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Vortex pair model of Langmuir circulation 

by G. T. Csanady’ 

ABSTRACT 
Accumulating evidence shows spacing and length of surface convergences associated with 

Langmuir circulation to be random variables, their strength also variable, their lifetime 
limited. Analysis of several sets of quantitative observations reveals the probability distribu- 
tion of windrow spacing to be lognormal. This suggests generation of surface convergences at 
random times and locations on the sea surface. 

Moving shear stress anomalies, under wind gusts or breaking long waves, are capable of 
generating surface convergence in their wakes, and are the type of random event likely 
responsible for the stochastic properties of windrows. The generation mechanism envisaged is 
a “forced” version of the Craik-Leibovich “CL2” theory, Stokes drift tilting the vertical vortex 
lines at the edges of stress anomalies. This contrasts with the feedback mechanism of the CL2 
theory operating on infinitesimal spanwise disturbances. Realistic shear stress anomalies 
produce vortex pairs strong enough to account for Langmuir circulation without feedback 
amplification. 

A vortex pair just under the sea surface induces motion bringing the vortices together at 
first, and then causing them to dive deep into the mixed layer. This inviscid kinematic effect 
limits the surface presence of convergences, and accounts for the finite lifetime of windrows 
without even taking into account viscous decay. 

Converging motion at the surface, and low eddy viscosity, combine to channel the downward 
momentum transfer from the air flow into descending branches of the Langmuir circulation. 
One result is the increase of windward surface velocity in the convergences. 

1. Introduction 

“Langmuir circulation” is a conceptual model of the flow field responsible for long 
lines of surface convergence on a wind-blown water surface, collecting floating 
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particles into windrows. Langmuir (1938) first carried out systematic field observa- 
tions on windrows, and postulated adjacent streamwise (parallel to the wind) 
vortices, of opposite sense of rotation, to maintain the convergences, coexisting with 
the wind-driven shear flow. His observations also established that wind generates the 
vortices, not convective instability, that the downwelling motion under the conver- 
gences is more intense than the compensating upwelling, and that the downwind 
motion of the water in the convergences is faster than outside. 

Later work added much to the empirical picture. Earlier reviews of the evidence 
tended to stress the features already recognized by Langmuir (Scott et al, 1969; 
Faller, 1971; Leibovich, 1983) others pointing out discrepancies (Pollard, 1977; 
Gargett, 1989; Thorpe, 1992), often revealed by novel or more sophisticated methods 
of observation. Variability of the windrow structure is the general theme of this 
recent evolution of Langmuir’s ideas: observations show statistical distributions of 
the spacing or length of windrows, indicate varying strength and finite lifetime of the 
convergences. This aspect of the evidence is discussed in detail below. 

Several authors have proposed theories to explain the generation of Langmuir 
circulation. As Leibovich (1983) makes clear, all of the early theories fail on 
empirical or theoretical grounds, except the later version of the wave-current 
interaction theory due to Craik and Leibovich (1976). This theory, labeled CL2, was 
introduced by Craik (1977), and developed further by Leibovich and his collabora- 
tors, Leibovich and Paolucci (1980), Cox and Leibovich (1993), Leibovich and 
Tandon (1993) see also other papers referenced by them. The theory rests on the 
recognition that a combination of two-dimensional shear flow (in thexz plane, driven 
by the wind), with irrotational Stokes drift of the wind-wave field, is unstable to 
spanwise (y) disturbances. The basic premise of the theory is that infinitesimal 
spanwise sinusoidal disturbances grow into the streamwise vortices of Langmuir 
circulation. As in all such instability theories, a key result is the wavenumber of the 
disturbance with the highest growth rate, but the eigenfunctions also suggest the 
form of the disturbance and finite amplitude calculation reveals details of the 
evolution of vortices (see e.g. Leibovich and Paolucci, 1980). 

The CL2 theory is certainly sound, and it yields the important physical insight of 
Stokes drift-vortex interaction. As the theory stands, however, it does not clearly 
explain Langmuir circulation. The usual verification of an instability theory consists 
of observing disturbances of the highest growth rate to appear first, or to dominate. 
This has not been forthcoming. One may still argue that initial Langmuir circulation 
(as the wind begins to blow) is according to the theory, but difficult to observe, while 
later it becomes more chaotic, in analogy with Tollmien-Schlichting waves and 
turbulence. If this were so, Langmuir circulation would still be maintained by Stokes 
drift-basic shear flow interaction. 

An alternative possibility is that strong external forcing replaces the feeble 
mechanism of CL2 instability, at least to start Langmuir circulation. If instead of an 
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infinitesimal disturbance, Stokes drift were to act on more substantial vertical 
vorticity, generated by an external force, generation of Langmuir circulation would 
be much more robust. Furthermore, externally generated vertical vorticity could 
conceivably interact with the shear flow, as well as with Stokes drift, to generate 
streamwise vorticity. 

Wind gusts and breaking long waves locally increase surface shear and generate 
vertical vorticity at their edges. An analysis of their flow field shows that the resulting 
vertical vorticity-Stokes drift interaction is indeed strong enough to establish Lang- 
muir circulation (but vortex interaction without Stokes drift is not). The random 
occurrence of such “moving shear stress anomalies” helps explain the variability of 
windrow spacing and strength. The model of streamwise vorticity generation associ- 
ated with wind gusts or breaking waves may be thought of as the “forced” version of 
the CL2 theory, relying on impressed, instead of spontaneously arising, occurrence of 
vertical vorticity. 

Another kind of hydrodynamic instability, possibly accounting for windrow length 
variability, affects an array of parallel streamwise vortices. This has recently been 
examined by Thorpe (1992). The kinematics of a vortex pair, left behind by a passing 
shear stress anomaly, is a further source of variability: inviscid vortex interaction 
causes such vortices to approach each other, then to dive down deep into the mixed 
layer. Such vortex behavior may well account for the life cycle of a windrow: the 
convergence intensifies as the vortices approach, then decays as they drive. This idea 
is also discussed below in greater detail. 

2. Windrow variability 

In a remarkably thorough study, conducted with the simplest methods of observa- 
tion, Langmuir (1938) discovered the now well known flow field of windrows: 
adjacent counterrotating vortices generating surface convergences; floating objects 
collecting where the water sinks; individual water particles moving in helical paths, 
faster in the convergences than outside. Langmuir found the sinking motion in the 
convergences to be fairly slow, of order 3 cm s-l, the compensating upward motion 
outside the vortices much slower still. Windrows are present in moderate to strong 
winds, whether the surface heat flux is upward or downward, so that they cannot be 
attributed to thermal convection. 

Many later field studies of Langmuir circulation confirmed and fleshed out these 
findings, see review articles of Scott et al. (1969), Faller (1971) Pollard (1977), 
Leibovich (1983), and Gargett (1989). More recently, sophisticated new methods of 
observation revealed further details (Thorpe and Hall, 1982; Weller et al., 1985; 
Smith et al, 1987; Weller and Price, 1988; Zedel and Farmer, 1991). As far as the 
flow field of the Langmuir vortices is concerned, the only major departure has been 
Weller et al’s and Weller and Price’s finding of vertical motion an order of 
magnitude faster than Langmuir’s results showed, (up to 30 cm s-l), in the middle of 
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the mixed layer (at 20 m depth), rather than only near the surface, as most other 
observations show. The windward current anomaly at the same location was similarly 
large, implying downward momentum advection at a rate locally hundreds of times 
greater than the wind stress. Such vigorous vertical motions must be confined to a 
small fraction of the water surface. 

Past reviews of Langmuir circulation have not stressed quantitative aspects of 
windrow variability. The occurrence of windrows under wind of given strength 
(always with enough floating objects present to mark them: a trivial point is that one 
does not see a windrow unless some floating material marks it) is only statistically 
predictable: Welander (1963), for example, reported that they are always absent in 
winds weaker than 4 m s-r, always present above 7 m s-l, except in rain, with a 
gradual increase of their probability in between. Furthermore, the question, do we 
see windrows?, is sometimes difficult to answer. In a summer-long series of 246 
observations on Lake Huron, using confetti and aluminium powder to mark surface 
convergences, we found 77 “doubtful” cases in weak winds (Csanady, 1965), suggest- 
ing perhaps an incompletely developed tendency to windrow generation. We also 
noted a statistically clear relationship to wind speed, similar to Welander’s conclu- 
sions, as did Scott et al. (1969), see the latter authors’ histogram of windrow 
probability, reproduced here in Figure 1. 

The question of windrow spacing has attracted much attention in the literature. 
Most observers reported a single or “dominant” spacing, of the order of mixed layer 
depth, sometimes qualified with remarks about shorter or less well developed 
windrows between major ones, or some other hint at a random distribution of 
spacing. A few authors were, fortunately, more quantitative and reported histograms 
of spacing (Failer and Woodcock, 1964; Kenney, 1977; Thorpe and Hall, 1982; Zedel 
and Farmer, 1991). The sample size (number of windrows crossed by a boat steaming 
crosswind, or counted in an area1 photograph) was usually insufficient to define a 
smooth distribution, except in Kenney’s observations (several hundred). Kenney 
showed that all his spacing distributions (19 of them) approximated a log-normal 
model as well as could be expected for the sample sizes. Figure 2 shows one of 
Kenney’s histograms and a log-normal curve fitted by him. Figures 3 and 4 show 
cumulative frequency versus spacing on log-probability paper, 3a and 4a, and also 
frequency histogram versus spacing, 3b and 4b, of one set of observations each by 
Thorpe and Hall (1982) and Zedel and Farmer (1991), with fitted lognormal 
distributions. The other observations published by these authors yield very similar 
approximations to lognormality. Figure 5 shows Faller and Woodcock’s (1964) 
histogram redrawn and with a log-normal curve fitted. The fits are generally as good 
as one may expect for their respective sample sizes, with the possible exception of 
Figure 5. 

Kenney (1977) also pointed out that the length of individual windrows, although 
much greater than windrow spacing, is finite, and again a random variable with a 
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Figure 1. Histogram of windrow occurrence, versus wind speed. Hatched parts of the bars 
show the number of observations with windrows present, unhatched, windrows absent. 
From Scott et al. (1969). 

lognormal distribution. Stommel’s (1951) example of “venous” streaks, recently 
reprinted in a paper of Faller and Auer (1988) vividly illustrates the finite and 
irregularly varying length of windrows. Thorpe (1992) shows converging as well as 
finite-length windrows in plan. 

How does the lognormal distribution of windrow spacing arise? Aitchison and 
Brown (1966) show that a process subject to the “law of proportionate effect” 
produces such a result. That law is, quoting from Aitchison and Brown: 

“A variate subject to a process of change is said to obey the law ofproportionate effect if 
the change in the variate at any step of the process is a random proportion of the previous 
value of the variate. ” 

Kolmogoroff (1941) developed his theory of breakage (of particles of coal, say, in a 
crushing operation) invoking the same law. Applied to windrow spacing, if a new 
windrow is generated at a random location (or even a single vortex of a vortex pair), it 
“breaks up” the preexisting spacing in a random proportion. Windrow generation at 
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N = 329 
I? = 12.36 m 
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Figure 2. Frequency (fraction of total) of windrow spacing, and fitted log-normal curve. Data 
of Kenney (1977), taken on the Lake of the Woods. 
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Figure 3. Windrow spacing data of Thorpe and Hall (1982): (a) Cumulative frequency versus 
logarithm of spacing, on probability paper; (b) Histogram of frequency versus spacing. Dots: 
data, Line: fitted lognormal distribution. 

random locations is thus consistent with the observed lognormal distribution of 
spacing. 

As a further illustration of the highly variable character of windrows, consider 
some observations from our studies on Lake Huron (Csanady and Pade, 1969). We 
released floating objects from a line source of uniform strength (arranged across 
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Figure 4. As Figure 3, but data of Zedel and Farmer (1991). 

windrows) and caught them in a net downstream. Drift bottles equipped with hooks 
served as floating objects; a 200 m long net stretched across the current, 200 m 
downstream of the source, collected them. Of 200 bottles released, we usually 
collected about half, even when misguessing the surface current direction. We 
recorded the number of bottles collected at each 2 m length of the net. Figure 6 
shows observed bottle distributions along the net, observed on three different 
occasions. Dominant peaks occur at 10-70 m spacing, with lesser peaks in between. 
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Figure 5. Time elapsed between windrow encounters by a ship crossing them, and fitted 
log-normal distribution. Histogram redrawn from Faller and Woodcock (1964). 

The tall and short bars, indicating numbers caught, presumably signify more or less 
vigorous convergences. 

An important observation is that windrows decay in time, and release their floating 
markers to other windrows (Csanady, 1974). Our observations, using aluminium 
powder, confetti, and computer cards suggested windrow lifetimes of order 1000 s. 
Zedel and Farmer (1991) report that individual bands of bubbles (their windrow 
markers) retain their identity from 5 to 20 minutes, a very similar estimate. 
According to Thorpe (1992) windrows persist for 15-30 minutes, again agreeing with 
other work. 

Another remarkable finding is that, upon a change of wind direction, new 
windrows appear within a few minutes, parallel to the new wind, even though the 
water 1 m or so below the surface still moves in the old direction. Several investiga- 
tors reported a similar scenario, beginning with Welander (1963). The rapid re- 
sponse to wind demonstrates that windrows are continually being generated, and 
that their vortices are at least initially very close to the surface. In view of the 
emerging picture of a “life-cycle” of windrows, it is reasonable to interpret observa- 
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Figure 6. Drift bottles collected 200 m from a line source, per 2 m bin in a net stretched across 
the wind-driven current. Observations in Lake Huron in the summer of 1969, from a report 
of limited circulation (Csanady and Pade, 1969). 
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tions of less vigorous windrows as showing relatively young or old ones, while the 
dominant ones may be at the peak of their life-cycle. 

Summing up the evidence on windrow variability, windrow spacing, length and 
intensity are random variables, individual windrows go through a cycle of generation 
and decay. The lognormal distribution of spacing suggests windrow generation at 
random locations on the sea surface. 

3. Generation of streamwise vorticity 
The accepted conceptual model of helical particle motions in Langmuir circula- 

tion is a superposition of streamwise (windward) shear flow and streamwise vortices 
(axes parallel to the wind). The principal theoretical difficulty is to account for the 
origin of the streamwise vortices. 

Vortex generation and decay is subject to Helmholtz’s theorems, see Lamb (1957, 
p. 205). Laying the positive x-axis downwind, y crosswind to the left, z vertical, the 
tendency equation for the material derivative of 5, thex-component of vorticity, is: 

where: 

The last term in Eq. (1) represents the curl of viscous stresses, the other three 
terms on the right in order, stretching preexisting streamwise vorticity, and tilting of 
crosswind and vertical vortex lines. Intuitive ideas on vortex tilting can be misleading: 
if the streamwise velocity varies spanwise (au/@ nonzero), one might think that it 
tilts the y-component of the vorticity (which is dominated by the au/& term) to 
produce .$. In fact, however, the tilting of 5 by au/& exactly cancels this, ifx-gradients 
of u or v are absent. Substituting the definitions of q and 5 into the [-equation one 
finds indeed: 

(2) 

which shows that, apart from stretching pre-existing streamwise vorticity, 5 can be 
generated by vortex tilting only in shear flow with streamwise variation of one of the 
cross-stream velocity components, v or w. 

Wind-driven shear flow has to coexist with a wind-wave field. A key contribution of 
Craik and Leibovich (1976) was to show that the wave motion interacts with the shear 
flow through Stokes drift. By hypothesis, Stokes drift is a residue of irrotational wave 
motion, and therefore does not contribute to vorticity. Supposing Stokes drift to be 
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directed downwind, and of magnitude U, the combined streamwise velocity of shear 
flow and Stokes drift is U + u, while vorticity and the other velocity components are 
of the shear flow alone. If the velocity field does not vary in the x-direction, the 
tendency equation for 5 becomes Eq. 15 of Craik and Leibovich (1976): 

DE au dU au&Y -=----- 
Dt a2 ay ay a.2 

+ VP& (3) 

In other words, because Stokes drift does not contribute to q or 5, the cancellation 
of tilting terms does not take place, and 5 may be generated by Stokes drift varying 
spanwise (CL1 theory), or by spanwise uniform Stokes drift acting on pre-existing 
vertical vorticity 5 (CL2 theory). 

In the absence of x-gradients, the flow in cross-wind planes may be described by a 
streamfunction +(y, z), such that 5 = -V2+. Using this approach, Leibovich and his 
collaborators have explored the consequences of the CL2 theory in a number of 
recent contributions, see e.g. Cox and Leibovich (1993) and references given there 
to earlier work. In these applications of the CL2 theory, a feedback mechanism 
generates streamwise vorticity: an initially weak spanwise variation of streamwise 
velocity u, acted upon by Stokes drift, generates streamwise vorticity, which then 
enhances u-variation. Apart from the initial small perturbation, the shear flow is 
supposed uniform in the xy plane. While the velocity field averaged over a long 
enough time undoubtedly approximates this state closely, on shorter time scales the 
flow is highly variable. Energetic wind gusts produce locally intensified shear flow, of 
limited extension both along and across wind. On a smaller spatial scale, the “roller” 
of a breaking long wave exerts shear stresses many times greater than typical wind 
stress (Duncan 1981; 1983; Battjes and Sakai, 1986; Csanady, 1990a), over a limited 
area, for a few seconds. In similar events, one cannot rule out without further 
investigation shear flow-vortex interactions as generators of significant streamwise 
vorticity. More important, Stokes drift has relatively large, and irregularly distrib- 
uted, preexisting vorticity to work with, instead of the “initially weak spanwise- 
periodic circulations” envisaged by Craik (1977) in his initial discussion of the 
instability mechanism, later to become the CL2 theory. 

4. Moving shear stress anomaly model 

Wind gusts or breaking waves have in common not only limited horizontal 
extension, but also rapid alongwind progress. We model their effects by a “moving 
shear stress anomaly,” a horizontal distribution of excess shear stress, translating 
much faster than the perturbation motions it generates in the water: 

7/p = u*= cp(x - I/t, y) (4) 

where cp(x, y ) vanishes at large x and y, Use is the maximum excess stress, and v Z+ 
u*. When such a stress pattern passes over the water surface, it generates a system of 
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Figure 7. “Primary” vortex lines generated by a surface stress anomaly of limited extent, and 
trailing streamwise vortices, in a schematic illustration. 

“primary” vortex lines in (XZ) planes, consisting of crosswind (q) vorticity under the 
stress anomaly, vertical vorticity ({) at the sides, where the vortex lines bend up and 
terminate at the free surface, see the schematic illustration, Figure 7. The effect of 
the surface shear stress penetrates only to a small depth, so that the crosswind 
vortices are all close to the surface, their upturned ends short. The illustration is a 
snapshot at a fixed time t, because the whole pattern moves rapidly in the wind 
direction. The fast moving stress anomaly leaves a long wake behind: our object here 
is to investigate whether streamwise vortices are part of the wake, and if so, what 
their sign and strength is. 

To model the primary flow pattern under the stress anomaly, we represent 
momentum transfer via breaking wavelets and other surface turbulence by a constant 
eddy viscosity v. The limited observational evidence on the velocity distribution 
immediately below a wind-blown water surface shows that v is here much smaller 
than in the body of the mixed layer (Churchill and Csanady, 1983), being in moderate 
winds of order 1 cm2 s-l. Free surface shear layer models show surface velocities to 
be of order lOu*, small compared to the translation velocity of the stress anomaly. 
Linearized equations of motion are then adequate for the calculation of primary 
velocities, and the solution may be resolved into an irrotational and a viscous part, 
following the classical approach outlined by Lamb (1957). Well away from the 
spanwise edges of the stress anomaly the flow pattern should be much as under shear 
stress anomaly occupying a strip infinite in the spanwise direction. Figure 8 illustrates 
the flow pattern in anxz plane for this case: a viscous boundary layer grows under the 
stress anomaly. 

The momentum balance of the fluid affected by the stress anomaly involves a 
pressure gradient Jp/&v arising in response to the forcing. If this were significant, 
some of the momentum input by the wind would appear as trailing wave momentum. 
As in problems of wave generation by an obstacle submerged in a stream (Duncan, 
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Figure 8. Flow field generated by a moving stress anomaly in the center xz plane, showing 
wake, and control volume used in momentum balance. 

1981), the balance of momentum for the control volume indicated in Figure 8 is: 
momentum input by the wind equals trailing wave momentum plus wake momentum 
deficit. Calculation of the split between the two potential momentum sinks, for the 
case of surface stress forcing, shows 99% plus going into wake momentum deficit 
(Csanady, 1991). The combined viscous and irrotational solution shows vertical 
motion under the stress anomaly, due to the displacement effect of the growing 
viscous boundary layer. The maximum vertical velocity equals u*“/Vunder the strip, 
vanishes forward or behind. One may at once conclude that such small velocities 
(typically of order 1O-3 cm s-l) cannot generate significant streamwise vorticity. 

A simple extension of the infinite strip model to finite width shows spanwise 
motion generated by the displacement effect of the lateral boundary layer along the 
spanwise edges of the stress anomaly. The analytical solution for this case is the 
analog of the temperature field of a rectangular surface heat source on a semi- 
infinite body of moving fluid, see Carslaw and Jaeger (1959, p. 270). It is not difficult 
to show that the total displacement effect, in the vertical and the lateral directions, is 
the same as under an infinite strip cut to the length of the finite strip, so that any 
lateral displacement comes at the expense of vertical velocities. Also, spanwise and 
vertical velocities are of the same order if the horizontal and vertical viscosities are. 
Even for very different viscosities, spanwise velocities are still very small. Therefore 
streamwise vortex generation by the shear flow alone, according to Eq. 2, remains 
insignificant. 

5. Trailing vorticity and circulation 

We now turn to the calculation of trailing vorticity. In a coordinate system moving 
with the stress anomaly the flow is steady, the velocity is -V plus the velocities 
induced by surface stress forcing. We neglect shear flow vortex interactions, viscous 
decay, suppose the vertical derivative of the Stokes drift dUldz to be constant, the 
total derivative of I; to be dominated by V@l&. The tendency equation for .$ then 



19941 

simplifies to: 

Csanady: Langmuir circulation 573 

As the fluid passes under the stress anomaly (now imagined fixed) the streamwise 
vorticity changes according to this first order differential equation for 5. Let the stress 
anomaly extend fromx = -b to b. At the trailing edge of the anomaly the streamwise 
vorticity is then: 

(6) 

Because the primary flow velocities U(X) are small compared to V, the exponential 
term may be dropped, being nearly unity everywhere. As is intuitively clear from 
Figure 7, negative vorticity is generated on the right of the anomaly, positive on the 
left. Of main interest from the point of view of Langmuir circulation is the total 
vorticity generated over the right-hand and left-hand halves of the anomaly sepa- 
rately, in other words the circulation: 

with the integration limits from zero to plus and minus infinity along y, minus 
infinity to zero along z. Substituting Eq. (6) and carrying out the integrations with 
respect toy leads to, over the right-hand side of the anomaly: 

The vertical integral of the velocity u in the center plane y = 0 is the momentum 
deficit discussed in the previous section. If lateral boundary layers do not affect the 
velocities in the center plane, momentum deficit equals upstream momentum input 
by the stress anomaly. For constant u*, the momentum deficit under the stress 
anomaly increases linearly with distance from the leading edge. The circulation at 
the trailing edge, and behind, is then: 

where we have written t = 2blV for the duration of the stress anomaly, as 
perceived at a fixed location. The negative sign applies on the right-hand side of the 
anomaly, and is to be replaced by the positive sign on the left. The result is 
remarkable for its simplicity: the strength of the trailing vortices, as measured by 
their circulation, is independent of viscosity, of the dimensions or speed of the 
anomaly, except through its local duration. Apart from duration, vortex strength at 
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the trailing edge of the anomaly is proportional to Stokes drift gradient, and the 
intensity of the stress anomaly. One may also think of ue2t as the impulse of the stress 
anomaly, and regard vortex strength as impulse times duration, times Stokes drift 
gradient. The result applies to stress anomalies of sufficient spanwise width not to 
smear out the momentum deficit laterally. 

The simplicity of Eq. (9) allows quick estimation of left-behind streamwise vortex 
strength. Taking a modest Stokes drift gradient of 0.1 s-i, a stress anomaly equal to 
the mean wind stress under moderate wind, (see the gust factors of Smith and 
Chandler, 1987) 1 cm2 s2, and a typical gust duration of 100 s, one arrives at 
I = 500 cm2 s-l, at the trailing edge of the anomaly, and behind. A moderately large 
breaking long wave exerts stresses some hundred times greater (Battjes and Sakai, 
1981) but lasts only one tenth as long, and should leave behind vortices of a similar 
strength. 

6. Vortex kinematics near a free surface 
The vortex pair left behind by a stress anomaly is analogous to the tip vortices of 

aircraft (except for a difference in sign: near a free surface the tip vortices would 
induce divergence rather than convergence between the vortex centers). Theory and 
observation show that such vortex pairs move relative to the fluid around them. They 
may also be unstable (Thorpe, 1992) and interact in unexpected ways in turbulent 
flow, see e.g. Maxworthy (1977). Therefore one must view with caution conclusions 
based on inviscid fluid mechanics. Nevertheless, it is of interest to explore the 
inviscid kinematics of a vortex pair near the free surface, as a zero order theory of 
their interaction. 

Suppose therefore that a pair of counterrotating vortices are present, their centers 
a short distance below the surface (say 1 m or so), separated horizontally by a 
distance an order of magnitude larger. For simplicity we model the distributed 
vorticity trailing a stress anomaly by two line vortices below the free surface, in a 
semi-infinite inviscid fluid at rest. Adding a pair of mirror-image vortices satisfies the 
boundary condition of zero vertical velocity at the free surface. All four vortices are 
of the same strength, two of positive (clockwise) sense, two negative, Figure 9. Lamb 
(1957, p. 223) described the behavior of this vortex system. Initially much farther 
apart than their depth by hypothesis, the vortices move closer together, under the 
influence of the image vortices. As they approach each other, they induce strong 
convergence and downwelling near their plane of symmetry. Finally they dive down 
and move vertically away from the surface, but remain close together. The equation 
of vortex path, Y(Z), is, with the origin of the yz coordinates at the surface, in the 
plane of symmetry: 

Y2Z2 = b2(Y2 + Z”) (10) 
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Figure 9. Vortex pair left behind by a surface stress anomaly moving with the wind. The image 
vortices induce converging motion of the vortex pair. 

where 2b is the asymptotic separation of the vortices at large Y or 2. The paths of 
the two vortices are mirror images. 

A vortex at (Y, 2) has a horizontal velocity given by (Lamb, 1957): 

dY r Y* -=-- 
dt 4?r Z(y2 + 22) * (11) 

From this formula it is a simple matter to calculate the time elapsed between 
vortex positions (Y,, Z,) and (Y, Z): 

t = g (Yo/Zo - Y/Z - ZJY, + Z/Y). (12) 

Supposing the initial separation of the vortices to be about ten times their depth, 
the time taken to sink five times deeper than their initial depth is about t = 9.6rb2/r. 
This is an order of magnitude “lifetime” estimate. Note that the lifetime is inversely 
proportional to vortex strength. 

The flow field induced by the vortices is two-dimensional in the yz plane, described 
by a streamfunction +(y, z), such that w = &JJ/c~Y, v = -a$/&. The equation of the 
streamlines, accounting for both the “real” and the image vortices, is: 

IJJ = + & [In (rlr4) - In (r2r3)] 

where r is the strength (circulation) of each vortex, and ri = [@ - yl:)* + (z - 
Zi)*]“*, i = 1 - 4, is the radius drawn from each vortex, (Y, ZJ to a point (y, z). 
Velocities may be calculated from this equation. The intersection of the vortex 
systems’ two planes of symmetry, (y = 0, z = 0) is a stagnation- and convergence-line 
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Figure 10. Streamlines of flow induced by a vortex pair, when the vortices are still some 
distance from the convergence line. 

of the flow. At the time of closest approach of the vortices to the convergence line 
(r Y, - 2 = Jz] b) the horizontal surface velocity is distributed as: 

r Y 
” = - z (y/2)4 + 1 . 

(14) 

The maximum convergence velocity is then v = 1.14 IYlbIx this is also the 
maximum downwelling velocity w, reached at the same time as the maximum 
convergence velocity, when the v(y, 0) and ~(0, z) distributions are identical. 

While the vortices are still relatively far apart, the main feature of their flow field is 
surface motion directed toward the plane of symmetry, and only weak convergence, 
see streamlines in Figure 10. At their closest approach to the convergence line (the 
“peak of their life cycle, Fig. 11) the vortices induce strong convergence and 
downwelling. Later, when the vortices have moved to relatively large depth, Figure 12, 
the flow picture is again as in Figure 10, but with the roles of the y and z axes 
reversed: there is strong downward motion at depth, and not much surface motion or 
convergence. 

The emerging picture is of an essentially unsteady phenomenon, in place of the 
steady-state, closed streamline, roll-circulation envisaged in earlier theories of 
Langmuir circulation. Putting together the arguments of the previous section with 
the results here, we have arrived at the conceptual model of a stress anomaly moving 
with the wind (or with a breaking long wave) and leaving counterrotating vortices in 
its wake, which converge and disappear at depth, even as an inviscid flow phenom- 
enon, without taking into account inevitable decay. 
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Figure 11. Streamlines of induced flow at the time of closest approach to the convergence line. 

7. Windward surface velocity 

It remains to account for the increase of the streamwise (windward) component of 
surface velocity in Langmuir circulation. In general terms, the explanation is clear 
from first principles: while the fluid is moving from upwelling to downwelling regions, 
wind-imparted momentum increases its streamwise velocity. Without further investi- 
gation it is not clear, however, that the resulting increase in surface velocity is 
significant. 

Consider the shear flow now (away from stress anomalies), together with a pair of 
very long Langmuir vortices (so that there is no significant streamwise pressure- or 
velocity-gradient). Constant wind stress action on the surface and Langmuir circula- 
tion combine to create perturbations on the mean streamwise velocity distribution, u’ 
(y, z), the strength of which we want to estimate. Given the short lifetime of 
Langmuir vortices, we can safely neglect the Coriolis force. At the same time, we can 
suppose the lifetime long enough to neglect the local time derivative of streamwise 
velocity in comparison with advective change (due to Langmuir circulation), except 
near the convergence line where v and w vanish. With surface eddy viscosity small, we 
expect a thin surface boundary layer to form, allowing neglect of cross-stream 
diffusion of streamwise momentum in comparison with advection. Streamwise 
momentum balance and continuity of the perturbing motions are then: 

a.4 auk a2L4 
v-++-=v- 

dY dZ dZ2 

(15) 
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Figure 12. Streamlines after the vortex pair has moved well downward. 

The boundary condition at the surface is: 

dU’ 
u*2 = 1,---- 

a.2 

where pu** is wind stress. The problem posed by these equations is the same as 
advection-diffusion of a scalar property (for example gas concentration, Csanady, 
1990b) in a surface diffusion boundary layer, over a large eddy. In the present case, 
windward momentum (constant density times the velocity perturbation u’) is the 
diffusing quantity, the flux of which is prescribed at the surface. Neglect of Coriolis 
force and windward pressure gradient of course oversimplifies the problem: over the 
depth of the mixed layer the wind stress is either balanced by one of these, or else the 
mixed layer accelerates. Eqs. 15 describe dominant balances in a thin surface layer, 
where the shear stress gradient is balanced by slow-fluid advection. The implied bulk 
balance is that the Langmuir circulation advects the momentum acquired at the 
surface into the body of the mixed layer. This situation prevails if the Peclet number 
vllv of the Langmuir circulation (v = typical velocity, 1 scale, v eddy viscosity near the 
surface) is much larger than unity, a condition usually well satisfied. 

An analytical solution of Eqs. 15, satisfying the surface boundary condition is 
(Csanady 1990b): 

u’ = (u*2/vv) & ie$c(qdJ2vq) (16) 

where $ is streamfunction of the Langmuir circulation in the yz plane, v is 
crosswind surface velocity, q = Jv dy its line integral. The boundary layer solution 
breaks down near the convergence line where v vanishes. Away from that singularity, 
putting realistic numbers into Eq. (19), ~*=lcms-~,v=lcm*s-~,v=3cms-~,q= 
1000 cm2 s-* (v times a cross-stream travel distance of about 3 m), one finds for the 

0 (I> 0 0 
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surface velocity u’ (q, 0) = 2.5 cm s-l, at a boundary layer thickness of &lv = 
15 cm. The boundary layer is thin enough to suppose v = constant, the Reynolds 
number based on boundary layer thickness large enough to justify the boundary layer 
approximation. The surface velocity increment in 3 m cross-stream travel (or in about 
100 s exposure) is 15% or so of typical surface velocities in moderate winds, a 
significant increase. At the convergence line horizontal mixing must sustain a finite 
excess velocity, which should be an even higher percentage of the mean surface 
velocity. 

8. Discussion 

How realistic is this limited-lifetime vortex pair model of Langmuir circulation? 
Observations of Langmuir and others have suggested a downwelling velocity of order 
3 cm s-i. A realistic guess at the effective vortex depth is b = 1 m: this gives, from 
Eq. 14, I7 of order 1000 cm2 s-i, in good agreement with the estimates of vortex 
strength left behind a moving shear stress anomaly using Eq. 9. The corresponding 
“lifetime” estimate from Eq. 12, defined above as the time it takes for the vortices to 
move from their initial fairly large separation to a depth five times their initial depth, 
is 300 s. Observation suggested lifetimes of order 1000 s, meaning the time for an 
established windrow to dissolve. Given the different definitions of lifetime, the 
estimates are reasonably close. 

Another well established feature of Langmuir circulation is that downwelling 
speeds are higher than upwelling ones. This is certainly the case in the vortex pair 
model, while the vortices are close to their convergence line, i.e. over most of their 
“lifetime,” as Figures 10 to 12 illustrate. The last of these, showing a vortex pair at 
depth, may portray a situation similar to that reported by Weller and Price (1988), 
with large sinking velocity in the middle of the mixed layer. 

The principal merit of the moving stress anomaly model is, however, that it 
accounts for the stochastic nature of windrows, and allows room for the great 
variability of their observed properties. Apparently conflicting evidence on down- 
welling speed, or even on the presence or absence in winds of similar strength, can be 
understood if random external forcing is the primary cause of Langmuir circulation. 
If gustiness of wind, or wave breaking, are important prerequisites of windrow 
formation, their occurrence or properties depend on more than just wind speed. 
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