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Frictional decay of abyssal boundary currents 

by Parker MacCreadyQ 

ABSTRACT 
A theory is presented to explain the observed longevity of abyssal boundary currents flowing 

along sloping topography. Typically such currents are many Rossby radii wide, and their 
energy is dominantly potential, residing in the broad upturn of isopycnals near the slope. The 
rate of decay of energy, on the other hand, is governed by the much smaller kinetic energy of 
the flow absorbed by the bottom boundary layer. The spin-down time is thus increased by a 
(possibly large) factor of PEIKE times that required to dissipate the kinetic energy alone. The 
ratio PEIKE is calculated from data on two sections across the Deep Western Boundary 
Current in the North Atlantic, and is found to be 10 and 41 in those instances, consistent with 
the slow spin-down of the current in that region. The change in cross-sectional shape of the 
current during spin-down is predicted using a 1%layer model. It is found that the upper tip of 
the current moves down the slope with a self-preserving shape, while the lower edge becomes 
thicker and broader. The along-slope transport of the current remains constant, even as the 
energy decreases. The spin-down time may be interpreted as that required for the Ekman 
transport to drain away the isopycnal displacement which defines the flow. 

1. Introduction 

The great length of the Deep Western Boundary Current (DWBC) in the North 
Atlantic presents an intriguing puzzle to those interested in frictional spin-down. 
During the long transit from its headwaters near the Denmark Strait and Faroe Bank 
Channel, around Greenland, and on to Newfoundland, the current is strongly 
bottom trapped, and is thought to experience little entrainment with overlying water. 
Despite the fact that the DWBC here is extremely thin and wide, typical scales being 
100 km in the horizontal and 500 m vertical, and lies hard upon the continental slope, 
it appears to be little affected by friction. Over the entire 4000 km length of interest, 
the current descends less than 1000 m, and has mean velocities in excess of 0.1 m s-l 
where current meter records are available. 

It is suggested below that the behavior of the DWBC is consistent with our notions 
of oceanic spin-down. Most of the energy of the flow resides in the potential energy 
of uptilted isopycnals, while dissipation of that energy is controlled by the relatively 
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Figure 1. Bathymetry map of the region over which the DWBC flows in the northern North 
Atlantic, depth shown in meters. The locations of the fifteen sections presented in Figure 2 
are indicated with heavy lines. The current has a source at the Denmark Strait, and is joined 
by water from the Faroe Bank Channel before reaching Section 1. After that the current 
typically flows between the 1500 m and 3500 m isobaths, winding around Greenland, and on 
south to Newfoundland. 

small kinetic energy of the flow, as is common for currents much wider than the 
Rossby radius of deformation. The result is that spin-down is much longer than the 
time required to dissipate the kinetic energy alone. 

Figure 1 shows the region of our analysis. We ignore the DWBC close to the 
Denmark Strait, because it entrains strongly there, and also joins with water from the 
Faroe Bank Channel. Barringer and Price (1990) indicate that, for overflows in 
general, the majority of entrainment with overlying waters occurs close to the 
overflow sill, typically in the first region of steeply sloping topography the current 
encounters, and is largely negligible thereafter. Figure 2 shows temperature contours 
from the 15 sections indicated in Figure 1, all presumed to be downstream of the 
region of strong entrainment. Isotherms are very close to isopycnals for this flow, 
since salinity gradients in the deep northwest Atlantic represent a relatively small 
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Figure 2. Isotherms in the DWBC (3°C shown with a solid line, and 2°C shown dashed) on the 
fifteen sections indicated in Figure 1. The sections are all from the Erika Dan atlas 
(Worthington and Wright, 1970) except Section 1 from Dickson et al. (1990), Section 10 
from Lazier and Wright (1993) and Section 12 from Wallace and Lazier (1988). The 
triangle in the lower left of each panel indicates a slope of 10e2, typical of the topography on 
which the DWBC rides. The lower side of each triangle is 100 km. Between Sections 1 and 
15 the 2” isotherm drops roughly 1000 m, and the 3” isotherm drops a few hundred meters. 
The 3” isotherm appears to join the interior around 2500 m, except in Sections 7 and 8 where 
the flow is banked up to the north as it rounds the top of the Labrador Basin. 
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contribution to density. Whether or not there is substantial entrainment is in some 
question: the thickness between the 2” and 3” isotherms increases substantially, 
particularly between Sections 1 and 7. McCartney (1992) suggests that Labrador Sea 
Water may be entrained near section 1 as the current descends. 

We limit our analysis to the region before the current rounds Flemish Cap, east of 
Newfoundland, where it may begin to encounter fluid of similar density (Hogg, 1983) 
but not of Arctic origin, confusing its identity as a gravity-driven boundary current. 
Even over this region, it is not clear that the current is mainly driven by its initial 
potential energy. It may also consist partly of a barotropic, wind-driven, Sverdrup 
flow (Lazier and Wright, 1993). On the other hand, it may be the return flow for the 
Stommel and Arons circulation driven by upwelling of deep water below the 
thermocline (Stommel and Arons, 1960). In a recent study by Pickart (1992) of 
several sections of the DWBC south of Flemish Cap, it is found that the depth of the 
velocity maximum actually decreases as one progresses downstream, indicating the 
possibility of some driving mechanism other than the dense source waters. Indeed, 
farther downstream, the DWBC evolves into something very different from a 
bottom-intensified flow and, by 26.5N (Leaman and Harris, 1990), the current 
maximum is far from the boundary. At many places along its length it has also been 
shown that “recirculation gyres” may strongly augment the local transport (McCart- 
ney, 1992). These issues are far from being resolved in our understanding. Below we 
limit our attention to the spin-down of boundary currents in which the greatest 
geostrophic velocity occurs just above the bottom boundary layer, a situation 
consistent with a flow driven by a source of dense water on a sloping boundary. These 
energy dissipation concepts will apply to any wide, bottom-trapped current on a 
slope, regardless of its ultimate energy source. In Section 2, we consider some bulk 
arguments about the energetics of boundary current spin-down. In Section 3, those 
arguments are evaluated in the light of oceanic data. 

We may also analyze the specific cross-sectional shape of the current. In its initial 
identity as an overflow, treated by Smith (1975, 1977), the defining isopycnal of the 
current reconnects with the boundary at its lower edge, and has the possibility for 
baroclinic instability there. If instead, as we consider below, the isopycnal joins the 
interior stratification, the flow is more stable, and the interior provides a useful zero 
potential energy surface. 

Stommel and Arons (1972), hereafter referred to as SA, first considered deep 
boundary current on a slope adjoining an interior water mass using a frictionless, 
lx-layer mathematical model to explore the question of why deep boundary currents 
are often many times wider than the local internal Rossby radius. They assumed a 
current created by a source of constant potential vorticity water which adjusts into a 
steady boundary current on the slope, supported by a motionless body of interior 
water (Fig. 3). They find that while regions of interface curvature at the “tip” and 
“trough” are one Rossby radius wide, the region between them is not so constrained 
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Figure 3. Definition sketch for the lx-layer spin-down problem. The interface between heavy 
and light fluid is flat in the motionless interior and rises up near the slope to form the 
boundary current. The upper fluid of density pO is taken to be infinitely deep, and 
motionless. The current itself is divided conceptually into three regions, the “tip,” the broad 
“middle” over which the thickness h is nearly constant, and the “trough” where the velocity 
decreases to zero as it joins the interior. The positivey-axis is into the page. The slope angle 
CY is positive as drawn, and the along-slope velocity v is negative (directed out of the page) for 
the current shown. 

by the dynamics, and may be much wider. The current thickness in the middle is set 
by the initial potential vorticity, and its velocity is set by the slope angle. For the small 
slopes typical of the ocean the only way the current may then accommodate a large 
transport is by being relatively wide. Their model is extended in Section 4 to include 
bottom friction. 

2. Energetics of spin-down 

The spin-down theory relevant to the problem is provided by Gill (1981, 1982) 
Garrett and Loder (1981), and Garrett (1982), who derive general expressions for 
the energetics of baroclinic, quasi-geostrophic flow. For a baroclinic ocean current of 
thickness H which spins down by contact with a boundary, we may integrate the full 
energy equation through the thickness of the flow to show: 

$J;“dz( KE+pE 
unit volume 

)= 
dissipation in the boundary layer 

unit area (2.1) 

The boundary layer dissipation is equal to the rate of working by the Ekman 
transport down the pressure gradient or, equivalently, by the current velocity times 
the boundary stress. This rate of pressure work in the boundary layer is given by 

bofvl[-cd~v~vf-ll using a velocity-squared drag law (4.7, below), and pO is the 
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reference density,fthe Coriolis frequency (assumed constant; see Johnson (1993) for 
a treatment of the inviscid problem on a B-plane), and v the geostrophic current 
(assumed to be only in they direction) above a boundary layer with drag coefficient 
C,. The first term in brackets is equal to the pressure gradient in x maintaining v, 
while the second term in brackets is the Ekman transport in thex-direction. 

The kinetic energy of the flow (per unit horizontal area) is given by 0.5 p0v2H 
(assuming v = const. over H) so the spin-down time, T, may be approximated as: 

(2.2) 

where we have linearized about a flow of magnitude V. This is the spin-down time for 
the energy; the velocity and pressure fields will generally spin-down in twice this time. 
The relation between the density and velocity fields for flows in geostrophic balance 
allows us to compute the ratio KEIPE. For baroclinic, quasi-geostrophic flows of 
horizontal length scale L that ratio is given by (NH/fz)2, which is also (internal 
Rossby radius/horizontal length scale)2 for a flow with constant background buoy- 
ancy frequency N. If a flow is wide compared to the internal Rossby radius, and 
hence dominated by its potential energy, the spin-down time is then given approxi- 
mately by 

which is much longer than the spin-down time for kinetic energy alone. Physically, 
(2.3) may be interpreted as (half) the time it would take for the Ekman transport in 
the bottom boundary layer to drain away the displacement of isopycnals which drives 
the flow. Smith (1977) also describes the spin-down of a boundary current in terms of 
being drained by the Ekman transport. In the case he considers, an isolated current 
on a slope, the Ekman transport causes the entire current to “leak” out of its lower 
edge as a thin sheet, eventually extinguishing the geostrophic flow. 

We may use two simple thought problems to estimate the ratio KEIPE for slope 
currents, and then use (2.3) to estimate their spin-down time. Figure 4 shows two 
arrangements of isopycnals above a boundary of constant slope (Y. Both assume no 
motion in the interior, and a constant interior stratification, defined by the buoyancy 
frequency N. In example (a) we have nudged the isopycnals uniformly up the slope, 
the result being a geostrophic boundary flow of constant magnitude out of the page. 
In example (b) we have pulled water of one density up the slope, forming a current 
which grows faster higher up the slope because of the increasing density contrast. 
The DWBC as it exists in our region of interest looks like a combination of the two, 
with many isopycnals intersecting the slope in the upper part, and conslant density 
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a) 
,v= v  / v=o 

b) 

Figure 4. Two thought models of boundary currents on a slope of angle CX; in both cases the 
current is much wider than the internal Rossby radius. In (a) we have taken the flat 
isopycnals of the quiescent, stratified interior and pushed them up the slope near the 
boundary to create a current of magnitude V there. In (b) we have placed water of a single 
density along the slope, allowing it to join smoothly with its interior isopycnal. In the second 
example the velocity in the boundary current increases as one proceeds up the slope because 
the density contrast increases, however the ratio of kinetic energy to potential energy 
remains constant. 

along the slope in the lower part. For either of these cases the energies/unit volume 
(away from the edges of the current) may be shown to be 

and 

(2.4) 

where p’ is the density difference between a water parcel and the interior water at 
that depth. Taking the ratio we find 

which, interestingly, is independent of the actual width of the current on the slope. 
Eq. (2.6) implies that H/a, the width of a horizontal slice through the current at a 
given depth, is the natural length scale for comparison with the internal Rossby 
radius, NH/f. Nevertheless, we still require that the width of the flow on the slope be 
much greater than NH/f since the above arguments pertain only to the broad 
“middle” region of the flow. 

For a deep, mid-latitude ocean with N/f z 10, a boundary current of either type 
will be dominated by its potential energy as long as CY K lo-‘, and the “boundary 
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b) 

Figure 5. A close-up of Section 1, from Dickson et al. (1990), showing (a) ue (kg m-3), and (b) 
along-slope velocity (cm s-r) out of the page. The zero-PE reference levels for the 
isopycnals (dashed lines) were: 1900 m for ue = 27.80,2570 m for cre = 27.85, and 2820 m for 
u0 = 27.90. The velocities are from several years of moored current meter data. 

current spin-down time,” 760 will be approximately 

The strong dependence of (2.7) on the slope angle is important because (Y is the most 
variable of the background parameters. 

A distinction between the flows in Figure 4a versus 4b is that the boundary layer 
physics may be drastically altered by buoyancy effects when there is a density 
gradient on the slope (i.e., isopycnals intersecting the slope), as in 4a. MacCready 
and Rhines (1993) show that Ekman transport up or down the slope gives rise to 
buoyancy effects which eventually arrest the Ekman transport, and with it the 
boundary stress, in a time of order rho (see also Garrett et al., 1993). Such a process 
could be important near the upper edge of the DWBC where the stratification on the 
slope is equal to or greater than that of the interior (e.g., around 1600 m in Fig. 5a). 
The orientation of the DWBC is such that the Ekman transport is downslope, which 
bends isopycnals down in the boundary layer and gives rise to thick mixed layers 
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(Weatherly and Martin, 1978; Trowbridge and Lentz, 1991). Observations in the 
DWBC to date have lacked the resolution near the boundary to test the applicability 
of such theories, but we assume that, over the majority of its width, the DWBC has 
negligible density gradient on the slope, and so standard boundary layer theories will 
apply. 

3. Spin-down time estimates for the DWBC 

We may estimate the various terms in (2.7) to see if the DWBC energy is likely to 
be dominated by its PE, and what the spin-down time is. Values typical of the region 
are N z 10e3 s-l, (Y z 10e2, and f = 10m4, giving a KEIPE ratio of 10w2, and 
indicating that the spin-down will be dominated by the time required to drain away 
the displacement of isopycnals. This estimate is necessarily very rough though, and 
sensitive to errors in estimating the slope, which varies significantly over the length of 
the current, as well as over its width. Using different plausible values for the bottom 
slope in (2.6) we could have found KEIPE from 0.5 x 10e2 to 17 x 10e2, an 
unacceptably broad range. 

Figure 5 (from Dickson et al., 1990) shows the velocity and density structure along 
Section 1 at the start of our region. Using this data set we may compute the energies 
directly, without resorting to (2.6). Dickson et al. give the transport, 10.7 Sv, and the 
mean velocity, - 0.27 m s-l, from which we estimate the total KEl(unit length along 
current) as - 1.5 x lo9 J m-l. To find the PE, we assume a reference state of zero PE 
as shown by the dashed lines in Figure 5a. When making the PE calculations, a2 was 
used instead of u. and the background stratification was approximated as a linear 
variation between the 27.80 and 27.90 ue surfaces. The PE/(unit length along 
current) is found to be - 15.0 x lo9 J m-l, ten times the kinetic energy. A similar 
calculation based on data from Lazier and Wright (1993), Figure 6, yields KE/(unit 
length along current) -0.35 x lo9 J m-l, and PEl(unit length along current) 
- 14.4 x lo9 J m-l, or 41 times the kinetic energy. 

That the total energies of the two sections are so close is reassuring, but is probably 
more fortuitous than accurate. The potential energy calculation relies on a reference 
state which varies geographically. For example, the deepest part of the 2°C isotherm 
deepens nearly 1000 m between Sections 1 and 15 in Figure 2, leaving open the 
possibility that the current could gain potential energy along its path. The kinetic 
energy calculation for Figure 6 was made using the geostrophic velocity, referenced 
to 1500 dbar, which should represent the part of the current associated with the 
dense source water. The velocities measured by current meters are somewhat 
stronger in places, and could increase the kinetic energy estimate by as much as a 
factor of four. Lazier and Wright (1993) identify a possible barotropic, wind-driven, 
Sverdrup flow near the shelf break in the Labrador Sea as a likely reason for the 
discrepancy between current meter and geostrophic velocities. This signal is present 
in the current meter data in Figure 6b, particularly for the two instruments closest to 
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b) 

Figure 6. Isopycnals (kg m-3) ( a , and along-slope velocity contours (cm s-l) (b), from Lazier ) 
and Wright (1993) Section 10 in Figure 1. The PE was calculated for oe 2 27.80 kg rnm3, and 
the zero-PE reference state was taken to be approximately at the depths where the densities 
are listed. The isolines of velocity are given in cm s-l, and are calculated geostrophically 
from the density in (a) using 1500 dbar as a level of no motion. The numbers in parenthesis 
in (b) are velocities in cm s-l from year-long moored current meter records. The relatively 
high current meter velocities close to the slope may be due to a barotropic, wind-driven, 
Sverdrup flow centered on the shelf break. 

the slope between 2000 and 2500 dbar. It is difficult to separate such barotropic 
currents out of our spin-down analysis. In fact, such currents would spin down the 
boundary flow more quickly, and are not accounted for in the theory presented here. 
Nevertheless, the ratio from the actual calculated values of KE and PE is consistent 
with a current dominated by its potential energy. 

Having estimated the energy ratio, we turn to the other part to the spin-down time, 
H (2C, V)-i. To estimate this we use a velocity scale I/ = 0.27 m s-l (probably an 
upper bound), Cd = 2.5 x 10m3, and H = 500 m. These give H (2 C, V)-l = 4.3 days, 
during which time a current of 0.27 m s-l would only advance 100 km. Multiplying 
this by an average of the observed ratios: PEIKE = 25, the distance is extended to 
2500 km, while the total length of the DWBC from Section 1 to Section 15 is about 
4000 km. Thus, the proposed theory may explain the longevity of the DWBC as a 
bottom trapped current, but only if PEIKE is somewhat greater than 25 over most of 
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the rest of its path. Unfortunately, few suitable velocity records beyond those in 
Figure 5 and 6 exist. 

4. Details of the spin-down 

Important aspects of the boundary current spin-down may be predicted analyti- 
cally if we focus on a wide current over a shallow slope which has no along-slope 
variation. This two-dimensional current will then be allowed to spin down in time 
under the influence of a linearized bottom friction. Thus, for the sake of finding a 
solution, we will use time-dependence as a substitute for the along-slope variability 
of a steady current, acknowledging in advance that there are fundamental differ- 
ences.” An important aspect of the steady current which evolves downstream is that it 
has, at any section across the current, a constant downstream volume transport, as 
long as there is no entrainment. This should be true because the current must 
everywhere along its length be able to carry whatever the source continually supplies. 
Later in this section we demonstrate that the time-dependent solution also has 
constant transport. 

The equations of motion for the lower layer of a lx-layer system may be written as 

(4.3) 

Here u is the cross-slope velocity and v is the along-slope velocity in the lower layer 
(see Fig. 3). The upper layer is taken to be infinitely thick and motionless. The 
cross-slope and along-slope coordinates are x and y, the topography is given by - (yx, 
where (Y is the slope angle and (Y < 1. We have assumed that the temporal and 
spatial Rossby numbers are small (i.e. the time-dependent and inertial terms are 
small compared with the Coriolis acceleration), and that the current is much wider 
than it is thick. This results in a vertical momentum equation which is hydrostatic to 
very good approximation, and allows us to express the horizontal pressure gradients 
in (4.1) and (4.2) in terms of the reduced gravity g’ = g Ap/p, and the tilt of the 

3. Note, however, that in non-rotating laminar boundary layer theory, the Blasius boundary layer 
(steady with downstream evolution) is very similar to the boundary layer over an infinite flat plate set 
impulsively in motion, if time is substituted for downstream distance divided by free-stream velocity. The 
two solutions are functions of identical similarity variables under this substitution, and the functions are at 
most 50% different at any given value of the similarity variable. 

Also, since we are concentrating on wide currents which have (by construction) a broad middle region of 
constant along-slope velocity, most of the fluid should move approximately the same distance under either 
set of assumptions. 
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interface q. The upper layer has density p0 and that of the lower layer is p0 + Ap. The 
two momentum equations, (4.1) and (4.2), are meant to describe only the flow in the 
lower layer above the bottom boundary layer, so dissipation is ignored except where it 
forces Ekman pumping and changes h through Eq. (4.3). That we ignore dissipation 
at the interface is a tacit acknowledgement that the shear there in the ocean is 
typically much weaker than that in the bottom boundary layer. Eq. (4.3) is a vertical 
integral of the continuity equation V . u = 0 with the stipulation that water parcels on 
the upper interface remain on that interface, while those at the top of the bottom 
boundary layer may be moved off that surface by the Ekman pumping velocity wE. 

If we further assume there is no along-slope variation of the current (alay = 0), 
and that the non-linear (inertial) terms in (4.1) and (4.2) may be ignored compared 
with the time-dependent terms, the equations may be re-written 

fv = g’ ($ - a), 

$+f*=O, 

ah 2 C,lvl av --....-=-- 
at f ax’ 

(4.4) 

(4.5) 

(4.6) 

where we have made use of the relation between interface height and layer thickness 
TJ = h - (yx in (4.4). To this approximation, the along-slope velocity is geostrophic 
(24.4) and the cross-slope velocity is the much smaller ageostrophic flow associated 
with temporal changes in v through (4.5). The evolution of lower layer thickness is 
now dominated by Ekman pumping (4.6), consistent with small cross-slope velocities. 
The Ekman pumping in (4.6) has been derived from a velocity-squared drag law: 

stress = -p,Cd(u2 + v”) (cos 0, sin 0) (4.7) 

where stress is the horizontal stress vector at the bottom boundary and 0 = tan-l 
(v/u). Linearizing the Ekman pumping about the along-slope velocity of magnitude 
Vcharacteristic of the middle region, T/ = 1 -g’ oL f -II, we may rewrite (4.6) as 

dh 2CdVav 
-= -- 
at f ax . 

We may then combine (4.4) with (4.8) to form a governing equation for h: 

(4.8) 

(4.9) 

(4.10) 

where 

D = 2C,Vg’f -2. 
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An analogous result is given by Gill (1982, pp. 353-354) for homogeneous rotating 
flow when the horizontal scale is much greater than the Rossby radius of deforma- 
tion. This approximation is true of our derivation as well because we assume a small 
spatial Rossby number to eliminate inertial terms. However, while the current may 
be many Rossby radii wide, regions of significant variation such as the tip and trough 
may not be, invalidating the approximation (and signaling the need to retain the 
inertial terms). This will be checked below when we have a solution in hand. 

The approximations used to derive (4.9) are not uniformly valid for the situation 
shown in Figure 3. Near the tip, the lower layer thickness will become less than the 
boundary layer thickness (e.g. over the last kilometer of width for a 10 m thick 
boundary layer on a slope of 10m2). Below we find that the tip is a rather quiet, 
well-behaved region which is essentially dragged along by the more correctly- 
approximated middle region, so this should not be a problem. The linearization of 
the drag law will over-estimate the drag for low velocities. Nevertheless, it gives the 
same general behavior as the velocity-squared drag law. 

SA considered the situation shown in Figure 3 without bottom friction. Taking 
C, = 0 in (4.6) we find that h, and hence u and V, are steady, that u = 0, and that v is 
given by (4.4). They also stipulate that all the moving fluid in the current should have 
the same potential vorticity, i.e. 

i i 
$ +f h-’ =fh,’ (4.11) 

between X, and X, as shown in Figure 3. For small slope angles SA find (correcting a 
typographical error) that 

CA 
h=h,+ 

1 + e-‘oA-1 
(e(X-“A-l _ ,-(x-xq 3 (4.12) 

where A = (g’hO)“2f-l is the internal Rossby radius, and 1, = (xe -x,). The total 
width of the current is then determined by the transport it is required to carry. For 
typical DWBC values4, SA show that the solution is many Rossby radii wide, with a 
broad middle region where h = h,, and rounding off over a distance A at the tip and 
trough to bring v to zero (at the tip, their solution also generally calls for a region of 
motionless fluid which the current joins). Since the interface in the middle closely 
follows the slope, the velocity there is controlled by the slope angle, and the thickness 
by the initial potential vorticity. Hence, SA show that, to carry a large transport, the 
current must be very wide, consistent with observations. 

The general idea from SA of a broad current with h = h, in the middle provides the 
starting point for a solution to the time-dependent frictional problem governed by 
(4.9). Because there is evolution of the thickness only where it has curvature, the 

4. Using h, = 400 m, g’ = lo-’ m ss2, 01= lo-*,f = 10m4 s-l, and an along-slope transport of - 10 Sv, we 
find I(, z (transport)/(h,V) = 250 km, while A = 6 km. 
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middle will be unchanged for some time, and we expect all variability will be at the tip 
and trough. This motivates us to look for separate solutions in those places, patching 
them onto the broad middle. 

a. Tip solution. Fluid drains out of the tip region at a rate determined by the Ekman 
transport in the middle, which should be relatively constant for our assumptions. 
Thus we expect a solution where the tip maintains a constant shape which translates 
down-slope at a rate given by 

utip = 
middle Ekman transport C, V* =- 

ho fho 
(4.13) 

using I’ as defined above to linearize the drag law. Based on this expectation, we 
transform the diffusion equation (4.9) to a frame of reference which moves with the 
tip, using 

h(x, t> = h(5), (4.14) 

where 

5 s (x - utipt)7 (4.15) 

and t is time. Eq. (4.9) becomes 

d*h a dh 

-+h,z=“* x2 
(4.16) 

The boundary conditions are: 

(9 h=O for 5=5, (4.17) 

(ii) h + h, as 5 + co, (4.18) 

where & is the value of 5 at t = 0. Boundary condition (i) says that the thickness goes 
to zero at a point which moves downslope at a velocity Utip, while (ii) assures that the 
solution joins the middle smoothly. The tip solution is then: 

. (4.19) 

Thus, the tip is rounded off over a width h,lcw instead of the scale X from the SA 
solution. This is not inconsistent: the diffusive solution alters the potential vorticity of 
the fluid as the tip passes by on its way downslope (note that while the tip shape is 
moving down, this is not true of the fluid, see Section 4~). One may also see from 
(4.19) that the slope of the interface where h = 0 is exactly flat, so the velocity goes to 
zero there. The Ekman pumping, however, is a maximum at that point. 

b. Trough solution. Intuitively, the solution in the trough will not propagate like that 
of the tip, a fact which thwarts any attempt at a global solution. Nevertheless we may 
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Figure 7. Definition sketch for the “trough” solution initial condition. 

find a solution which applies at the trough and merges smoothly with the broad 
middle region (before the tip moves all the way down to the trough). Motivated by the 
different potential vorticity fields between the middle where h = h,, and the interior 
basin to the “east” where h = m, we will use the somewhat arbitrary initial condition 
shown in Figure 7. This has a kink atx’ = 0, wherex’ = x - h,lol. Then we search for 
separate solutions hI and h2 in regions 1 and 2 which match atx’ = 0; also we formally 
change variables fromx tox’, which does not alter the form of the governing diffusion 
equation (4.9). The boundary/matching conditions are 

(i) $j = 2 at x’ = 0 , 

(ii) 2 = 2 at x’ = 0 . 

(4.20) 

(4.21) 

Condition (i) matches along-slope velocities, while condition (ii) matches the Ekman 
pumping, which also ensures (through 4.9) that the thicknesses, initially equal atx’ = 
0, remain equal for all time there. The problem then amounts to solving the diffusion 
equation with a flux boundary condition (see e.g. White, 1974, p. 159). The solution, 
valid on both sides ofx’ = 0, may be shown to be 

a 
h trough - - TX’ [l + erf(s)] + (Y (4.22) 

where s = 0.5 x’ (Dt)- 112 is the usual similarity variable for diffusion problems. The 
slope of htrough at x’ = 0 is always a/2, and the thickness at x’ = 0 increases according to 

htrough(x’ = 0) = h, + (Y (4.23) 
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c. Discussion of the time-dependent solution. During its initial evolution, the trough 
solution violates the assumptions used to derive the diffusion equation, since the 
velocity at the kink varies inx’ over a distance smaller than the Rossby radius. Thus, 
the solution is not formally valid before a time given approximately by 2(Dt )liz z+ A, 
or t z+ h, (8 Cdl/)-*. For h, = 400 m, C, = 2.5 x 10-3, and V = 0.1 m s-i this time is 
2.3 days, quite short compared to the many months required for the current to spin 
down. The tip solution is also subject to a constraint on its width in order for the 
non-linear terms to be negligible which may be expressed as h,la B A. For h, = 
400 m, (x = lo-*,g’ = 10e3 m ss*, and f = low4 s-l, we find h,la = 40 km while X = 6.3 
km, reasonably satisfying the requirement. 

Two examples of the full solution are presented in Figure 8 using the parameter 
values from the previous paragraph, except that in (a)’ cx = 10m2, while in (b) 01 = 
0.5 x 10-2. In both cases the along-slope transport was set at -10 Sv initially and 
solutions are shown at t = 0, 0.5, 1.0, and 1.5 years. Note that the tip and trough 
solutions will match only as long as there is a middle region over which h is very close 
to h,. As time progresses this will no longer be true: the advancing tip will try to make 
the middle thinner, while the widening trough will try to make it thicker. As this 
happens the flow should still be well-behaved but our analytic solution will no longer 
be valid. However, as shown in Figure 8, the solutions are useful over a long time for 
reasonable parameter choices. 

At the initial time in the two examples in Figure 8 the current has the same vertical 
extent (i.e., the height of the tip above the trough), although in case (b) with 
shallower slope it is twice as wide and has twice the cross-sectional area. Because the 
velocity is decreased in (b) the two examples have the same along-slope transport. 

We expect that the steady-state current which evolves in shape along its length will 
have a constant transport through any section. Interestingly, the time-dependent 
solution we have developed, which lacks y-dependence, also has constant transport 
even as its energy decays. To show this, consider the rate of change of transport: 

i (transport) = $ t (h v) dx = i 6 5 ( h E - ah) dx, (4.24) 

where x, is a coordinate which moves with the tip and x, is far enough east (positive 
x-direction) of the current that there is no appreciable velocity there over the time of 
interest. Noting that h(x = x,) = 0, and that ax,lat = 0, (4.24) may be reduced to 

$ (transport) = ‘$ t $ dx. 

Then using the diffusion equation (4.9) to substitute Da2hlax2 for ah/at the integra- 
tion may be carried out to show that 

3 transport) = -7 a = ---[+-j-J- (4.26) 
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Figure 8. Examples of the analytic solution: (4.19) patched in the “middle” to (4.22) for (a) 
01= 1O-2, and (b) cx = 0.5 x 10m2. Solutions are shown at four different times: t = 0 (dashed), 
t = 0.5, 1.0, and 1.5 years (solid). As time progresses, the shape-preserving tip slides 
downslope at a constant rate, while the trough thickens and becomes broader. For both 
casesf = 10m4 s-l, g’ = lop3 m s2, Cd = 2.5 x 10e3, h, = 400 m, and the initial along-slope 
transport is - 10 Sv. In (a) V = 0.1 m s-l, while in (b) V = 0.05 m s-l because of the reduced 
slope angle. Note that the currents have the same initial vertical extent, but that (b) is twice 
as wide as (a). The spin-down time increases with decreasing slope angle like ae3, as 
evidenced by the relatively rapid draining in (a) vs. (b). 

From the tip solution, Grl%~(x =x,) = (x (i.e. the isopycnal is flat there) and the 
terms on the r.h.s. of (4.26) cancel, so the transport is constant in time. Thus, the 
time-dependent solution retains one of the important qualities we expect of a more 
realistic steady solution with along-path variation. 
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The energy spin-down time for the analytic solution is most easily estimated as half 
the time required for IJ,ip to traverse the initial width of the current. Taking this 
initial width to be 1, = (xe - x,) at t = 0 the spin-down time is 

10 lofho 
7=2= 2CdV2’ (4.27) 

Note that 1, will vary like (y-l, as is evident in the two examples in Figure 8; also Vwill 
vary as (x, since it is taken to be the along-slope velocity scale in the middle region. 
Thus r varies strongly with slope angle, going like CX-~, as seen in the relatively slow 
change of the shallow-slope current in Figure 8(b). Since most ocean basins below 
the shelf-slope break have topography which is concave, i.e. a slope angle which 
decreases in magnitude with depth, it is likely that a current flowing along the slope 
would spin-down noticeably only in regions of steep slope, ending up at a place of 
gentler slope, where the longer spin-down time would make further sinking very 
slow. If the region of steep slope extends below the level of the interior isopycnals 
which define the boundary current, the flow may spin down more fully, losing its 
character as thin and boundary-trapped as the tip merges with the trough. Still, the 
volume transport must remain constant, so perhaps the flow would eventually look 
more like the DWBC farther south, where it is detached from the boundary. 

We may show the energies, and their ratio, for a very wide, thin, two-layer 
boundary current to be: 

m 1 

unity ~ = z p. V2 h,l,, 

KE v -=- 
PE flo’ 

Using this ratio we may rewrite the spin-down time (4.27) as: 

(4.28) 

(4.29) 

(4.31) 

which is identical with the expression derived by our energy argument in (2.2) when 
KE <z PE. 

As the current evolves during spin-down, the along-slope velocities change in time, 
and from Eq. (4.5) there will be cross-slope displacements associated with these 
changes. Integrating (4.5) in time 

Ax = -f -’ Av (4.32) 
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where AX is the cross-slope displacement experienced by a water parcel consistent 
with a change in along-slope velocity Av. As the tip passes a location, the velocity 
goes from --g’ct/f to zero, hence Av = g’alf and Ax = -g’cx/p. For our typical 
parameter choices (as in Fig. 8a) this implies an upslope displacement of 1 km. That 
the water displacement should be upslope while the tip shape movement is downs- 
lope may seem surprising, but is consistent with the requirement that the along-slope 
velocity decrease to zero by Coriolis acceleration as the tip arrives. Similarly, one 
may show that fluid parcels at the trough are pushed away fromx’ = 0 by a maximum 
of 0.5 km for the above parameter values as the trough solution develops. 

5. Conclusion 

The spin-down of abyssal boundary currents on sloping topography has been 
analyzed above for the case of a wide, thin current which joins a motionless 
water-mass at its lower edge. Using time-evolution as a substitute for spatial 
variability, a simple mathematical model was developed with a diffusion equation 
governing changes in current thickness. An analytic solution was found where the 
current spun down by downslope movement of its shape-preserving tip, while the 
trough grew thicker and wider, spreading the region of non-zero flow. For typical 
DWBC values, such a current could travel many thousands of kilometers before 
being “drained” by Ekman pumping. Throughout its evolution, however, the along- 
slope transport remained constant, even as the energy decayed. The spin-down time 
was very sensitive to slope angle, varying as 01~~. 

The most direct relation between theory and observed currents is through the 
energy ratio, PEIKE, which is typically large for the flows of interest. This ratio was 
calculated to be 10 and 41 on two sections of the DWBC where sufficient data exists. 
Combined with an estimate of the local rate of energy extraction by the boundary, 
this is probably the most reliable way to calculate the local rate of decay of an 
observed current. Larger integral properties, such as the rate of change of total 
energy between sections may not be as useful, since there are several different types 
of forcing which cause boundary currents, as outlined in the introduction. 

Having worked out the details of an abyssal boundary current, we may question to 
what extent such details affect the larger patterns of the circulation. As a counter- 
example, consider a hypothetical Earth where a species of giant kelp grows to heights 
of 200 m everywhere in the abyssal ocean, drastically increasing the effective bottom 
boundary layer drag. Under such circumstances, our boundary current would then 
ooze downhill from its Arctic sources and puddle up in the northern North Atlantic 
instead of streaming out along the continental slope toward the equator. Such a 
scenario could lead to greater horizontal property gradients in the deep ocean; 
indeed, one of the most important effects of real abyssal boundary currents is the 
relatively rapid global homogenization of properties they encourage, a fact which has 
been of great use to the sediment studies of paleo-oceanographers. Whether the 
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upper ocean or climate of this alternate Earth would be changed by the abyssal 
circulation is a more difficult question, and one which deserves further study-not in 
apprehension of the appearance of our monstrous kelp, but in the spirit of wondering 
just how well we need to understand abyssal flows. 
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