o was corrected using Muller’s method (Gerald and 
Wheatly, 1984). The procedure was repeated until the value of the determinant 
reduced to order lo-*. The matching conditions then allowed the determination of 
the constants A, to A,, BP and B,, except that one remained arbitrary. The combined 
eigenfunctions could now be determined, put together on the scheme of Eqs. 35 and 
37 but now for the entire y-domain. The same calculations were carried out for the 
coastal front, mutatis mutandis. 
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4. Calculated results 

a. Structure andproperties of the instability waves 

We chose for our calculations parameters typical of the Gulf Stream west of 73W. 
The layer thicknesses are Hr = 500 m, Hz = 500 m and HT = 4000 m. These yield 6 = 
1 and y = 8. The mean densities (a,) in the three layers of 26.90,27.30 and 27.70 give 
(Y = 1.0 and the internal Rossby radius Rd (=&xf -‘) is approximately 30 km. 
The layer thicknesses determine potential vorticity and hence the mean flow. This 
choice of parameters serves as a standard case with which the results of the model 
with different parameter values may be compared. 

i. Isolatedfiont. We found solutions for a range of alongfront wavenumbers K and 
determined the complex frequency o = o, + ioi, as a function of K, see Figure 3. The 
growth rate wi has a maximum nondimensional value aim of 0.0274 at K = 0.43. The 
frequency o is purely real above the critical wavenumber K, = 0.59 where oi = 0. The 
values of w,. are all positive and the phase speed, which is defined as c = C&K, is also 
positive, so that the wave propagates downstream. The positive 2nd derivative of the 
C+(K) curve implies that the wave is dispersive with positive group velocity so that the 
energy of the wave also propagates in the downstream direction. 

The dimensional properties of the most unstable wave are as follows. The length 
scale Rd is approximately 30 km for the “typical” case. The wavelength of the most 
unstable wave is therefore 483 km. The e-folding time scale is 4.2 days, the phase 
speed of 19 cm s-i showing that the wave propagates downstream very slowly 
compared with the mean flow speed. 

The structure of the most unstable wave is illustrated in Figure 4 and 5. The 
amplitude of p ‘i was taken to be unity (this is the one remaining arbitrary constant, 
see previous discussion). Figure 4 shows the distribution of pressure and velocity 
amplitude, Figure 5 the two-dimensional pattern of the eigenfunctions. The wavy 
line shows the displacement of the front, for orientation in comparing phases. 
Contour lines show pressure, arrows velocity vectors. 

We also examined the effect of varying the parameter y, the ratio of bottom layer 
to top layer depth. Increasing the value of y reduces the growth rate and shifts the 
maximum growth rate to lower wavenumber (as found by Killworth et al., 1984). As 
the bottom layer thickness increases compared to the upper two layers, the shear 
between the lower two layers decreases, and with it the growth rate (a point also 
made by Barth, 1987). 

ii. Coastalfront, flat bottom. The width of the two layer zone yc was chosen to be six 
times the Rossby radius, other parameters the same as for the isolated front. The 
maximum growth rate was 0.0182 at K, = 0.49, considerably less than for the isolated 
front. We obtained a dimensional wavelength for the most unstable wave of 385 km, 
an e-folding time scale of 6.3 days and a phase speed of 19.2 cm s-l. The wave is less 
unstable, the wavelength of the most unstable wave slightly shorter, than for the 
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Figure 3. Isolated front: (a) Frequency of the fastest growing wave as a function of along front 
wave number K, (b) Growth rate of the fastest growing wave as a function of along front 
wave number K. 
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isolated front. The calculation was carried out again for several values of y,. The 
growth rate remains almost the same as for y, = 6 except when y, is one or less. Oey 
(1988) found from a numerical study that the growth rate of frontal instabilities in a 
coastal region depends primarily on nondimensional width of the coastal region (y, 
in this study). He also found that for y, > 1, increasing y, neither stabilizes nor 
destabilizes the flow. However, wheny, < 1, the growth rate does decrease rapidly as 
the coastal wall interferes with cross-front motions. 

iii. Coastalfront, sloping bottom. Since most oceanic fronts are located near coasts, 
the dynamical effects of sloping bottom topography are of interest. The influence of 
bottom topography on frontal instability was first studied by Orlanski (1969). He 
used a hyperbolic-tangent function for the shape of the bottom and bound a 
destabilizing effect. Recently, Barth (1987) used a set of approximate equations with 
linear bottom topography and found a stabilizing effect of the bottom, opposite to 
Orlanski’s result. 

Here we used a hyperbolic tangent function for the shape of the bottom similar to 
Orlanski’s (1969): 

h,=H,,tanh~(y+l)+l 
i i 

(44) 

where Ha is the bottom depth hs at y = y,, chosen to be 3. The distance to the coast, yc 
is six times the Rossby radius, the rest of the parameters the same as for the flat 
bottom model. The maximum growth rate is now 0.0415 at K, = 0.60. The dimen- 
sional wavelength of the most unstable wave is about 314 km, the e-folding time scale 
of 2.8 days and the phase speed of 33.7 cm s-l. Compared with the flat bottom case, 
the wave is more unstable, the wavelength of the most unstable wave shorter, the 
phase speed greater. The eigenfunctions of the fastest growing wave are, however, 
not very different (Lee, 1993). Calculations were also made for Ha = 2,4. The results 
show that steeper bottom topography destabilizes the front, and the wavelength of 
the most unstable wave decreases as the slope of the bottom topography increases. 

b. Inferences on thermocline motions 

In order to visualize the effects of an instability wave on a separated boundary 
current it is necessary to combine the basic state with the flow perturbation. Starting 
with a streamwise velocity perturbation equal to one percent of the peak basic flow 
velocity (isolated front) we allowed the perturbation to grow for a full period, by 
which time the wave amplitude (displacement of the surface front) was about 10% of 
the wavelength, and added this to the basic flow. This still qualifies as small 
amplitude, while clearly portraying the wave motion. Figure 6 shows the perturbed 
flow in the thermocline layer: solid lines are pressure contours, arrows velocities, 
dotted line surface front shape. In general, thermocline flow follows the surface layer 
flow. Departures are greatest near the inflection points of the streamlines: upstream 
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Figure 4. Isolated front: Eigenfunctions of the most unstable wave of (a) the top layer, (b) the 
thermocline layer and (c) the bottom layer. 
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Figure 4. (Continued) 

of a trough there is marked inflow from the coastal side of the current, outflow 
upstream of a crest. While the velocity-anomalies (compared to the surface veloci- 
ties) are small, they involve enough fluid to generate closed streamlines (pressure 
contours, strictly speaking, but the differences are small) in “slope-water,” on the 
coastal side of the current, forming a weak cyclonic eddy in the trough of the wave. 
There is no anticyclonic eddy over the crest, nor a comparable flow structure on the 
deep side of the current. We have also calculated particle trajectories of the 
combined flow, starting the particles in the core of the basic current. Results are 
shown in Figure 7. The wavelength is about 15 Rd, so that at the end of one 
wavelength’s worth of travel some of the particles leave the current for the coastal 
side, all of them by the end of another wave. Note that the particles always leave just 
after completing a cyclonic turn (as they come out of a trough). As Figure 6 has 
shown, this is where they acquire a shoreward pointing velocity anomaly. The large 
cross-stream displacements seen in Figure 7 of course occur at finite perturbation 
amplitude and should not be taken seriously. 

c. Comparison with observation 

As we have emphasized before, small amplitude instability wave theory only tells 
us how the large meanders on a boundary current may start, with hope but no 
guarantee that finite amplitude motions will have a structure similar to the eigenfunc- 
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Figure 5. Isolated Front: Two-dimensional structure of the eigenfunctions (contours of 
pressure and velocity vectors), (a) the top layer, (b) the thermocline layer, (c) the bottom 
layer. The solid and dashed lines indicate positive and negative contours, and the wavy line 
the phase of the surface front displacement. Contour intervals and magnitudes are not 
regular for each figures. To compare relative magnitudes, see Figure 4. 

tions. Compounding the problem of model-observation comparison is the overideal- 

ized character of the model: a single “thermocline” layer is a poor surrogate for the 
onion-skin arrangement of many isopycnal layers in the main oceanic thermocline. 

Nevertheless, the layers in the Gulf Stream thermocline in contact with slopewater 
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Figure 5. (Continued) 

are a subset subject to similar boundary conditions, and might just behave as the 
theory suggest. 

On wavelength, phase speed and growth rate, the thorough analysis of observa- 
tions by Watts and Johns (1982) is probably the best source of information. There are 
considerable difficulties in separating the behavior of different-length unstable 
waves, and the results are subject to uncertainty, according to Watts and Johns, of 
25% on wavelength and phase speed, to 100% on ci. The best estimate on the 
wavelength of the most unstable wave seems to be near 400 km, judged from their 
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Figures 10a and lob. The phase speed of this wave is estimated to be 0.3 m s-l, from 
the same figures, the e-folding time scale 6 days. Our standard model yielded 
calculated results of 438 km wavelength, phase speed of 0.19 m s-l, and an e-folding 
time scale of 4.2 days. In view of the uncertainty of the values derived from 
observation, and of the overidealized nature of the model, one could hardly expect 
better agreement. 

A much stricter test of the theory, and more important from the point of view of 
our objective of elucidating mass exchange between slopewater and the Gulf Stream 
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Figure 6. Contours of total pressure and total velocity vectors (basic flow plus perturbations) 
in the thermocline layer (coastal front, sloping bottom whenHo = 3). Dashed lines show the 
evolution of perturbed front yf 

thermocline, is a comparison with thermocline motions, observed recently by Rossby 
and his collaborators (see Bower and Rossby, 1989 and references given there) using 
RAFOS floats. These floats follow isopycnal surfaces to a good approximation. 
Released into the thermocline, in the core of the current, they follow the meanders 
of the Stream, with some characteristic departures: they move shoreward and 
upward on the isopycnal surfaces as they approach a meander crest, seaward and 
downward approaching a trough. This is exactly what our combined basic- 
perturbation flow (Fig. 6) showed. Bower and Rossby also point out that the floats 
eventually escape from the Stream. We show here one illustration from Bower et al. 
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‘E’ sign indicates the ending point. A ‘+’ sign is placed at each time step. 

(1986) the path of RAFOS 052, see Figure 8. The numbers on the path identify 
Julian days. The float meandered along with the Stream to about day 290, when it 
was about at the crest of a meander (according to its pressure-history, not shown 
here). From here it did not return to its original cross-stream location but escaped to 
slopewater, there moving slowly southwestward from day 300 on, at a constant depth. 
As in our particle simulation, the escape came after entering the anticyclonic motion 
in the crest of a meander. 

There are other complexities in the observed float motions which our simple 
model did not simulate: for example, floats also escaped on the deep, seaward, side 
of the Stream. Nevertheles, the key features of the calculated thermocline motions 
agree with observation: flow in the thermocline layer follows the surface layer closely, 
except for slightly exaggerated shoreward motion upon approaching a meander crest, 
seaward motion anomaly entering a trough. Escape from the current is a finite 
amplitude phenomenon, not well simulated by the model, although the velocity 
anomalies hint at this, too. 
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Figure 8. RAFOS float trajectories on 10°C surface (a, = 27.2). Dots on the trajectory are 
0000 UTC fixes and dates are yeardays in 1984. Reproduced from Bower et al. (1986). 

Our reviewers insisted that we acknowledge previous attempts at interpreting 
RAFOS float observations in terms of Gulf Stream models by Garvine (1988) and 
Cushman-Roisin (1993). Both these authors used one-and-a-half layer models, 
Garvine an earlier instability wave theory of his own (Garvine, 1984) similar to 
Paldor’s (1983), Cushman-Roisin a finite amplitude quasi-geostrophic jet model. 
Both approximate thermocline motions by those of particles at the bottom of their 
surface (only) active layer. Because the surface layer terminates at the outcrop of the 
front, such particles cannot move beyond the front. Their horizontal motion is 
identical with surface motion. So long as thermocline layers follow surface layer 
motion, the results of Garvine and Cushman-Roisin are valid, to the extent their 
models are. The important question here is, however, how far thermocline motion 
departs from surface motion, to allow the exchange of fluid between submerged 
portions of the thermocline with surface fluid shoreward of the current. 

5. Summary 

The primary objective of this study was to gain insight into the behavior of the 
thermocline layer in an unstable, separated boundary current. The eigenfunctions of 
the most unstable wave show a cyclonic thermocline eddy underlying the trough of a 
meander, an anticyclonic eddy the crest. Putting mean flow and perturbation 
together, a large cyclonic eddy (some 200 km diameter) develops in slopewater, 
shoreward of a meander trough. The dominant feature of calculated particle 
trajectories in the thermocline layer is ejection into slopewater. Of course linear 
instability calculations can only suggest tendencies in the finite-amplitude develop- 
ment of geostrophic turbulence. Nevertheless, the large range of unstable thermo- 
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cline eddy motion strongly suggests vigorous exchange between slopewater and the 
Gulf Stream thermocline, as inferred from observation. We found, however, no 
support for the idea that the observed acceleration of the upper slope current in the 
Mid-Atlantic Bight at the time of Gulf Stream approach to the coast is due to motion 
in the thermocline layer opposite to the surface layer: thermocline motions largely 
follow surface motion. 

On the more conventional topic of Gulf Stream instability, our three layer model 
revealed unstable ageostrophic perturbations of fairly long wavelength. For param- 
eters typical of the Gulf Stream west of 7OW, the most unstable wave was found to 
propagate slowly in the downstream direction with a phase speed of 19-33.7 cm s-l, 
an e-folding time scale of 2.8-6.3 days and a wavelength of 314-438 km. These values 
compare well with unstable wave characteristics deduced from observation by Watts 
and Johns (1982). 

Calculations of energy conversion (see appendix) rates revealed that the unstable 
waves of the boundary current grew mainly on account of baroclinic instability, the 
effect of horizontal shear being relatively minor, the Reynolds stress extracting 
energy from the mean flow. 

Regarding the effect of an active thermocline layer on the instability, the growth 
rate was slightly less, the wavelength of the most unstable wave much greater than for 
the two-layer case. An active thermocline layer thus slightly stabilizes the front and 
shifts the instability to lower wavenumber. We also found that confining the 
two-layer region by a coast stabilizes the front, but only when the width drops below 
an internal deformation radius, a result previously obtained by Oey (1988). Finally, 
the results showed that the bottom topography (of hyperbolic-tangent shape) 
destabilizes the front. 

Acknowledgments. The first author would like to thank Dr. Glen Wheless and Dr. Chet 
Grosch for valuable comments on the manuscript. Computer resources and facilities were 
provided by the Commonwealth Center for Coastal Physical Oceanography. 

APPENDIX 

The physical mechanism of the instability 

Geostrophic fronts, particularly those associated with the western boundary 
currents, have been long recognized as huge reservoirs of potential energy. Theoreti- 
cal studies have shown that geostrophic fronts have ratios of available kinetic energy 
to potential energy of approximately 1:3 (Gill, 1982; Ou, 1986; Van Heijst, 1985), and 
that they are prone to baroclinic instability. In addition, the front is usually 
accompanied by large horizontal velocity shear which may be the energy source for 
barotropic instability. Therefore, both energy transformation mechanisms may be 
simultaneously present in a geostrophic front (Fedorov, 1986). Here we calculate 
energy transformations in our model to determine the primary source of energy for 
the unstable waves. 
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a. Wave energy equations. The wave energy equation can be obtained directly from 
the linearized governing equations (Pedlosky, 1987). The equations for the wave 
energies integrated over the entire domain (one wavelength inx, fromy = --co to +W 
for the isolated front and from y = -CO to yC for the coastal front) are 

2 

<a; + P;) + ~ 

2 3 

(22; + 0;) ds 

2 I (Al) 

= -C(K, + Km) - C(Kw +J’w), 

tg ii; 
-=- (1 + 0~) z + as2 z + o&&2 1 = -C(P, + P,) - C(K, + P,), (A2) 

where K, and P, are wave kinetic and potential energy respectively, C(K, -+ K,), 

C(K, + P,) and C(P, + P,) are transfer rates given by 

C(K, + K,) = %i2$, 
2 4 

ds, W) 

C(Kw + Pw) = 

C(P, + P,) = 
a& ah, 

i$, -g + tiii2fi2 x 1 ds. W) 

Adding Al and A2, we obtain the wave energy equation: 

$ (Kw + P,) = -C(P, + P,) - C(Kw + Km). 646) 

As usual, -C(P, --f P,) represents the energy conversion rate from mean to 
perturbation potential energy (the signature of baroclinic instability) and 
-C(K, -+ K,) from mean kinetic energy to perturbation kinetic energy (the signa- 
ture of barotropic instability). 

Eq. A5 can be also written as 

C(P, + Pw) = .. ds + ~;i’i&~ ds. [ 1 (A7) 

Iffil,jj2 andp3 are exactly in phase, C(P, -+ P,,,) vanishes. Therefore (A7) expresses 
the baroclinic energy conversion mechanism through the phase lag of the perturba- 
tion pressures. 
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b. Application to the isolatedfront. We calculated energy conversion terms C(K,,, + K,,,), 
C(P, + P,,,) for the isolated front. We found that C(K, + K,,,) is about 32.0% of 
C(P,,, + P,,,) and positive. This shows that the unstable wave draws energy mainly 
from the mean potential energy, and kinetic energy transfer is from mean flow to 
perturbation, not vice versa. Of the total transfer C(Km + K,,,) plus C(P, + P,,,), 

about 75% is from mean flow potential energy, the rest from mean flow’s kinetic 
energy. 

c. Application to the coastal front. The energy conversion terms C(K, + K,,,), 
C(P, -+ P,,,) for the coastal front were also calculated. The results were much the 
same as for the isolated front. When bottom topography is included in the coastal 
model, the energy conversion terms C(K, + K,), C(P, -+ P,,,) change. In that case, 
C(K, + K,) is only about 19% of C(P, + P,,,) and the sign is negative in the 
three-layer region. In other words, the unstable wave draws energy from mean 
potential energy and some portion of that energy is transferred back to mean kinetic 
energy in the three-layer region via “negative viscosity.” 

REFERENCES 
Bane, J. M., 0. B. Brown, R. H. Evans and P. Hamilton. 1988. Gulf Stream remote forcing of 

Shelfbreak Currents in the Mid-Atlantic Bight. Geophys. Res. Letts., 15, 405-407. 
Barth, J. A. 1987. Stability of a coastal upwelling front over topography. Ph.D. Dissertation, 

MIT/WHOI-87-48, 187 pp. 
Bower, A. S., H. T. Rossby and J. L. Lillibridge. 1985. The Gulf Stream-Barrier or Blender? 

J. Phys. Oceanogr., 15, 24-32. 
Bower, A. S., R. O’Gara and H. T. Rossby. 1986. RAFOS pilot studies in the Gulf Stream: 

1984-1985. Tech. Rep. No. 86-7, Graduate School of Oceanography, University of Rhode 
Island, 110 pp. 

Bower, A. S. and T. Rossby. 1989. Evidence of cross-frontal exchange processes in the Gulf 
Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 1177-1190. 

Chia, F., R. W. Griffiths and P. F. Linden. 1982. Laboratory experiments on fronts. Part II: 
The formation of cyclonic eddies at upwelling fronts. Geophys. Astrophys. Fluid Dyn., 19, 
189-206. 

Csanady, G. T. 1982. On the structure of transient upwelling events. J. Phys. Oceanogr., 12, 
84-96. 

Csanady, G. T. and P. Hamilton. 1988. Circulation of slopewater. Cont. Shelf Res., 8, 565-624. 
Cushman-Roisin, B. 1993. Trajectories in Gulf Stream meanders. J. Geophys. Res., 98, 

2543-2544. 
Fedorov, K. N. 1986. The Physical Nature and Structure of Oceanic Fronts. Springer-Verlag, 

New York, 333 pp. 
Garvine, R. W. 1984. Propagating long waves on oceanic density fronts: an analytic model. J. 

Phys. Oceanogr., 14, 1590-1599. 
- 1988. Flow field properties of long, propagating frontal wave. J. Phys. Oceanogr., 18, 

788-792. 
Gerald, C. F. and P. 0. Wheatly. 1985. Applied Numerical Analysis. Addison-Wesly, Massa- 

chusetts, 340 pp. 
Gill, A. E. 1982. Atmosphere-Ocean Dynamics. Academic Press, New York, 662 pp. 



19941 Lee & Csanady: Gulf Stream front model 863 

Griffiths, R. W. and P. F. Linden. 1982. Laboratory experiments on fronts. Part I: Density- 
driven boundary currents. Geophys. Astrophys. Fluid Dyn., 19, 159-187. 

Huang, R. X. and H. Stommel. 1990. Cross sections of a two-layer inertial Gulf Stream. J. 
Phys. Oceanogr., 20, 907-911. 

Iselin, C. O’D. 1936. A study of the circulation of the western North Atlantic. Pap. in Phys. 
Oceanogr. and Meteor., 4, 101 pp. 

Killworth, P. D. 1983. Long-wave instability of an isolated front. Geophys. Astrophys. Fluid 
Dyn., 25, 235-258. 

Killworth, P. D., N. Paldor and M. E. Stern. 1984. Wave propagation and growth on a surface 
front in a two-layer geostrophic current. J. Mar. Res., 42, 761-785. 

Kubokawa, A. 1985. Instability of a geostrophic front and its energetics. Geophys. Astrophys. 
Fluid Dyn., 33, 223-257. 

Lee, S. K. 1993. Instability waves in the Gulf Stream front and its thermocline layer. M.Sc. 
Thesis, Old Dominion University, 64 pp. 

McLellan, H. J., L. Lauzier and W. B. Bailey. 1953. The slope water off the Scotian Shelf. J. 
Fish. Res. Bd. Canada, 10, 155-178. 

Oey, L. Y. 1988. A model of Gulf Stream frontal instabilities, meanders and eddies along the 
continental slope. J. Phys. Oceanogr., 18, 211-229. 

Orlanski, I. 1968. Instability of frontal waves. J. Atmos. Sci., 25, 178-200. 
- 1969. The influence of bottom topography on the stability of jets in a baroclinic fluid. J. 

Atmos. Sci., 26, 1216-1232. 
Ott, H. W. 1986. On the energy conversion during geostrophic adjustment. J. Phys. Oceanogr., 

16, 2203-2204. 
Paldor, N. 1983. Linear stability and stable modes of geostrophic fronts. Geophys. Astrophys. 

Fluid Dyn., 24, 299-326. 
Pedlosky, J. 1962. Baroclinic instability in two-layer systems. Tellus, 15, 20-25. 
- 1987. Geophysical Fluid Dynamics. Springer-Verlag, New York, 710 pp. 
Phillips, N. A. 1954. Energy transformations and meridional circulations associated with 

simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 11, 273-286. 
Rossby, C. G. 1936. Dynamics of steady ocean currents in the light of experimental fluid 

mechanics. Papers in Phys. Oceanogr. and Meteor., 5, 43 pp. 
Stommel, H. 1965. The Gulf Stream: A Physical and Dynamic Description. Univ. California 

Press, 248 pp. 
Van Heijst, G. J. F. 1985. A geostrophic adjustment model of a tidal mixing front. J. Phys. 

Oceanogr., 15, 1182-1190. 
Watts, D. R. and W. E. Johns. 1982. Gulf Stream meanders: Observations on propagating and 

growth. J. Geophys. Res., 87, 9467-9476. 

Received: 30 November, 1993; revised: 24ApriJl994. 


