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Lateral entrainment in baroclinic currents 

by Melvin E. Stern1 and Jean-Raymond Bidlot’ 

ABSTRACT 
A two layer shear flow model with piecewise uniform potential vorticity is used to show that 

circulation or free exchange of parcels in an isopycnal layer of uniform potential vorticity can 
be greatly inhibited by a strong potential vorticity front in another isopycnal layer. On the 
other hand, a net mass transfer across the edge of a shear flow can be produced by the initial 
presence of a strong mesoscale eddy. The entrainment resulting from this eddy-shear flow 
interaction is defined and quantified for an ensemble of initial realizations. It is suggested that 
dynamically similar entrainment processes, occurring in more realistic potential vorticity 
distributions, are important in coupling the recirculation gyres to the Gulf Stream, thereby 
providing the observed downstream increase in transport. 

1. Introduction and statement of the problem 
Beyond the Straits of Florida the transport of the Gulf Stream increases with 

downstream distance at a rate much greater than can be accounted for by the 
wind-driven Sverdrup gyre, and the required influx is supplied by mean recirculation 
gyres on either side of the stream [Knauss (1969) Richardson et al. (1969), Hogg et 
al. (1986)]. The increase occurs whether one measures the stream using long time 
Eulerian averages, or ensembles of synoptic “streamwise coordinates” [Halkin and 
Rossby (1985)]. In the latter case, which is more pertinent to our subsequent work, 
the downstream direction is defined in terms of the synoptic axis of the stream, which 
is constructed (essentially) by drawing that curve on the ocean’s surface connecting 
points whose vector velocity has maximal amplitude relative to those on a vertical 
section normal to the velocity. Of particular concern to our discussion of entrainment 
is the “edge” of the stream, which is conventionally defined by the points on the 
normal section where the downstream velocity vanishes. A counterflow (negative or 
zero downstream velocity) exists outside the edge curve, and thus the outside parcels 
must have their velocity reversed in the (synoptic) time interval in which they cross 
the meandering edge. The integrated downstream velocity within the edges of a given 
section defines the local transport, whose observed downstream increase must be 
supplied by the spatially integrated horizontal velocity (v,) directed normal to (and 
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relative to) the meandering edge. A similar property must occur for the time 
averaged relative velocity V,, of the streamwise realizations. Figure 6b of Halkin and 
Rossby (1985) is one realization of a synoptic section, with a fully resolved inshore 
edge, which is noteworthy because it has vanishingly small normal velocity v,,. Their 
Figure lOc, on the other hand, shows that the time averaged V, at the inshore edge is 
directed inward toward the axis, with a value of 6 cm/set in the thermocline and 
3 cm/set below. The difference between the synoptic v, and the mean V, indicates 
significant eddy fluctuations at the edge of the stream, as also appears in other 
observations [Lee and Waddell (1983), Bower and Rossby (1989)]. The relatively 
large value of the eddy fluctuations suggests that they may be dynamically important 
in coupling the stream to the ambient region, which must ultimately supply the fluid 
for the increasing stream transport. The time averaged mass transport requirement 
in streamwise coordinates might be satisfied by a mean gyre whose streamlines lie 
partially inside and partially outside the edge. But the value of v, at the edge of any 
isopycnal layer must be sufficiently large to allow circulating gyre parcels to overcome 
potential vorticity constraints along their path. The nature of these constraints and 
the way in which they can be overcome will be considered. 

In Sections 2-4 a two layer quasi-geostrophic model is used (Fig. l), with Hi 
denoting the mean thickness of the upper layer, HZ the mean thickness of the lower 
layer, g* the reduced gravity, and f the uniform Coriolis parameter. The undisturbed 
mean flow has piecewise uniform potential vorticity, with velocity U*(y’) = 0 on one 
side of the undisturbed interface (y’ = 0), and U*( y’) = -sXO sin/r (y’l&) aty’ I 0, 
wheres = -&*(O-)lay’ and A,, = (g*Hl)1/2/f. The undisturbed lower layer velocity is 
assumed to vanish, and thus the downward deflection h* of the interface is geostrophi- 
tally given by U*(y’) = -(g*/f )az*(y’)/ay’. 

The question of the potential vorticity constraint on the circulation of a weak 
velocity field is addressed in Figure 1, where this field is produced by a point 
barotropic vortex with strength I* placed at a fixed distance pointy’ = R* Z+ X. This 
artifice (having no similarity to real ocean recirculation gyres) merely serves to force 
a weak transverse velocity in both layers at the edge (y’ = 0) of the baroclinic shear 
flow. It is apparent that the resulting deflection L’ (Fig. 1) of the potential vorticity 
front will prevent the I* circulation from entering into the upper shear layer [see the 
linear theory for the 1% layer model of Stern and Flier1 (1987)]. But if the potential 
vorticity gradient vanishes in the lower layer, then it might be supposed [Bower et al. 
(1985)] that there would be little opposition aty’ = 0 to the I* circulation, in which 
case it would result in a greatly increased value of the maximum vertically integrated 
transport under the jet. This supposition is incorrect, however, because the thermal 
wind equation requires that any transverse lower layer velocities must produce 
potential vorticity anomalies (see Eqs. 2.2) in the overlying frontal layer, and these 
will in turn induce new transverse velocities in the lower layer which opposes the 
forced gyre velocities (Sec. 3). The quantitative extent of this effect will be illustrated 
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Figure 1. Perspective diagram of a two layer model with an undisturbed shear flow in* in 
the light upper layer, and with piecewise uniform potential vorticity. A fixed point baro- 
tropic vortex of strength P* at y’ = R* deflects the potential vorticity interface toy’ = L’ 
(steady state solution). The downward deflection of the density interface is h*, and $T, $3 
are the respective values of the dynamic pressure in the upper and lower layers. The bottom 
topography M* is chosen (see text) so that the lower layer is resting with everywhere 
uniform potential vorticity in the undisturbed state. E is a typical anticyclonic potential 
vorticity anomaly associated with L’, and it induces transverse upper and lower layer 
velocities as indicated by the wiggly arrows at J and J’. These oppose the velocities (straight 
arrows) induced by P*. 

by choosing a bottom topography M*(y’) = z*(y’), so that the lower layer with 
vanishing undisturbed velocity also has completely uniform potential vorticity. A less 
“artificial” choice of a flat bottom (M*(y’) = 0) would produce a finite gradient of 
potential vorticity in the lower layer, further inhibiting the transverse velocity, and 
merely emphasizing the point made by the simpler model (Sec. 3), viz. transverse 
velocities in any isopycnal layer depend on isopycnal potential vorticity gradients in 
all layers. 

The remainder of the paper shows how the constraints on weak mean motion 
normal to mean potential vorticity contours may be overcome by the presence of 
strong mesoscale fluctuations of potential vorticity (eddies) close to the stream’s 
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edge. The subsequent eddy-shear flow interaction may produce an entrainment 
similar (in a restricted sense) to that which occurs in the turbulent flow of a jet from a 
nozzle (or smokestack), where the eddies draw irrotational ambient fluid into the 
shear flow, thereby increasing its transport downstream. But the similarity ends here, 
since the oceanic eddies are generated quite differently. They may, moreover, 
pre-exist in the ocean gyres and be slowly advected toward the jet’s edge, at which 
stage the relatively rapid process of incorporating the eddy [Bane et al. (1989)] and its 
surrounding fluid begins. 

The entrainment mechanism is isolated in Sec. 4 by removing the gyre of Sec. 3 
from the relatively rapid eddy-shear flow interaction (cf. Fig. 2a). A similar kind of 
barotropic interaction leading to entrainment was calculated by Stern (1991). 

Stern and Flier1 (1987) considered the strong interaction of a point baroclinic 
vortex located close to the edge of a shear flow in a “1% layer” model, but those 
calculations did not extend long enough in time for entrainment to be computed. 
Some of the qualitative effects in the Stern and Flier1 model appeared in a primitive 
equation model [Smith and Davis (1989)] with continuous potential vorticity for the 
shear flow and the eddy. But the greatly increased degrees of freedom allowed the 
appearance of other kinds of eddy-shear flow interaction, and it is noteworthy that 
the eddy entrainment effect appeared in only one of Smith and Davis’ many runs. 
This suggests the importance of exploring many simple special models to identify all 
entrainment favorable potential vorticity configurations. 

Two such models are studied herein, for the purpose of illustrating the mechanism 
of entrainment, defining it, and computing it for an ensemble of single eddy-shear 
flow realizations. In the first model (Fig. 2a), an eddy with potential vorticity P, is 
strongly interacting with the non-inflected shear flow U(y) as used in the previous 
section. The second (Fig. 2b) model consists of a full jet with different potential 
vorticities on each side of its axis. Stern and Flier1 (1987) also made limited time 
calculations for this case, and showed that an anticyclonic (cyclonic) point vortex 
originally on the cyclonic (anticyclonic) shear side of the jet is eventually drawn 
toward and across the axis, an effect similar to the one observed [Bane et al. (1989)] 
for a cyclone on the seaward side of the Gulf Stream. The present calculations extend 
those of Stern and Flier1 (1987) by computing total entrainment volumes, not only for 
point potential vortices of various strengths and initial positions but also for an eddy 
of finite area. The main results [Eqs. (4.Q (4.7), (5.6) and Fig. 111 may be useful in 
designing and interpreting two layer (and other) entrainment models, where the 
number of relevant non-dimensional numbers becomes even larger than in our case. 
Although our models shed light on the eddy entrainment mechanism, they cannot be 
applied directly to an actual eddy and the actual Gulf Stream because the qualitative 
nature of the interaction depends on the detailed distribution of potential vorticity in 
all isopycnal layers. But in the conclusions (Sec. 6 and Fig. 12) we suggest how the 
ideas developed may be qualitatively extrapolated to more realistic potential vorticity 
distributions. 
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(a) 
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Figure 2. The onset of entrainment in the 1% layer model (Hz = a). (a) A finite cyclonic eddy 
of uniform potential vorticity P = P, interacts with the edge ofy = Lr(xr, t) of a shear layer 
which has P = PI fory < L1 and P = 0 fory > L1. The boundary of the eddy is given byy = 
L,, and its centroid is aty = y&),x = 0 in the moving coordinate system. See Appendix B for 
the usage of the closed material curve abed. (b) Same as (a) except that the interaction of a 
full jet with an anti-cyclonic eddy (Pe < 0) is considered. 

2. Two isopycnal layers with M*(y’) = g*(y’) 

The two conserved quasi-geostrophic potential vorticities are or = V2$t/f2 - 
h*lH, and OS = V2 *t/f2 + [h* - M*(y’)]IH,, where the top (JI;) and bottom (I@) 
dynamic pressures are related by the hydrostatic equation V+T(x’, y’, t’) = Vt@ + 
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g* Vh*. Let [I& $5, h’, WI, w>} denote the departure of the total fields from the 
respective undisturbed fields [+T(y’), $4, ET, Gr, 01, and subtract the contribution of 
the latter from the potential vorticity equations. Since z*(y’) = M*(y’) we get 

V2+1;lf2 - h’lH1 = o;, (2.la) 

V=+;/f* + h’lH, = 05, (2.lb) 

Jr; = g*h’ + IJJ;. (2.lc) 

The potential vorticity “anomaly” 01 vanishes aty = 03, and has two components, one 
of which is due to the eddy in the upper layer. The other component, due to the 
deflection L’(x’, t’) of the upper layer interface, equals the actual potential vorticity 
minus the undisturbed GT(y’). For example, if 0 < y’ < ,‘(x’, t’) where L’ is the 
ordinate of the disturbed potential vorticity interface (Fig. l), then o\(x’, y’, t’) = 
(s/f) - 0, whereas o’, = 0 - (s/f) if 0 > y’ > L’. The interpretive utility of the 
“anomalies” is due to the fact that they account for all they’ velocity (whereas E*(y’) 
must be added in to obtain the totalx’-velocity). The velocities are then evaluated on 
the interfaces of all the piecewise uniform domains, thereby obtaining the Lagran- 
gian components (eg. dx’ldt’, dL’/dt’) for all interfacial points, and from which the 
temporal evolution of the shear flow and eddies is obtained using the well known 
contour dynamical method. The technique used here is a combination of that used by 
Stern and Flier1 (1987) and Stern (1991). Neither the methods nor models used 
below are novel, but the focus is entirely on obtaining an understanding and 
quantification of baroclinic entrainment in the simplest cases. See Meacham (1991) 
for a more elaborate technique applied to the baroclinic instability problem. 

By subtracting (2.11, 2.lb) an equation for h’ is obtained, and by addition an 
equation for the barotropic pressure H,+CI; + H2JI; is obtained. When these are 
non-dimensionalized using A = (g*/f =)*‘*( 1 /HI + 1 lH2)-l12 as the length scale, s-l as 
the time scale, sX as the velocity scale and +I’ =fiX2+, h’ = (fsh=/g*)h, L’ = ALI, 61’~ = 
(s/f)or, o; = (s/f )w2, the result is 

V=h - h = o1 - 02, (2.2a) 

V2(4Jl + JI2) = E@l + 02, (2.2b) 

$1 = h + 4~2, (2.2c) 

E = H,lH,. (2.3) 

The upper layer velocity (ur, IQ) and lower layer velocity (u2, v2) are then obtained 
from 

v1 = a*,/ax, v2 = a*,lax, u2 = -a+21ay, (2.4a) 
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I ’ 
/.L = x/x, = (1 + e)-l’2 (2.4b) 

As previously mentioned, o1 has two components, one of which is due to the 
anomalies created by the Lr-displacements, and the other (denoted by subscript “e”) 
is due to the eddy, i.e. 

1 

1 O<y<L, 

01 = (@l)e + -1 02Y2Ll, (2Sa) 
0 otherwise 

whereas o2 has only one component 

which is due to the eddy. 

@2 = (Q)2)e, (2.5b) 

The barotropic Green’s function to be used in solving (2.2b) is logarithmic, 
whereas the baroclinic Green’s function for (2.2a) is Bessel’s &. From the combina- 
tion of these Green’s functions and (2.2~) the important fact emerges that an 
element of potential vorticity at any point (x, y) in either layer induces circulations 
(clockwise or counterclockwise) whose sense is the same in both layers. 

3. Weak eddy-shear flow interaction 
Our first task, as indicated in Sec. 1, is to illustrate the inhibition of bottom layer 

influx by an upper layer potential vorticity gradient (Fig. l), employing the simple 
flow forced by a distant point barotropic vortex at y = R = R*IX with equal 
non-dimensional strengths 

r = .i-.f (de QTX 4 = .f.f (~2)e k 4, (3-l) 

in both layers. The total y-velocity depends on two components, one of which vr(x, y) 
is induced by (3.1), and this velocity aty = 0, or 

r x 
vdx, ‘) = z;; R2 + x2 (34 

will force some steady interfacial displacement y = L,(x). The potential vorticity 
anomalies associated with L1 induce another component of y-velocity, denoted by 
V&X, y), v2(x,y) in the top and bottom layers, respectively. Since U(0) = 0 the 
interfacial equilibrium condition for small perturbations (R x=- 1 or r -=z 1) is 

-v&x, 0) = v&, 0). (3.3) 

As shown in Appendix A, the solution of this equation is considerably simplified by 
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introducing the half-range (k > 0) Fourier transforms 

vi-(x, o>\ 
44 

V&T Y> 

\V2(4 Y) / 

-ir/2T o s 
- & e-(R-“)k\ 

5 ,f dk e’%(k) 

= Re 

s om dk e&i$(k, y) 

s om dk eihg2(k, y) 
I 

I (3.4) 

in which case P,(k, y) and i(k) are related by algebraic equations, and fory = 0 the 
formal relation is 

ifl(k)i(k) = -O,(k, 0). (3.5) 

(The coefficient of proportionality R has an independent physical significance, viz. it 
equals the frequency of free (I = 0) interfacial sinusoidal waves.) The value of IR 
computed (in Appendix A) from Eqs. (2.2) with linearized matching conditions 
across they = 0 discontinuity is 

1 k 
R = 2(1 + C) (1 + k2)1’2 + ’ 1 * 

By using (3.4) (3.5) and (3.6) we then get 

,. re+ 
L(k) = 2&(k) ’ (3.7) 

e-k(R-“) 
Ll(xj = - f ti + ‘1 Re 1 dk E + k(l + k2)-‘/2 ’ (3.8) 

In the interesting limit R + ~4, E = O(l), a transformation of variables (k, x, y) to (kR, 
x/R, y/R) shows that it is permissible to set k = 0 in the denominator of (3.8) which 
then simplifies to 

L,(x) = - 
I’(1 + E) R 

~ 
7rTTE R2 +x2 

(R -+ a). (3.9) 

The normal mode calculation (Appendix A) also gives &(k, y), C2(k, y) as exponen- 
tial functions of y, and the quantity of greatest interest v2(x, y) is then obtained from 
(3.4). For the R + ~0 limit (mentioned above) the asymptotic velocity is 

r 
s m & ie-k(R+lyl-ti) = - f 

x 
&,Y) = Z;;Re o ~T(R + 1~1)’ +x2’ 

(3.10) 
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and fory < 0 this becomes, 

r x 
V2(%Y) = - - 27F (R - y)2 + x2 = -VI-@, Y). (3.11) 

This important result means that the net y-velocity v2(x, y) + vr(x, y) vanishes under 
the shear layer (y < 0), to the leading order in the l/R expansion. The significance 
of this can be appreciated by noting that if v&y) were unopposed (or even 
fractionally opposed) in the lower layer it would add an infinite value to the vertically 
integrated transport under the shear layer, since the integral of vr(x, 0) fromx = --co 
tox = 0 diverges. But the actual velocity vr(x, 0) + v2(x, 0), and the actual transport in 
the bottom layer are much smaller because of the compensation induced by the 
anomalies in the upper layer with the strong potential vorticity variation. 

A qualitative explanation of the effect can be obtained from Figure 1, where the 
solid arrows at points (J, J’) represent the y-velocity due to r*. For a steady state 
front the velocity at J produced by the shear flow anomalies (as indicated by the 
wiggly arrow at J) must be equal and opposite. The sense of the wiggly arrows clearly 
requires L’ to have anti-cyclonic anomalies; i.e., L’ < 0. The typical anti-cyclonic 
element “E” induces anti-cyclonic circulation in the lower layer, as well as the upper 
layer, and the wiggly arrow at J’ indicates the resultant velocity induced by all the 
upper layer anomalies. Thus the induced velocity in the lower layer also opposes (to 
some extent) the velocity induced by r*. 

To obtain the quantitative measures of the extent of the opposition to the lower 
circulation we must go to the next order in the l/R expansion to find the small finite 
value of the total transverse velocity beneath the surface front. As computed in 
Appendix A the value is 

r (1 + E) XR 
v& 0) + v&t, 0) = ; ~ 

E (x2 + R2)2 
R + ~0, E = O(l), (3.12) 

and this is indeed smaller than the forcing velocity (3.2) by 0(1/R). The plausible 
generalization is that a weak barotropic velocity (vr) will induce potential vorticity 
anomalies at a strong upper layer front, which can oppose the (original) lower layer 
velocity, and prevent most of it from crossing under the frontal edge. The isopycnal 
potential vorticity gradient in any layer of a shear flow affects the normal velocity in 
all other layers. 

How might the presence of a strong eddy near the edge of the jet gyre boundary 
overcome this constraint and enable a weak mean exterior circulation (a gyre) to be 
incorporated under the jet? This will eventually require a consideration of the two 
layer problem, beginning with the simplest one in Eqs. (2.2)-(2.4). 
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4. Entrainment in the 1% layer model 

But it is necessary, as mentioned in Sec. 1, to first extend previous calculations of 
the nonlinear interaction between the shear flow (Fig. 1) and an upper layer eddy 
when E = 0, & = 0 = o2 in (2.2)-(2.4). Figure 2a is a schematic diagram of this 1% 
layer model, and Figure 2b is for the case of a full jet interacting with an eddy. 

The interface y = Li(xi, t) in Figure 2a separates the shear flow of potential 
vorticity P = PI = 1 from the ambient fluid of potential vorticity P = 0, whereas y = 
L&X,, t) bounds the eddy of potential vorticity P = P, = (o& and strength 

(4.1) 
(In Section 4b the initial state (see Fig. 5b) is such that part of the L,, Li interfaces 
are in contact with each other.) 

Eqs. (2.2a) is an inhomogenous Bessel equation for h, from which the total upper 
layer velocity 

v(x, y, t) = ah/&, (4.2a) 

u(x,y, t) = -Way + Z(y), (4.2b) 

is computed. The contribution (v,, u,) from the eddy is given by the clockwise integral 

(;)=-gYq:) KLl((x - EJ” + (Y - k?&,>>“>“’ 

and the contribution from the shear flow is 

1 
v1 = - g c,=-m s 51=m ~Jwll((~ - El)” + (Y - Ll(sl))2)“2, 

(4.3) 

I?41 = ii(y) - &- Jy=" dS,{&((x - <,)2 + (Y - Ll(cl)>2>“2 - Kl((~ - c;l)’ + Y2Y2h 

(4.4b) 

where K0 is the Bessel function. As previously mentioned, evolutionary equations for 
Ll, L, are obtained by evaluating (v, + vl, U, + ul + ti) on the contours and setting it 
equal to the appropriate (dL/dt, dxldt). These integral equations are then reduced to 
a large number of ordinary differential equations by introducing discrete Lagrangian 
points along the contour, by approximating the integrals using the trapezoidal rule, 
and by marching in time with a second order Runge-Kutta approximation. The 
(approximate) boundary condition is zero velocity at the (finite) endpoints. Lagrang- 
ian points are inserted or deleted as necessary to maintain interior resolution on the 
stretching contours. To maintain sufficiently small values of Ll in the neighborhood 
of its ends, additional points at large IX 1 were added as necessary, and some of these 
open boundary condition runs (see Tables 1 and 2) were checked by using periodic 
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Table 1. Evolution of a point potential vortex of strength r = 1, initially at ya(0) = .6, with a 
cyclonic shear layer initially at Lr(x, 0) = 0. c is the downstream velocity of the vortex, and 
the integral of L1 is over all x, Q is a theoretical invariant, and dM/dt is the spatially 
integrated momentum flux in the +y direction. An equivalent calculation using periodic 
(wavelength = 20) boundary conditions was also performed for this case, and it yieldedya = 
.3X, c x lo2 = 7.29 at t = 26. 

t YOW c x 102 J-b& Q M 

0 .6 
2 .575 
4 .525 
6 .482 
8 .452 

10 .431 
12 .415 
14 .403 
16 .395 
18 .391 
20 .389 
22 .387 
24 .384 
26 .379 

1.52 
3.99 
5.44 
6.07 
6.45 
6.75 
6.98 
7.06 
7.03 
6.97 
6.95 
6.95 
7.09 

0 .6 .180 
3.7 x 10-J .6001 .165 
2.3 x 1O-4 .5999 .137 
1.1 x 10-S .5994 .114 
8.0 x 1O-4 .5992 .099 
6.3 x 1O-4 .5989 .088 
9.0 x 10-d .5986 .082 
3.7 x 10-d .5985 .077 
8.0 x 1O-4 .5993 .074 
1.3 x 10-d .5995 .071 
1.7 x 10-4 .5993 .069 

1.03 x 10-s .5993 .066 
4.49 x 10-s .5990 .064 
4.50 x 10-3 .5982 .062 

conditions in X. See Stern (1985, 1991) for related procedural details, and related 
checks. 

If L1 = 0 at t = 0, a cyclonic eddy (Fig. 2a) will obviously induce v > 0 at x > 0 and 
v < 0 at x < 0, thereby producing at t > 0 an interface L1 with positive potential 
vorticity anomalies under the ridge (L, > 0), and negative anomalies above the 
trough. It is intuitively clear that the resultant of all of these anomalies yields v < 0 at 
the centroid x0(t), y,,(t) of the eddy, thereby moving it closer toy = 0. This increases 
the displacement of the L1 ridge, and causes it to wind counterclockwise around the 
eddy. Eventually the winding ridge filament may come into “close contact” with the 
L,-trough [i.e. the upstream (L, < 0) branch of the interface], thereby irreversibly 
embedding both the eddy and its surrounding P = 0 fluid inside a “new” interface of 
the shear flow, as described below, and as occurs in the purely barotropic case [Stern 
(1991)]. The main difference between the two cases is that the baroclinic Green’s 
function K. has a much shorter range of influence than the barotropic Green’s 
function, and this should be borne in mind in future consideration of the full two 
layer problem, in which the long range barotropic Green’s function will appear. 

a. Results for a point vortex close to a shear layer. Consider first the simpler version of 
Figure 2a which occurs for a cyclonic point vortex r > 0 located initially at some 
small ~~(0) > 0, and L,(x, 0) = 0. Then (4.3) is replaced by a velocity field I/2n 
dK,(r)/dr directed perpendicular to the line of length r connecting the vortex to any 
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Table 2. dM/dt is the spatially integrated momentum flux and Q is the numerical value of the 
quadratic invariant for a point potential vortex at ye(t). The time dependence is listed for 
three values of the vortex strength I, and the total entrained area at the end of each run is 
also given. An equivalent calculation using periodic (wavelength = 20) boundary conditions 
was performed for I = 1, and at t = 18 it yieldedya = -.298 with the entrained area equal to 
.967. 

r=1 r = .5 l- = .25 
t YOW MIT Q/r Yo M/r Q/r Yo MIT Q/r 
0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

.200 0 .200 .200 0 .200 .200 0 .200 

.081 -.014 .198 .117 -0.12 .196 .153 -.008 .200 
-.035 -.025 .199 -.OOl -.024 .195 .065 -.024 .199 
-.123 -.032 .198 -.076 -.033 .201 -.002 -.027 .199 
-.178 -.038 .199 -.113 -.039 .208 -.040 -.033 .201 
-.202 -.042 .201 -.146 -.042 .204 -.063 -.037 .201 
-.235 -.043 .199 -.192 -.043 .195 -.086 -.039 .200 
-.263 -.044 .195 -.233 -.045 .191 -.105 -.040 .193 
-.272 -.043 .190 -.247 -.046 .187 -.112 -.040 .189 
-.306 -.043 .184 -.253 -.046 .181 -.116 -.041 .190 
Entrained Area = .97 Entrained Area = .58 Entrained Area = .37 

(x, y). In all the following calculations thex = 0 origin is fixed relative to the center of 
the moving vortex, and c denotes its absolute speed. [Special precautions are 
necessary in evaluating the last Bessel integral in (4.4b) when the vortex crosses the 
y = 0 axis because of the (integrable) singularity.] 

1.5 I 
I I I I I I I I 

I 

-0.5 I I I I I I I I I 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

X 

Figure 3. Moderate nonlinear interaction of a point vortex initially atya(0) = .6, I = 1, with a 
shear layer interface at Li(x, 0) = 0. The figure (fort = 26) shows that the trough of the L1 
interface is directly under the point vortex (x0(O) = 0, y. = .38). In addition, there is a 
“tearing” effect in which a thin filament from the edge of the shear layer is captured by the 
vortex and wound around it. 
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Figure 3 and Table 1 for y,,(O) = 0.6 and I = 1 illustrate a transitional regime 
between linear (Sec. 3) and strong interactions. As previously mentioned the initial 
tendency is for an L1 ridge (trough) to be induced downstream (upstream) of the 
vortex, thereby accounting (Table 1) for the negative values of v = dy,Jdt at early 
times. The subsequent reduction in Idy,Jdtl, and increase in absolute vortex speed c, 
is due to the greater downstream phase propagation of the L,-trough, until its center 
phase locks at x = 0 under the point vortex (Fig. 3). The quantity Q in Table 1 is an 
integral invariant (derived in Appendix B) whose small numerical variation provides 
a check on the reliability of the calculation. Another check on the numerics can be 
obtained from the integrated L1 in Table 1, which indicates the extent of the 
compensation of the areas bounded by the trough (Fig. 3) and the ridge in the finite 
x-interval of integration (which is only partially shown). The time derivative of the 
quantity M in Table 1 (Appendix B) is the spatially integrated momentum flux, which 
is counter-gradient in this case. The qualitative difference between this moderate 
interaction and the weak interaction of linear theory is the “tearing” of the interface 
(Fig. 3) such that a very thin filament from the edge of the shear layer is captured by 
the vortex and wound counterclockwise around it. 

A well known computational problem, requiring contour surgery arises when the 
two branches of a filamentary winding (Fig. 3) come too close relative to the time 
step of the integration. The numerical problem is compounded wheny,,(O) is reduced 
(Fig. 4) because many more thin windings develop, and adjacent windings also come 
closer as time increases. It was therefore necessary to limit the number of windings as 
well as the thickness of each one. For present purposes the compromise arrived at in 
obtaining Figure 4 was to delete the tip point (of the first and innermost winding) 
when the distance between its two neighboring points was ‘/s of the average distance 
between Lagrangian points. Although the surgery leads to a systematic error in the 
area bounded by L1, this error was small compared to the value of the entrained area 
computed below. 

The stronger interaction in Figure 4 is characterized by a rapid capture of the 
vortex by the shear layer, and by a relatively thick outer winding of P = 1 fluid (the 
unstippled region). Note that this branch of L1, coming from x = +a and winding 
counterclockwise, is approaching (as t -+ 03) a contact (at -1.8 < x < 0) with the L1 
branch coming from x = ---co. For all intents and purposes a multiply connected 
Li-curve is about to form, as appears explicitly if a (vertical) “cut” of the two 
branches is made at (say) x, = -1.8 (where aLI(x = co), and then joining 
vertically adjacent ends. The result consists of a “new” singly connected shear flow 
interface going continuously from x = --03 to .x= to x = +CQ, inside of which the 
remaining portion of the L1 curve surrounds ambient P = 0 (stippled) fluid. The 
entrained area is defined as the total amount of this fluid which is transported across 
the new potential vorticity surface. The value of this area appears in the last row of 
Table 2, and the uncertainty due to the “cutting” is less than or equal to the absolute 
error ( - 2 x lo-*) in the integrated L1. The aforementioned tip surgery appears to 
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Figure 4. A strong intera’ction whenyO(0) = .2,&(x, 0) = 0, r = 1. (a) At t = 2 (top),yO = .OSl. 
(b) At t = 18 (bottom), the upstream branch of L1 has wound counterclockwise around the 
point vortex (yO = -.31) and is about to make “contact” with the upstream branch. The 
stippled area designates ambient (P = 0) fluid, part of which is about to be entrained inside 
the “new” interface (see text) of the shear flow (see Table 2). 

be the source of the increasing error in Q (Table 2) at t > 14, since no “significant” 
change occurred when the Runge-Kutta time step was halved. For smaller r 
(Table 2), similar effects are found with smaller entrained area, smaller vortex 
penetration, and smaller countergradient momentum flux. 

Some calculations using Eqs. (4.3)-(4.4) were also made (not shown) for a round 
eddy (Fig. 2) separated by a finite distance from the shear flow, but the windings in 
this case presented an even more severe numerical problem because they come close 
to the finite eddy perimeter as well as to themselves. Nevertheless, no qualitative 
difference from the point vortex regime appeared, and therefore we now turn to an 
initial condition which is a limiting case of Figure 2a, having a lesser degree of 
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t 04 / t 

Figure 5. A semi-circular cyclonic eddy of radius 0.3, potential vorticity P, = 2.5, and 
circulation r = .353 is initially in close contact with the cyclonic shear flow interface 
L,(x, 0) = 0. At t = 11 the round eddy and its surrounding P = 0 fluid are entrained inside 
the “new” interface found by cutting L1 at x - - .75. See Table 3, row 5. 

filamentary windings and consequently requiring no tip surgery in any of the 
calculations which follow. 

b. A round eddy in close contact with a shear Jlow. Figure 5a shows a semi-circular 
patch of potential vorti$y P,, part of whose perimeter L, is in contact with L,(x, 0). 
Although a circle or ellipse is the simplest representation of an eddy not in contact 
with a front, a semi-circle or semi-ellipse is a reasonable representation of a patch of 
high potential vorticity at the edge of a shear flow, resulting from its prior advection 
by the ambient gyre (as previously mentioned). For this case the integrations in Eqs. 
(4.3-4.4) require special consideration for the points on the contact segment, such 
that their velocity is computed only once. The evolution (Fig. 5) is qualitatively 
similar to that of a point vortex (Table 2, Fig. 4) with nearly the same I. In Figure 5 
the centroid decreases from ~~(0) = .127 to ~~(10) = -.196 (see Table 3) and the 
spatially averaged momentum flux (not shown) was again found to be counter- 
gradient (dMldt < 0). The invariance of Q was maintained to 3% at t = 11, at which 
time the right hand branch of L1 (Fig. 5) has wound counter-clockwise around the 
eddy, making virtual contact at n = - .75 with the left hand branch. The new interface 
formed by “cutting” at this point gives a total entrained area (A = .32) which is 
essentially the same whether the (subjective) cut is made at t = 9,10, or 11. Note that 
A consists of the entire P, eddy in addition to the surrounding P = 0 fluid. 
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Table 3. Summary of total entrained area A in shear layer for vorticies of different circulation 
(f), semi-major axis (b), semi-minor axis (a), and potential vorticity P,. te is the time at which 
A is computed, and jr(t) is the ordinate of the centroid of the vortex. 

r a b YOP) pe A te Yo&?) AIT 

.25 0 0 .2 --oo .37 18 -.12 1.48 

.5 0 0 .2 co 33 18 -.25 1.16 
1. 0 0 .2 .97 18 -.30 .97 
.21 .3 .3 .13 1: .24 14 - .22 1.15 
.35 .3 .3 .13 2.5 .32 11 -.23 .91 
.49 .3 .3 .13 3.5 .38 11 -.32 .77 
.49 .42 .42 .18 1.75 .53 15 -.17 1.07 
.35 .6 .15 .06 2.5 .32 15 -.33 .91 
.35 .6 -.15 -.06 2.5 .38 14 - .46 1.09 

1.18 1. 1. .42 .75 2.25 28 -.18 1.91 
1.57 1. 1. .42 1. 2.34 26 -.12 1.49 
1.96 1. 1. .42 1.25 2.54 24 +.03 1.29 
2.75 1. 1. .42 1.75 2.88 20 -.05 1.05 

The same A = .32 was obtained when only the shape of the initial eddy was 
changed to a semi-ellipse with downstream semi-axis a = .6 and cross-stream 
semi-axis b = + .15. Figure 6 shows what happens when the sign of b is reversed, (i.e., 
the elliptical eddy was placed below the L1 = 0 interface), and Table 3 shows that the 
total entrained area is only slightly changed. [The momentum flux (not shown in 
Table 3) is down-gradient (dM/dt > 0) in this case, suggesting that the time 

I:: 
-2 -1.5 -1 -0.5 0 0.5 1 

x 

Figure 6. Same as Figure 5 except that the eddy is elliptical and initially located inside the 
shear flow (a = .6, b = -.15). The stippled region is part of the ambient P = 0 fluid. The 
entrained area (see Table 3) was computed at t = 14 (not shown). 
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Figure 7. Same as Figure 5 except P, = .75, a = 1, b = 1. Entrainment occurs even through 
P, < P,. 

integrated momentum flux is counter-gradient only for eddies initially outside the 
shear flow.] 

Entrainment can also occur for an eddy with potential vorticity somewhat smaller 
than the shear flow, provided it is initially in close contact. Figure 7 shows the result 
for an initially semi-circular eddy with a = b = 1 and P, = .75. The centroid decreases 
fromya(0) = .42 toya(26) = - .17, and the total entrained area at t = 24 was only 5% 
smaller than at t = 29. 

Table 3 lists all the calculations made for shear flow entrainment, including the 
point vorticities (P, = m), and the main generalization for the total entrained areaA 
is given by 

a =; = 1.3 + 0.6. (4.5) 

The physical significance of cx becomes clear when (4.5) is converted to dimensional 
units (denoted by primes). Since P, = (s/f)-‘(V*+k - &/HI), and since the inte- 
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grated relative vorticity (V2$‘,) of an eddy vanishes, the conversion of r is 

r=SSP,~~y=f/(h~s)SS(-h:lH,)dx’dy’. (4.6) 

By substituting this and A = A’IA: we find that the dimensional value of the 
entrained volume is 

A’H, = & j-j- (-h:) a!~’ a’y’. (4.7) 

where 

AP’ = slf, (4.8) 

is the change in potential vorticity across the shear layer interface. Eq. (4.5) then 
implies the “constant” (Y equals the volumetric entrainment @‘Hi) multiplied by AP’ 
and divided by the (temporally invariant) integral of the isopycnal anomaly (-hi). 

5. Interaction of a vortex with a full jet 
To isolate the interaction of a vortex with the potential vorticity gradient near the 

axis (y’ = 0) of a full jet we consider an undisturbed velocity profile U*(y’) = shO 
exp - ly’( A,’ with vanishing geostrophic potential vorticity for y’ > 0, and uniform 
potential vorticity 

P; = -2slf (5.1) 

fory’ < 0, where s denotes the largest shear and A0 the radius of deformation. This is 
again used as the length unit, and s-l is the time unit, so that the non-dimensional 
current becomes 

c(y) = e-IYI 

and the potential vorticity at y < 0 becomes 

(5.2) 

P, = -2. (5.3) 

This multiplicative factor must be introduced in Eqs. (2.5) and (4.4) for the case 
(Fig. 2b) of a jet whose potential vorticity interface L,(x, t) is disturbed by an eddy of 
potential vorticity P, and strength r. Aside from the minor modifications due to the 
new end-conditions v( +CQ, t) = 0, u( _ +w, t) = 1 on Li, the calculation proceeds as in 
the previous section. Although the results below are given for an anticyclonic vortex 
(I < 0) whose centroid is located initially atyo(0) > 0, mirror symmetry exists for the 
case of a cyclone placed on the anti-cyclonic shear side of the jet (see Fig. 12b). 

It is easy to see (Fig. 2b) that if L&, 0) = 0, then an anti-cyclone I’ < 0, atyO(0) > 
0 will initially induce a ridge (L, < 0) with negative anomalies at x < 0 and a trough 
with positive anomalies atx > 0, and these anomalies will then cause the anti-cyclone 
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to move to smaller y or larger U. Thus the amplitude of L1 increases more as the 
vortex approaches the jet axis, and the advective speed (c) of the vortex also 
increases. Furthermore, the translating vortex forces a relatively long free “lee wave” 
on the jet’s axis [see linear theory of Stern and Flier1 (1987)], and the temporally 
increasing wave energy requires compensating decrease iny,,(t) [see the Q-invariant 
in Appendix B]. The combination of all of these effects causes a much stronger 
interaction in this case (e.g. Fig. 2b) than in the shear layer case (e.g. Fig. 2a). 

a. Point vortex interacting with thejet. This stronger interaction can be seen in Figure 8 
since the initial value ofyO(0) = 1.5 is much larger than in Figure 3, and yet the point 
vortex has moved towardy = 0, and has crossed the interface at the time shown (note 
the lee wave atx > 0). The enlarged view (Fig. 8) shows the area (stippled) of the P 
= 0 fluid entrained inside the P = -2 fluid and across the new potential vorticity 
interface, which goes fromx = --oo to the “cut” point (x = 2) and then tox = +W The 
time variation of the parameters is indicated in Table 4 for another run having an 
even larger ~~(0). No winding surgery was used in any of these calculations, and the 
error in the Q invariant is only 1%. Note that the momentum flux dM/dt (Eq. B.8) is 
relatively large and positive for the jet (compared to the shear layer). Figure 8 and 
Table 4 are typical of the results obtained for all of the five runs in Figure 9, which 
shows the variation in entrained area as r andy,(O) are changed. The plotted points 
are acceptably close to the straight line 

A = %(-IT) (5.4) 

and the deviations may be partially due to a small parametric dependence onya(0). 
It is interesting to compare the jet entrainment (5.4) with the shear layer 

entrainment (4.7) taking into account that the potential vorticity change across the 
jet interface 

p=2r 
f (5.5) 

is twice as large as (4.8). Substitution ofA = A’/h* and (4.6) into (5.4) then yields the 
volumetric entrainment 

A’,‘?, =-& ; $$h:aYdy’. 
0 

This is the same as (4.7, 4.5), for all intents and purposes, thereby achieving a 
significant “collapse” of a rather extensive parametric space. 

b. Round eddy interacting with a full jet. Now consider an initially circular eddy with 
radius R,,, centroid y,,(O) > 0, and uniform potential vorticity P, < 0. The contour 
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Figure 8. Entrainment of a point vortex by a full jet having piecewise uniform potential 
vorticity. At t = 0 the interface (the jet axis) is ony = 0, r = -2,ys(O) = +1.5. The upper 
diagram shows the position of the interface at t = 33.5, and the lower diagram is a close up 
view of the entrainment. The vortex is at ~~(33.5) = - .58, and the entrained stippled fluid 
also originated at y > 0. A “cut” is made at x = 2 on the jet axis to form the new potential 
vorticity interface. A completely analogous (mirror symmetry) process occurs for a cyclone 
r = +2 located initially at y. = - 1.5, in which case fluid from y < 0 is entrained across the 
jet interface and into the cyclonic shear region. 

dynamical equations are the same as Eqs. (4.2)-(4.4b), except for the fact that 
(4.4a, b) must be multiplied by -2 [the change in potential vorticity across the 
undisturbed jet (5.2)]. The winding problem in this case was not severe and no 
surgery was required, unlike the previously mentioned case of a shear layer interact- 
ing with a round eddy. 
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Table 4. The interaction of a full jet U(y) = exp - lyl with a point vortex of strength r = 
-4 at ys(0) = 2. c(t) is its speed, q is the quadratic invariant, and dM/dt is the integrated 
momentum flux. 

t YoQ> 4) Q(t) M(t) 
0 2 
4 1.99 
8 1.96 

12 1.90 
16 1.82 
20 1.71 
24 1.55 
28 1.29 
32 .80 
34 .35 
36 -.13 
38 -SO 
40 - .75 
42 - .94 
44.5 -1.05 

.14 

.14 

.15 

.17 
.18 
.21 
.24 
.29 
.23 
.19 
.19 
.22 
.20 
.21 

-.8000 0 
-.8000 +.10 
-.8000 .76 
-.8000 .78 
-.8001 1.4 
- .8002 2.2 
- .8004 3.4 
- .8006 5.1 
-.799 7.7 
-.799 9.2 
-.799 10.5 
-.800 11.5 
-.800 12.1 
- .803 12.2 
-.810 12.0 

Entrained area = 2.62 

If 0 > P, > -2 the eddy is drawn toward the axis of the jet (Fig. 10) and partially 
coalesces with the current on the same side of the deformed interface. On the other 
hand if P, < -2 (Fig. 11) the eddy and some of its surrounding fluid (P = 0) cross to 
the opposite side of the jet axis. By “cutting” at the close contact point (x = 3), the 

Figure 9. Non-dimensional area (A) entrained in a full jet for various r, ~~(0). The time at 
which the entrainment is computed is te and the data for the numbered points are: (1) te = 
23,yo(0) = 1, (2) te = 39,yo(0) = 1, (3) te = 54,yo(0) = 1.5, (4) te = 33.5,yo(0) = 1.5, (5) te = 
44.5,ys(O) = 2. 
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Figure 10. Interaction of a round eddy with a full jet. A circular anti-cyclone of unit radius and 
uniform potential vorticity P, < 0 is initially located at y@(O) = + 1.5 on the cyclonic side of 
an undisturbed (Li(x, 0) = 0) jet ti = exp - ]y ]. (al and a2) the stippled eddy with P, = - 1 is 
drawn toward the jet axis. Thex = 0 origin of the coordinate system moves downstream with 
the centroid [ya(l7.5) = +1.22]. (bl and b2) same as above except P, = -2 and y. 
(18) = .52. Part of the eddy is captured and comes into close contact with the jet axis but 
very little entrainment across the potential vorticity interface occurs. 

total entrained area was found to be 

A = 4.2. (5.7) 

This is somewhat larger than the eddy area (rr), and somewhat smaller than the value 
of (5.4) for a point vortex having the same strength (-r = 3~). The coalescence 
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Figure 11. Same initial conditions as Figure 10 except P, = -3, and nowyo(20) = -2.8. By 
cutting the interface at the close contact point (X = 3) a new jet interface is formed, across 
which a net mass flux has occurred. Note the small blob at y = 2.8 containing anticyclonic 
(P = -2) fluid from the jet, which has also been transported across the new interface. 
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effect in Figure 10 appears to be similar to the capture of a small barotropic eddy by 
another one with much larger area [cf. Fig. la in Melander et al. (1987)]. 

6. Conclusions and suggestions 

The general idea has been advanced (supported by the example in Sec. 3) that a 
strong isopycnal potential vorticity gradient in the upper layer of a jet not only 
prevents weak transverse motions from entering that layer, but also greatly inhibits 
the entrance of ambient fluid into the lower layer, even if that layer has vanishing 
potential vorticity gradient. This suggests that effective incorporation of a large-scale 
mean gyre incident on a strong jet requires the (intermittent) presence of strong 
potential vorticity fluctuations (mesoscale eddies) at the gyre-jet boundary. 

Two relatively simple baroclinic shear flow models were used to illustrate the 
mechanism by which an exterior eddy and its surrounding fluid are “entrained,” this 
being defined as the net volume transfer across mean potential vorticity surfaces of 
the jet. An ensemble of such calculations have been made for an eddy initially 
located near the edge of a shear layer, and also for an eddy near the axis of a full jet. 
This initial state is supposed to have been brought about by the prior (slow) gyre 
advection of anomalies toward the jet. The main results [Eqs. 4.5,4.7,5.6] achieve a 
partial collapse of the entrainment, in the ensemble of our 1% layer model calcula- 
tions. The entrainment calculations need to be extended to the full two layer case. 

The inhibiting effect on the lower layer circulation (Fig. 1) was discussed for the 
case in which upper layer velocity, vorticity, and potential vorticity increase in the 
same sense. Does the same effect occur if the potential vorticity (P) decreases 
(Fig. 12a) as the other two quantities increase, which occurs in the undisturbed state 
when the variation in upper layer thickness dominates the relative vorticity term. 
Figure 12a also shows the small perturbations in the P < 0 isolines (dashed) induced 
by a distant cyclonic barotropic point vortex F*, and v: (solid arrows) denotes its 
contribution to they-velocity on the interface (bold face curve). At greatery, P = 0, 
and at lesser y, P < 0. On the P = 0 interface the total horizontal velocity is 
infinitesimal (since U*(O) = 0), and if a steady state (Fig. 12a) exists then vr must be 
balanced by the resultant (wiggly arrow) anomalies associated with all the deflected 
potential vorticity lines. The sense of these wiggly arrows requires anti-cyclonic P 
anomalies, which in turn require displacement of the P-isolines as shown (note that 
these deflections are opposite to the interface deflection in Fig. 1). Moreover, as in 
Figure 1, those upper layer anti-cyclonic anomalies produce a lower layer velocity in 
the same sense as the wiggly arrows, and therefore, they still oppose the lower layer 
v& This supports the generalization of one of our two main results. 

Figure 12b suggests how the strong eddy-jet interaction computed in Figures 10 
and 11 might be generalized to the case of a continuous variation of potential 
vorticity (the dashed lines). This distribution has some resemblance to the structure 
across the Gulf Stream at 29N [Leaman et al. (1989)], where the potential vorticity 
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Figure 12. (a) A generalization of Figure 1 when the undisturbed potential vorticity (i”) of the 
upper layer is increasing with y’ (for y’ < 0), and the corresponding shear flow a* is 
decreasing to U*(O) = 0. Above the inter-facial curve (the solid line) the potential vorticity 
and its derivative are identically zero. In the steady state the constant potential vorticity 
lines (dashed curves) are deflected an infinitesimal distance L’(x’, y’) by a distant (R* x=- X) 
barotropic point vortex (I*). (b) This figure shows the initial condition of an undisturbed jet 
a*(~‘) in a 1% layer model with potential vorticity increasing monotonically with 
y’(Po < PI < P2 < P3), but with a potential vorticity gradient in y’, > y’ > yb which is weak 
compared to the gradient on the cyclonic side of the jet. Also shown is the initial state of a 
cyclonic eddy with potential vorticity P, = PI. The conjectured subsequent movement of the 
centroid of the eddy due to its interaction with the jet is schematically indicated by dark 
dots. See text. 
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gradient is weak on the ant&clonic side of the jet in the thermocline. In Figure 12b 
PO is the potential vorticity at the edge (u(yb) = 0) of the undisturbed jet, and the 
gradient of potential vorticity is positive (i.e., PO < P2 < P3), with a very small 
gradient betweeny; andyb. At t = 0 (Fig. 12b) a cyclonic eddy of potential vorticity 
pt? = PI is assumed outside the edge, and at t > 0 the counterclockwise circulation 
induced by this deflects PI, P2, P3 in such a sense that their associated anomalies 
cause the centroid of the eddy to move on a path indicated by the heavy dots. This 
conjecture is supported by Figures 10 and 11, which have similar but reversed 
distributions (i.e., an anticyclonic is initially on the cyclonic side of the undisturbed 
jet in Sec. 5). The latter calculations (cf. Fig. IO) suggest that the P, = PI eddy in 
Figure 12b should end up with its centroid near y = y;, and with the PO isopleth 
wound around it to form a new “edge” in which the eddy is entrained. If the event is 
repeated by having new cyclones successively advected toy < yb by the weak velocity 
in an external gyre (not shown), then an average transport of gyre water across the 
jet’s edge is implied. 
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APPENDIX A 

Normal Mode Calculations for Sec. 3 

To derive the important results (3.11, 3.12) for the lower layer velocity v&y) 
induced by L,(x) anomalies we have to compute the Fourier transforms it2(k,y), 
it,@, y ) associated with the free wave problem. Accordingly we set [(CC& = 0 = (o&] 
in Eqs. 2.2. and consider the normal mode problem, in which the perturbation 
potential vorticity vanishes on either side (]y ] > L1) of the disturbed interface. The 
modes obtained from (2.2a, b) are given by the exponential functions 

i&(k, y) = O,(k, y) - O,(k, y) = (O,(k, 0) - O,(k, O))e-~y~(1+2)“2, (A.14 

E$l(k,y) + O,(k,y) = (+k, 0) + %(k, O))e-klyi7 (A.lb) 

where h(k, y) is the Fourier component of the inter-facial height perturbation h(x, y), 
and where the continuity of v from y = O- toy = 0+ has been used. The additional 
connection condition is most readily obtained by integrating 2.2a, b from y = O- to 
y = Of, and by using the right-hand side of (2Sa) for ol, For either L1 > 0 or L1 < 0 
the integration gives a discontinuity in the perturbation ahlay equal to L1 and a 
discontinuity in aIay(+ + IJJ$ equal to ~5~. Therefore the discontinuities in 
alay (0, - G2) and aldy(e6, + C2) are respectively equal to ik& ikj. When these two 
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relations are applied to (A.la,b) the result is 

-2(1 + /~~)“~(0r(k, 0) - O&k, 0)) = iki, 

-2k(&,(k, 0) + O,(k, 0)) = ik&, 

and therefore 

-ii k 
‘dk, ‘1 = 2(1 + E) (1 + k2)1/2 + ’ 1 ’ 

-ii 
. 

-iLE k 
G2(k, 0) = 2 + ~ 2(1 + E) (1 + k2)“2 + cd . 1 

(A.2a) 

(A.2b) 

(A-3) 

(A-4) 

At anyy the velocity obtained from (A.la,b) is 

W, 0) 
ifl(k,O)+y -klYl - ($,(k, 0) - jj2(k, ()))e-(1+~)1’21Yl, 

(A.5) 

&(k, y) = P,(k, y) + (it,(k, 0) - P,(k, O))e-(1+2)1’21Yl. 64.6) 

The coefficient of proportionality in Ol(k, 0) = -id(k) obtained from (A.3) is 

1 k 

a = 2(1 + c) (1 + k2)1’2 + ’ 1 ’ (A-7) 

as indicated in (3.6), and thereby verifying (3.8). The value of v2(x,y) is obtained by 
substituting (3.7) in (A.3) and (A.4), by using (A.5), and by using the last relation in 
(3.4). The leading term (3.11) in the l/R expansion was shown to cancel the 
contribution of vr at y < 0, and it only remains to show that (3.12) is the leading 
(non-vanishing) term forpottom layer velocity at y = 0. We first note that (A.la) 
gives the total value of h(k, y) since the thermal wind equation implies that the 
barotropic vr does not contribute (directly) to the difference in velocities in the two 
layers. Moreover, the total v aty = 0 in the upper layer must vanish in the steady state, 
and therefore the total transverse bottom layer velocity v aty = 0 is 

Mx, 0) 
v=-ax 

from Eqs. (A.la) and (A.2a) we get 

(A-8) 

h(k, 0) = 
-i(k) a 

2(1 + k2)“2 
= y [l + O(k2)], 

and therefore the leading (1 lR + 0, or k + 0, cf. 3.9) term for h(x, 0) is 

G-9 

h(x, 0) = - XL(x). (A. 10) 
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It therefore follows from (A.8) and (3.9) that 

-I(1 + 6) a R 
v= -~ 

27rE axR2 +x2 
(A.ll) 

is the leading term for the total bottom layer velocity at y = 0, and this verifies (3.12). 

APPENDIX B 

The Q-invariant and the momentum flux 

For a continuous distribution of potential vorticity P(x, y, t) the quasi geostrophic 
flux is 

where the bar now denotes an integral over all x, and where (4.2ab) has been used. 
When (B.l) is multiplied by y and integrated from some y = -D, + CQ (where 
yv + 0) toy = 03 the result is 

s 
m 
-D Viidy= m s _“,,q 4. (B.2) 

In the limit (Fig. 2) of piecewise uniform P this integrated momentum flux becomes 

s 
co 

-o Vudy = (B.3) m j-j- h 4 We + j-s h 4 r/p, 
eddy shear 

and the question is whether it is positive (directed toward low mean velocity), or 
negative (“counter gradient”). 

If the eddy is a point vortex with strength l? (4.1) located aty = ye(t), then the first 
term on the right-hand side of (B.3) reduces to 

ss dy o 
dxdyyvP, = rye z. U3.4) 

For a finite area eddy let C2(t) denote the closed material curve bounding the P, fluid, 
and let da denote a material area element (My) inside C2. Then 

where the contour integral is taken clockwise. 
The last term in (B.3) may be evaluated in a similar way using the closed material 
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contour C,(t) = “abed” in Figure 2a. This is composed of the entire interface (“ab”), 
a straight horizontal line (“cd”) located in the undisturbed region y = -D, -+ -03, 
and two material branches (“bc,” “ da”) constructed atx = fco as follows. Initially ad 
and bc are chosen to be parallel, and they remain parallel at t > 0 as they are 
advected by the same Z(y). Since Pr = 1, the last term in (B.3) can be integrated iny 
to give 

ss 
where q is the ordinate of a point on Ci. The contribution of segment cd to the 
contour integral is constant in time and therefore does not contribute anything to the 
above equation. The contribution of segment bc is equal and opposite to the 
contribution of segment da and therefore their net contribution to the contour 
integral vanishes. Only the integral along ab does not vanish, and this gives 

Eq. (B.3) then becomes 

for a round eddy, and for a point vortex the average momentum flux is 

03.6) 

P.7) 

A similar procedure may be applied to the left hand side of they-integral of (B.l) 
and since the right-hand side vanishes, we obtain 

for the round eddy, and for the point vortex 

(B.lO) 

The quadratic-invariant Q in (B.9) is known from previous studies of barotropic 
shear layers [e.g. Stern (1989) p. 85; Dritschel(1988); Bell and Pratt (1993)], and was 
used here to check the numerics. It also implies that the speed at which the vortex 
moves toward the interface increases as the mean square interfacial disturbance 
increases. 
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