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The stability of an axially symmetric warm-core model eddy 
on a stratified ocean 

by John KroW 

ABSTRACT 
The linear stability of an axially symmetric model of a warm-core eddy over a stratified 

ocean of infinite depth is investigated using asymptotic techniques for large wavenumber and 
small Burger number. The development is similar to previous work on the stability of a 
geostrophic front &roll, 1992) and the results found there can be modified and applied to 
most oceanic eddies. The most important result is that instability occurs in a region confined at 
the edge of the eddy with maximum width of a fraction of the radius given approximately by 
the Rossby number for realistic eddies. We expect the instability to produce turbulence and 
contribute to the breakdown of the interface between the eddy and the surrounding ocean in 
this region. 

1. Introduction 

Warm-core, anticyclonic eddies have been observed extensively in the ocean 
(Joyce, 1984; Joyce et al., 1984). The largest of these has been observed to range up to 
300 km in diameter off the northern part of the Gulf stream and up to 370 km in the 
Gulf of Mexico. The Rossby number, E, the ratio of the average angular swirl speed 
to the Coriolis frequency, is a measure of the importance of the nonlinear terms in 
the equations of motion describing an eddy. For these large warm-core eddies, E 
ranges up to l/I. 

Cold-core, cyclonic eddies of comparable diameter and values of E also exist. 
Richardson (1980) observed one for E = 3~. There are also somewhat smaller 
warm-core, anticyclonic vortices with diameters less than 100 km and with compara- 
ble values of E which have been called submesoscale coherent vortices (SCV) by 
McWilliams (1985). Armi et al. (1989) observed an SCV over its entire lifetime of two 
years. This eddy had an initial diameter of about 50 km and E around %. 

For E sufficiently small, one can use the quasi-geostrophic approximation to model 
an eddy. However, the values of E noted above are not sufficiently small. For E of 
order one, the ‘reduced gravity’ or ‘1.5 layer’ model has been used fruitfully by 
Cushman-Roisin et al. (1985) to model the dynamics of eddies. This model consists of 
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an active homogeneous layer of inviscid fluid over an inactive homogeneous layer of 
higher density and infinite depth. The aspect ratio of the depth to the horizontal 
scale in the top layer is assumed small with time derivative and nonlinear terms of 
order one. 

A logical extension is to add stratification to the lower layer. This will allow energy 
to be propagated away from the eddy in the form of internal waves. Thus we will 
investigate the stability of an axially symmetric, warm-core, ant&clonic model eddy 
over an infinitely deep, linearly stratified ocean. 

This investigation is a direct continuation of previous work (Kroll, 1992). There 
the stability of a geostrophic front with constant slope over a stratified ocean was 
investigated using asymptotic methods for large horizontal wavenumber and rela- 
tively weak stratification. The front was called canonical because it should approxi- 
mate more complicated flows. It will be shown that it indeed approximates the 
stability of a model eddy. This canonical front problem, which will henceforth be 
referred to as (F), is reviewed first. 

The flow is unstable for wave perturbations in the direction of the mean flow with 
wavenumbers along the front larger than f/V,, where V, is the speed of the mean 
flow, becoming more unstable with increasing wavenumber. The region of instability, 
however, is essentially limited to a relatively small portion of the front at the vertex 
where the frontal interface meets the surface. This region has a maximum horizontal 
extent given approximately by Vo/f, and the region becomes smaller with increasing 
wavenumber. We would expect this region to become turbulent and generate 
internal waves that propagate into the interior. However, if the front is viewed as the 
edge of an eddy or boundary current, we would conclude that these flows are 
essentially stable since the instability is confined to such a small portion of the mean 
flow, typically less than 10 km versus a scale of 100 km. 

The nature of the instability resembles that of the mixed layer model previously 
investigated by Kroll (1982, 1988). The unstable perturbations grow from energy 
from the mean flow. An increase in stratification, which increases the energy 
radiated away from the current, is actually destabilizing. This was first discussed for 
the nonrotating case by Ostrovskiy and Tsimring (1981) who pointed out that it is not 
a classical Kelvin-Helmholtz instability since the instability disappears with no 
stratification. They explain the nature of this instability using the concept of negative 
energy which was developed by Cairns (1979). In the classification scheme of 
Benjamin (1963) this is a class C instability, which is a Kelvin-Helmholtz type (but 
definitely not the classical Kelvin-Helmholtz). 

2. Formulation of model 

The development will parallel that of (F) using cylindrical rather than Cartesian 
coordinates. Figure 1 shows an axially symmetric eddy of homogeneous fluid with 
density pi, surrounded by a continuously stratified ocean of infinite depth with 
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5’0 

Figure 1. An axially symmetric warm-core eddy on a stratified ocean. 

density p&z), where p1 < p&) everywhere. The eddy has a maximum radius, ro, and 
maximum azimuthal speed, L’,, occurring at ro. The flow regime in the eddy will be 
designated as the “eddy” and that in the stratified ocean as the “ocean.” As in (F), 
we make the usual assumptions: hydrostatic balance, Bousinesq approximation in 
the ocean, a rigid lid at the surface, and the Coriolis parameter, f, constant. 

The dimensionless equations of motion are for the eddy: 

2 
“1 “lull3 

U1t + Ul4r - ; + - - v, = -(PI + h)r r (la> 

Ul”1 
“11 + %“lr + y + 

“1”M 
-+u,=- 

(PI + hh 
r r 

h + i [W4, + Wdd = 0 

and for the ocean: 

%I- “2 = -P2, (24 

Pbf = -B%v, PC) 

; [@2)r + “201 + w22 = 0 

with boundary conditions at .z = -h(r, 0, t) 

h, + u2hr + + = -w>, h>O P-4 

w2 = 0, h=O (3b) 
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and P, = Pp (3c) 

As in (F), the quantities P i,* represent in dimensional terrns~~,~ - gAph wherep is 
the actual pressure. 

The nondimensionalization is as follows, similar to (8’): (u, v) m V,, r N L = Vo/f, 
(h,z) -H= V;/g’,w -Hf,t - l/f, P - pofLVo, whereg’ = gAp/pO, B = HNILf and 
N2 = -gp;(z)/po (the square of the Brunt-Vaisala frequency). The choice for the 
length scale L is based on results from (F). As before p. is the reference density for 
the ocean, p;(z) is the density gradient which is negative and assumed constant, and 
Ap = p. - pl. We assume 1 p>h/Ap 1 -=c 1 which implies that B2 -=K 1. In essence we 
are assuming that the density difference in the stratified ocean in the interval over the 
eddy depth is much smaller than the density difference between the eddy and the 
ocean. 

For the steady state we assume that all t and 8 derivatives vanish and u2 = v2 = 0, so 
PI = P2 = 0. For simplicity suppose the radial velocity, U, in the eddy to be zero and 
the azimuthal velocity, v, to vary linearly with r (solid body rotation); then the shape 
of the eddy is parabolic. Thus for the steady state 

VI = -v, W 

h = i ~(1 - c)(r2 - r2) (4b) 

an axially symmetric eddy where the Rossby number, E = Vo/fro, is l/r and Y = rolL is 
the value of dimensionless r at dimensional r = ro. For a physically realizable 
warm-core eddy, E must be such that 0 < E < 1. This simple model eddy has a 
uniform angular speed, a, which has been observed approximately in nature (e.g. 
Armi et al. (1989) where R = f /3). 

The perturbation equations are found by expressing the dependent variable in 
steady and perturbation parts, ( ) = (-) + ( )‘. From (1) we obtain for the eddy, 
dropping the primes: 

2&v, v,v,, 
4t 

-- + 
r 

- - v1 = -(PI + h)r 
r 

- 6% WI3 
I”11 + VIP1 + 7 + -+u,=- 

(PI + h)e 
r r 

h, + i [rh,ul + h(q), + hvle] = 0. 

The perturbation equations for the ocean still have the form (2). The boundary 
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conditions (3) at z = -i(r) becomes 

h, + &.Q = -wz, h>O (ha) 

0 = w2, & = 0. (6b) 

For the linear stability analysis, we assume a wave solution in 8: 

( ) = (A)(r)e-iW+4 (7) 

where the angular mode number, m, is an integer which will turn out to be positive 
for unstable waves. Then eliminating u1 and v1 in (5) we obtain for the eddy: 

r2(F2 - r2)& + r(F2 - 3r2)i, + (h2r2 - F2m2)i 

=- I r2(F2 - r2)blrr + r(F2 - 3r2)F,, + [(G$+ m2)r2 - i2m2]8,] (8) 

where X2 = -2mf/i, + m2 + 2(G2 - f2)/[e(1 - l )],f= 1 - 25 and (;, = o - un. 
Eliminating all but k2 in (2), we obtain for the ocean: 

, .  

a pzl 

I?P2/&--+ 
m2k2 

r 
7=0 

where v2 = (02 - 1)/B2. The boundary conditions at z = -E(r) are 1 
&34 = ,,2i, .& ) ii>0 

and 

G, = 0, h=O (lob) 
k, = F2. WC) 

There is also the radiation condition that no energy may come from ] (r, z) 1 + 00. 
Eqs. (8) and (9) together with the interface conditions (10) and the radiation 

condition, constitute the system to be solved. 

3. Special case: no stratification 

For no stratification in the ocean (B = 0), we have P2 = PI = 0. Letting R = r/T, 
Eq. (8) becomes 

R2(1 - R2)i, + (R - 3R3)hR + (R2h2 - m2)i = 0, (11) 
A 

with the boundary conditions that h be bounded at R = 0 and R = 1. Cushman-Roisin 
(1986) and Ripa (1987) have shown that ye are to expect eigenfunctions involving 
finite degree polynomials. If we write h = C~=+Z,$?“+~ and use the method of 



278 Journal of Marine Research Pl, 2 

Frobenius, we find c = ]m 1 and 

x* = (2n + lml)pl + 2 + Iml). (12) 

The odd coefficients vanish and the eigenfunctions can be shown to be given by 

j& = RI”‘1 5 b,(iV)R=‘, 
n=O (134 

where b,+,(N)= - w-nw+n + 1-t IN), (N> 
(n + l)(n + 1 + lml) n (13b) 

is the recursion relation. The first three eigenvalues and eigenfunctions are: 

A; = lml(lml + 2), Lo = RI”1 

XT = (Iml + 2)(lml + 4),i, = 

AZ = (Iml + 4)(lml + 6),& = 
2(3 + I4 1 + Iml R2 + (4 + ImlW + 

(2 + IWU + IW 
We want to examine the eigenfrequency, o. Rewriting (12) using the definition of 

A*, 

h3 - (p + Q)h - mZj= 0 (14) 

where Q = E[2n(n + 1) + Im l(2n + l)], E = ~(1 - c), 6 = o - vn, andf = 1 - 2~. 
Analogous to the results in (F), the discriminant D = m2Z2f2/4 - (f* + Q)3/27 is 
always < 0 except for IZ = 0 when D = 0 at one value of E for each value of m = 0,” 1, 
+2,.... Hence the system is always neutrally stable as found by Ripa (1987). 
Because of the R Iml variation, the magnitude of the eigenfunctions form z 0 are most 
significant toward R = 1, the edge of the eddy, analogous to the result in (F). 

We noted in (F) that for the B = 0 case the front becomes unstable if a bottom is 
added. Interestingly, Ripa (1992) has shown that this model eddy is also unstable for 
the B = 0 case if a bottom is added. 

4. Asymptotic solution for stratified ocean (B > 0) 

We follow a procedure similar to that in (F). We find an asymptotic solution for 
large Im I in the ocean using ray theory. We then use this result, evaluated at the 
interface, to find an asymptotic solution in the eddy away from both the boundary, 
R = 1, and a turning point at R = Im/X I = I y / . It is then necessary to find boundary 
layer solutions near R = 1 and R = I y I. Finally, all the solutions are matched to 
lowest order to give an approximate eigenvalue equation for o. 
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a. Rays in the ocean. Though exact solutions to (9) are available in the form of Bessel 
functions, these would not be useful in connecting with the eddy. Thus we use the 
approximate ray theory method. We assume a solution to (9) in the form 

which yields 

u2(Azz + 2i~m~S,A, + ilmlS,A - m*SiA) 

- (A, + 2iImlS,A, + i(mlS,A - m2A) 

m2A 
-f(Ar+i[mlS,A)+,=O. 

(16) 

WethenassumeA=AO+l/lm(AI+.. . with Im I large. To lowest order in l/ Im I 
the eiconal equation is 

F(r, z,p, q) = -u2q2 + p2 + f = 0 (17) 

wherep = S, and q = S, are wavenumbers in r and .z respectively. 
As in (F), we use characteristics to solve (17) which are derived from the solutions 

of the set of differential equations: 

dp -c-F 
ds 

& -z-F 
r’ ds = 

and 

dS 
z = PF, + qF,. 

On the interface, z = -h(r), we define s = 0 and z = -h(r) where s and r are the ray 
variables with T being r on the interface. We then find that q = q(r) is constant on a 
ray and p is given by p2 = p* + [( 1 /r*) - (1 /r*)], where S and j5 are evaluations of q 
andp at the interface. The parametric equations for the rays are: 

z = -2v5s - h(T) Pa) 

(18b) 
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Continuing to follow (F), we use the strip condition at s = 0 that 

with (17) to findp and if in terms of s’(r) = (dsldr), where s(r) is the value of S at 
the interface: 

v23f - 
F(T) = 

zr v2Sr2 + V2/T2 - z2 
v2 - z2T2 Wb) 

where E = ~(1 - E). We again use the fact that the normal component of the group 
velocity at the interface must be directed into the ocean to determine the proper 
signs in front of the radicals. This 
(-h’(r), -1) * ((drlds),(dzlds)) which equals ‘/ 
sign. Also we can find S(s, T) from the set of differential equations for the character- 
istics: 

S(s, T) = S(T) + tan-’ @T) - tan-l (2v%j2s + j iT). (20) 

The elimination of s between the equations of (18) reveals that the ray paths are 
hyperbolas. These paths are actually the generating curves of surfaces of revolution 
about the z-axis and represent the energy flux for the internal waves. Figure 2 shows 
schematically some of these paths. We can show that for r large the rays near the 
edge of the eddy ( r -+ 7) are approximated by the straight line paths of (F). All the 
rays that are directed toward r = 0 turn at a point where the radial group speed 
vanishes before reaching r = 0, the center of the eddy. Figure 2 does not represent a 
typical ray field but only different possible ray configurations. The dashed-line 
extensions illustrate the hyperbolic shape and are not rays since there are of course 
no rays in the eddy. 

From the next order from (16), we have 

- S, - ; A0 = 0. (21) 

Using (18) to calculate a/& T(r, z) and alar T(r, z), we can then use (19) to find S, = 
& = 47 (a/aZ)T and &, = F, = &(a/ar)T in terms of s and show that 

A&, T)  = G(T)[E(T)(~v%~~S + FT) - ij’(T)]-“2 (22) 

where E(T) = ij[(~s’)’ - (~ij)‘] - ij’j?~ and G(T) an arbitrary function. 
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Figure 2. Possible hyperbolic ray paths into the ocean. The dashed extensions are not rays, but 
are shown to illustrate the hyperbolic shape of each ray. 

6. Asymptotic solution in the eddy. From (8) we can show 

(RI 
(23) 

where R = r/F, H = &@r, p = &/%, and i = 1 - R2. For m and A large, there will 
be a turning point for the left side of (23) in R where XW2 - m2 vanishes. Assuming A 
real and for [m/X 1 < R < 1 but R not near the end points, we look for an oscillatory 
solution. So we assume 

H = fi(R)eilml~(R) (24) 

wherefi=&,+l/]mIfil+...andS(R)=S(r). 
For k2 = A,,eilmls(~r), the interface condition (10) then yields to lowest order for s = 

0 (where r = 7) 

AdO, 7) = 
(62 - 1)&E& 

I 

(25) 

where D,, = dv2s I2 - E2 + v2/r2 and S(r, z) = S(T, -h(r)) = S(T). Using (25) in (22), 
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we can find G(r), but we do not need it to calculate the eigenvalue to lowest order. 
When the radical in (22) vanishes a caustic appears in the wave field. 

We note that from (25) p = O(ll]m])fi. So letting p = (l/]m])[~O +(lllml) 
P, + . . .]eilmlS(R) and using (24) in (23), we can show to lowest order 

S’(R) = F??‘(r) = + E’(R) = + 
(26) 

where y = mlX. 
For the next order we have 

2&(R)&(R) + ii”(R)&(R) = (R) 

and, using the fact thatA = (l/Im/)~o/@and (25), we connect the rays with the 
eddy and obtain 

fib+ 

The solution can be written as 

ho(R) = -$& e-(1/2M~2-lP(R) 

where sn is the sign in (26) C is an arbitrary constant and 

1 - y= 

Ho = 0. (27) 

(28) 

r(R) =sJ; 
1 - t= 

J~[~y$&$ (29) 

using the fact that we can show DO = dv2(1 - y2)ly2T2(1 - R2) - Z2. 
If we make the change of variable t* = 1 - 5/r, we can show that the integral (29) 

can be written in the form: 

Iv@= 
I(R)=-= 

(30) 

where p = l/[$l - E)],?~ = (l/2)$1 - -y2),yP = 02p2jJB2, V2 = v2p2, and? = (l/2) 
Y(l - R*) . The integrals here are the same form as those of Eq. (43) in (F). So we 
can use the results there, including the analytic continuation properties, to evaluate 
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(30). Thus, usingj as the independent variable so that Z(R) = Z(y), (30) becomes: 

PJCJ 

i 

(x - l)(F + 1) (x - xo)(V + x0) 

z(y) = - w2 log (x + l)(C - 1) - x0 log (x + x0)(5 - x 0 ) 

2im 

i 

* 

ii 
- - tan-’ * - $. tan-’ - 

44 90 

(31) 

where x2 = (F5C - J)l(yC - -) y , xi = (j$ - i+Jl(j$ -Jc) = p*/(w*p* - By, ** = 
Yl(Y, -A and 4~: = YJ(Y, -Yc), with cuts for the functions down the negative 
imaginary axis as in (F). We can again show that (31) can be used for the case where 
y > jiP when a singularity occurs on the path of integration at7 = &,. 

So to lowest order for [m/X 1 < R < 1, we have 

where from (26), 

E(R) = l J t* - y* dt 1 
-=- 

y2(1 - t*) t y 

= e-1/2(w* - l)I(Cleilmlc + C$-ilmq 

)(T’ (32) 

tanel$f-~] - [t-l Jz-;] 
c. Expansions about specialpoints. Analogous to (F), (23) is singular at R = 1. If we 
let 1 - R = (l/m*)& to lowest order we have 

which has the solution bounded at R = 1: 

(33) 

where Jo is a Bessel function. 
Also analogous to (F), we have a turning point at R = m/X = y. If we let R - y = 

] m ] -2’3 5, to lowest order we have 

f&i + 
25 

Y3(l - r2) 
Ho = 0 

which has a solution which decays for 4 + -a: 

(34) 

where Ai is an Airy function. 
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d. Matching solutions. We must match (33) for 5 large with (32) for R -+ 1 (or 
j + 0). Using the asymptotic properties of the functions involved, we find the 
common part: 

dFl 
ho = Jmj(i - R)1’4 

cos(&$jGvf) (35a) 

and the matching conditions for the constants: 

D1m ei(r/4) = Cl DIG c2 

2J%qiq Ml - ~~11”~’ 2 J-j e-r(r’4) = [2( 1 _ y2)]l/4 (35b) 

Likewise, we must match (34) for 5 large with (32) for R -+ y (7 -+JC). We can find 
the common part: 

Lo ;‘f(+y -)y1’12sin I’ J---T-i3,2 + T 

y 1 y2 ,lT “4 5 yy1 - y2) 4 (36a) 

and the matching conditions for the constants: 

(1 - y2)]l/12 ei(7r/4) 

12 
(1 - 3-I 

1 L1s “~~ 

, r”., -\..,-,..\- ,, _ 

J;;24/3 Irn 11% ’ 

[ 1 i(l - r2) 1’4Cp [(w*-1)/2jJk)+i(7r/2)h(l-y) = _ 
Bo[y(l - y2)]ll12 e-i(“/4) W) 

1/Gi2~‘~lrn ll/T ’ 

Solving (35b) and (36b) simultaneously, we can show that 

~(A-lml)-~(W2-1)z(y,)=~(2n+l), n = 0, 1, 2, . . . (37) 

gives the eigenvalues, A. Using the definition of A from (8), we then have the equation 
for the eigenfrequencies, o. This result is very similar to that of(F) and can be shown 
to be identical in the limit as Y = 1 /E --, ~0 if we identify m, the angular mode number, 
with Fk, where k is the dimensionless along the front wavenumber of (F). This is as it 
should be since the edge of this model eddy, as its radius is approaching infinity, is 
becoming a canonical front. This means that if the mean flow does not vary much and 
the mean depth approaches a linear shape near the edge of the eddy, then the shape 
and velocity distribution of the rest of the eddy are relatively unimportant. 

For an unstratified ocean, where B = 0, Eq. (37) yields X2 = (2n + 1 + Jm 1)’ in 
comparison to the exact value from (12) of A2 = (2n + lml)(2n + 2 + lml). So 
unlike the canonical case the asymptotic result is not exact for B = 0. We can show 
that (A,” - @/AZ = l/A,’ where A, is exact (for B = 0) and A, approximate. We will 
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Figure 3. The real and imaginary parts of o versus the angular mode number m for various 
small values for the radial mode number n and for E = .25 and B = .l. The solid curves are 
values of the growthrate, Zm(w), for subinertial values of the frequency, Re(o). The dashed 
curves are values of Zm(o) for superinertial values of Re(o). The dotted curves are values of 
Re(o). The numbers on the curves are values of n. 

see that since the values of (m ] are discrete the lowest value of Irn ] that can be 
unstable is Im I = 1 so that we always have l/h2 < l/3 which is not all that good. 
However the approximation improves quickly with increasing m and II. 

It is observed from the results from (F) that the smallest possible value of the 
wavenumber, k, for instability occurs when o and B are set to zero. If this is applied to 
(37), we find that for instability we must have 

m> 
(1 - E)(2n + 1) + \l(2n + 1)2(1 - El) - 46(1 - 2E) 

2E (38) 

which reduces to k > 2n + 1, the result from (F), if we let m + (k/E) and E + 0. As in 
(F), we will find that unstable waves all travel in the direction of the mean flow, i.e. 
m > 0. 

The eigenfunctions associated with the eigenfrequencies will be quite similar to 
those from (F). These functions will be oscillatory in the interval, y < R < 1, on the 
outer ed e of the eddy as shown in (24) and will decay exponentially as exp{ -2/3 
4--++ [2/y (1 - y )] Im I IR - y 1”“) in th e interval 0 < R < y as found from (34). Thus 
when there is instability the oscillations grow but the decaying portion remains 
relatively negligible by comparison, so that the instability is essentially confined to 
the outer edge. We expect the accuracy of our approximate eigenfunctions to be 
similar to those in (F) in balancing the energy equation. Thus we should have poor 
accuracy for IZ = 0, but rapid improvement for II 2 1. 

5. Results and discussion 

Figure 3 shows the frequency, Re(w), and the growthrate, Zm(o), versus the 
angular mode number m for fixed realistic value of E and B. It is graphed as if m were 
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Figure 4. Contours of constant growthrate, Im(o), (solid) and frequency, Re(o), (dashed) in 
(II,. E) space for n = 0 and m = 6. The shaded region is neutrally stable. 

continuous, but of course only integer values of m are applicable. For each radial 
mode n, we can clearly see the subinertial (Re(o) < 1) and the superinertial 
(Re(w) > 1) regimes as found in (F). Because m is an integer and the bandwidth on 
m is narrow for the subinertial regime, it is problematical whether there will be an 
integer within the band width and hence a subinertial instability. This bandwidth 
increases with B as can be seen on Figures 3, 4, and 5 in (F). Clearly there is no 
problem that there will be integer values for the superinertial regime. Thus superiner- 
tial waves would appear to dominate the instability. 

Figures 4 and 5 show the level curves of constant frequency, Re(o), and growth- 
rate, Zm(w), in (B, E) space. On Figure 4 can be clearly seen the superinertial and 
subinertial regions. For larger mode numbers m and n on Figure 5, we see that the 
subinertial region is becoming negligible. As B increases, the growthrate increases 
which exemplifies the type of instability discussed in the summary of (F) in the 
introduction. 

In Figures 6,7,8, and 9 we show the level curves for the frequency, Re(o), and the 
growthrate, lm(o), in (n, m) space where only integer values of IZ and m are 
applicable. From these figures we see as in previous figures that the subinertial 
region is small compared to the superinertial region. For larger values of E and 
smaller values of B, the subinertial region can be narrower than a line on the graph as 
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Figure 5. Same as Figure 4, but for n = 10 and m = 60. 
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Figure 6. Contours of constant growthrate, Im(o), (solid) and frequency, Re(o), (dashed) in 
(n, m) space for B = .l and E = .25. Th e s a e h d d region is neutrally stable. At the top border 
between the shaded and unshaded regions o = 1.0. The region surrounded by shading is the 
subinertial region. 
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Figure 7. Same as Figure 6, but for B = .l and E = 5 The line in the shaded region represents 
the subinertial region. 

shown in Figures 7 and 9 which again shows the dominance of the superinertial 
waves. 

For m, n and B fixed, the flow becomes more unstable for increasing E until a 
maximum is reached as shown in Figures 4 and 5. However, for a fixed azimuthal 
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Figure 8. Same as Figure 6, but B = .5 and E = 5 
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Figure 9. Same as Figure 6, but B = .l and E = .9. 

wavelength on the edge of the eddy (given nondimensionally by 2alme) the flow 
becomes more stable with increasing E. Thus in this sense the canonical front is more 
unstable than an eddy. 

The internal wave radiation beneath the eddy from the unstable region for 
superinertial conditions will look very much like the straight rays in Figures 7 and 8 in 
(F). Theoretically those rays directed toward the central axis will turn away from the 
center on hyperbolic paths and never reach the center. In the real ocean, however, 
the bottom would almost always be encountered before the rays had a chance to 
curve very much. 

We found in (F) that the maximum length scale, L, of the unstable region at the 
front is approximately given by L = V,/f. This scale also applies fairly well to the edge 
of an eddy if the Rossby number, E, is less than about l/3 which would be true for 
almost all realistic eddies in the ocean. We note that L/r0 is E. So the Rossby number 
is a measure of the maximum fraction of the outer radius that can be unstable. 

A more precise measure of the region of instability of our cylindrical geometry for 
z > l/3 is the interval 1 y ] < R < 1, where the eigenfunctions of (23) are oscillatory. 
This interval at the edge of the eddy is greatest as E -+ 1 when ] y 1 = Imlh 1 is 
minimum which occurs for m = 1 and n = 0, the values that are as small as possible 
but where instability is still possible. So from (37), assuming B is small, we have ] A 1 = 
1 + Im ] and the maximum interval is l/2 < R < 1. Even for E near one, this interval 
of instability squeezes down quickly as m and it increase as it does in (F). 

We expect this unstable region to become turbulently mixed. But the intensity of 
mixing is not uniform over the region. The maximum value of the growthrate, 
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max [Zm(w)], is a measure of this intensity. For any E, max [Zm(o)] increases from 
zero at R = 1 y 1 to infinity at R = 1. This variation can be approximately quantified 
using results from the analysis of the front. From (59) of (F), we can show that 
max [Zm(w)] = B/n&z + l)[(l/fi) - l] h w  ere the unstable region is 0 I J I 1 for 
B -=x 1.7 is the dimensionless cross-front distance measured from the point where 
the front meets the surface and nondimensionalized by the length Vo/f where V0 is 
the velocity at the front. This equation applies to the eddy for E small if we let j = 
(1 - R)/E. The dimensionless along the front wavenumber, k, will be (2.~ + 1)/y for 
the most unstable wave. 

The most extensive observations of the edges of eddies are so-called ‘meddies’ 
which originate in the Mediterranean and are observed in the Atlantic. These eddies 
are generally not characterized by large density differences with their surroundings 
but by cores with higher salinity and temperature. Thus our model does not strictly 
apply. Armi et al. (1989) and Laanemets and Lips (1991) observing these kind of 
eddies in the Atlantic, note that lateral intrusion and mixing on the sides of the eddy 
are contributing most to its erosion. Ruddick (1992) has fairly well demonstrated that 
the mechanism of double diffusion dominates this intrusion. However, the instability 
described here should contribute to the initial breakdown of the interface, though 
the model would be difficult to apply after extensive double diffusion has occurred. 

6. Summary and conclusions 

For a realistic oceanic eddy (C < l/3) the results from the investigation of the 
canonical front (Kroll (1992) = (F)) can be used to good approximation for the 
eddy. This can be done by replacing the dimensionless along the front wavenumber, 
k, in (F) by em where E is the Rossby number and m the angular mode number. Using 
those results and results found here, we conclude that: 

(1) The eddy will be unstable in a boundary layer on the edge of the eddy which at 
a maximum cannot be any larger than one-half the radius. When E is a realistic value 
for oceanic eddies (< l/3) the results of (F) apply and this maximum width is 
approximately Vo/f where V, is the velocity at the outer edge. This is equivalent to 
stating that this width will be a fraction E of the radius. 

(2) Since the instability for most realistic conditions is confined to the outer edge 
of the eddy (O(10 km) versus O(100 km)), the shape of the eddy near its edge is 
much more important than the overall shape of the entire eddy. Thus these results 
should apply to eddies not having a simple parabolic shape if the shape is approxi- 
mately linear at the edge and the mean flow does not vary greatly there. 

(3) The unstable region shrinks but becomes more unstable as m increases. 
(4) For a given radial mode number, n, and Rossby number, E, there is a minimum 

value of m which must be satisfied for instability, given by (38). 
(5) The unstable wave is in the direction of the mean flow. From (F) we can show 

that the phase speed, o/k, is always less than the mean flow speed. 
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(6) We have subinertial and superinertial regimes, but the superinertial will 
predominate. 

(7) There will be rays of internal wave radiation originating from the unstable 
region of the eddy for frequencies greater than inertial. These rays will follow 
hyperbolas and can form caustics. Rays directed toward the center of the eddy turn 
before reaching the center. 

We expect the unstable region to become turbulent and the sharp vertex of the 
velocity profile to round off. Thus the eddy should erode away at the edge even 
without friction. Since the time scale for the life of an oceanic eddy is O(1 yr.) (Armi 
et al., 1989), a state of quasi-equilibrium would be expected to develop. This would 
suggest a future model using an eddy viscosity to represent the turbulent dissipation. 
Then we would like to know if this viscosity will stabilize the flow and, if so, to 
calculate how large this viscosity would have to be. 

The method used here could also be applied to an inviscid model of a cold-core, 
cyclonic eddy which sits on the bottom. This problem would essentially be the upside 
down version of the one considered in this paper. However, since the eddy is at the 
bottom, friction would affect it much more than the surface affects a warm-core eddy. 
The edge of such a cold-core eddy, where our instability is located, would be at the 
bottom and the effect of bottom friction is unclear. An inviscid model may be too 
unrealistic. There are other regimes of cold-core eddy flows which would be 
interesting to investigate in a manner similar to this paper. 
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