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Numerical modeling of larval settlement in turbulent
bottom boundary layers

by Thomas F. Gross!, Francisco E. Werner' and James E. Eckman’

ABSTRACT

A time-dependent model of a tidal or wave bottom boundary layer has been developed to
quantitatively evaluate the relative influences of vertical advection, turbulent mixing and
shear, and near-bed behavior on settlement of planktonic larvae of benthic animals. The
settlement behavior of larvae is modeled with a simple flux condition at the bed. This allows
full time dependence to be included when determining settlement rates. For tidal oscillations,
the model predicts that most settlement will occur at and near periods of slack water, whereas
comparatively little settlement will occur during periods of stronger flow. In contrast, there
should be little temporal variability in settlement rates associated with short-period wind
waves. If larvae exhibit a relatively weak propensity to settle, then the settlement flux is small
compared to the advective/turbulent flux of larvae supplied from higher in the water column
to regions near the bed. In this case, a description of probability of settlement and a
quasi-steady state suspension model fully describe the system. In contrast, when larvae exhibit
a high settlement propensity, then the settlement flux is potentially larger than the advective/
turbulent flux and the system is controlled by the hydrodynamic supply of larvae to the
near-bed region. In this case, net settlement is governed primarily by larval fall velocity (a
composite of gravitational sinking plus swimming) and turbulent shear stress. The ecological
systems which are controlled by animal behavior or by physical processes may thus be
identified by estimates of relatively simple parameters describing these fluxes.

1. Introduction

The recruitment of benthic invertebrates is highly variable in space and time. This
variability has long been appreciated, and has been attributed, in part, to patterns of
oceanic and local circulation (e.g., Ekman, 1967; Scheltema, 1974; Shanks, 1986;
Shanks and Wright, 1987; Roughgarden et al., 1988; Wolanski and Hamner, 1988), to
differential selectivity of substrata by larvae (e.g., Meadows and Campbell, 1972;
Gray, 1974; Crisp, 1984; Woodin, 1986), and to post-settlement events that affect
mortality (e.g., Connell and Slatyer, 1977; Paine, 1979; Keough and Downes, 1982;
Summerson and Peterson, 1984; Peterson, 1986; Fairweather, 1988). Prior research
has greatly expanded our understanding of the diverse factors that affect recruitment
and the extent to which these factors may operate. However, with few exceptions
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(e.g., Roughgarden et al., 1988; Eckman, 1990; Pineda, 1991), past research has left
marine ecologists with an inadequate capability to predict quantitatively the extent to
which larval settlement and recruitment may vary in space and time.

Simple scaling arguments (e.g., Butman, 1986) indicate that most planktonic
larvae are dispersed horizontally by currents in an essentially passive manner, with
most larvae capable of exerting control over no more than their vertical position in
the water column (e.g., Grosberg, 1982). Thus, hydrodynamic processes affect
intensities of larval settlement over both large and small spatial and temporal scales
(e.g., Eckman, 1983; 1987; 1990; Jackson, 1986; Wethey, 1986; Butman ef al., 1988;
Roughgarden et al., 1988; Wolanski and Hamner, 1988). However, the sophisticated
selective capacities of many larvae (e.g., see reviews by Crisp, 1984; Woodin, 1986)
indicate that behavior also plays an important role in determining ultimate sites of
settlement. Thus, settlement is subject to both hydrodynamic and behavioral con-
trols. Our capacity to understand and predict the variability of larval settlement in
space and time depends on developing a quantitative understanding of the relative
roles of transport processes and larval behavior in delivering larvae to potential
settlement sites, and flow forces, larval development and larval behavior in determin-
ing probabilities of settlement after a potential settlement site is contacted. An
integrated, quantitative understanding of these aspects of recruitment dynamics has
yet to be developed, and is the ultimate goal driving our initial modeling efforts
described herein.

Toward that end a time-dependent model of a tidal or wave bottom boundary layer
has been developed to quantitatively evaluate the relative influences of vertical
advection, turbulent mixing and shear, and boundary processes upon settlement of
planktonic larvae of benthic animals. Planktonic larvae of benthic invertebrates
settle through a turbulent boundary layer to the bottom which they sense, evaluate
and may explore before undergoing permanent metamorphosis. The supply of larvae
to the near-bed region will be controlled by vertical advection (e.g., gravitational
sinking), turbulent mixing and vertical swimming. The rate of attachment to the bed
will be controlled by the number of larvae interacting with the bed, and their
predilection toward settlement. It is the goal of this paper to examine the effects of
hydrodynamic processes within the turbulent boundary layer on settlement rate, and
to indicate the extent to which hydrodynamic controls on settlement rate may be
mediated or overridden by larval behavior. A boundary layer model in which
behavioral parameters are treated simply will be used to examine the hydrodynamic
side of the problem. We focus, in particular, on evaluating the effects of time
dependence within wave or tidally forced flows, because steady models of turbulent
boundary layers may not address these dominant features of natural oceanic flows
adequately (e.g., Grant and Madsen, 1986).

In classical advection-diffusion models of suspended particle transport the hydro-
dynamic control of suspended particles is provided by specification of an advection
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velocity (the gravitational fall velocity) and the turbulent eddy diffusivity (e.g., Sheng
and Lick, 1979; Middleton and Southard, 1984). The 1-D profile model of suspended
particle transport can be applied successfully to horizontally uniform flows (Gross
and Dade, 1991). To apply suspended particle modeling techniques we define larvae
by a single, constant vertical fall velocity which represents the composite of gravita-
tional sinking and an assumed invariant swimming vector. Several turbulence closure
methods are available which give different levels of approximation to the “true”
diffusivity. The turbulent kinetic energy closure method resolves temporal and
spatial variability expected in shallow or strongly forced wave environments. This
method is used here and has been used to model the flow field under gravity waves
with frequencies from tidal/inertial to wind waves (Bradshaw et al., 1967; Davies,
1986; Mofjeld and Lavelle, 1984; Gross and Nowell, 1990; Gross and Dade, 1991;
Davies and Jones, 1991).

The rate of larval settlement to the bottom is the primary focus of this study.
Towards this end we impose a bottom boundary condition in terms of larval flux to
the bed. The total settlement flux of larvae is specified as the product of the number
of larvae (per area of bottom) interacting with the bottom (i.e., available for settling)
and their probability of settlement. We have incorporated all aspects of larval
response to the substratum in terms of this simple probability statement.

We next describe the formulation of our model of time-dependent momentum,
turbulent kinetic energy, and larval concentration in the water column (Section 2),
followed by an evaluation of the turbulent kinetic energy method of specifying eddy
diffusivities, relative to simpler parameterizations (Section 3). Readers who are less
interested in the details of our mathematical treatment may wish to skim Sections 2
and 3. Thereafter, we detail our boundary condition that predicts larval settlement
rate (Section 4), followed by a dimensional analysis of both water-column and
boundary processes (Section 5). Model results are then described (Section 6) and put
into perspective (Section 7).

2. Model formulation

We solve for the time-dependent vertical distribution of a concentration of larvae
in a one-dimensional turbulent boundary layer. Coupled momentum and turbulent
kinetic energy equations define the hydrodynamic setting (e.g., Bradshaw et al., 1967,
Rodi, 1984; Mofjeld and Lavelle, 1984; Davies et al.,, 1988). Through mixing length
parameterization (e.g. Blackadar, 1962), a vertical eddy viscosity is computed which,
in conjunction with an externally imposed vertical fall velocity, casts the distribution
of larvae in terms of an advection-diffusion equation. An externally imposed fall
velocity advects larvae toward the bottom while the turbulence resuspends and
redistributes the larvae within the model domain.
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a. Concentration and momentum equations. The one-dimensional equation for the
distribution of a concentration C of larvae is

aC N d(wiC) _9 [A ac}

ot 0z az [ oz )

where the vertical axis is z (positive upward), time is ¢, wyis larval fall velocity and A, is
eddy diffusivity. The top boundary condition, z = h, is no flux

aC
A5 = wC=0. 2)

The bottom boundary condition specifying the settlement/resuspension flux will be
discussed in Section 4 and Appendix A.

Solution of the suspended larval concentration equation requires specification of
the vertical eddy diffusivity 4,. The spatial structure and the time-history of A, is
determined from the momentum and energy equations for a one-dimensional
turbulent bottom boundary layer. The equations for the u and v velocity components
in a rotating frame are

du 1P 4 du

ot _~p6x+az "oz G)
v 1P Al w .
at+ﬁ‘__pay+az Y oz )

where p is the density, P is the pressure and f is the Coriolis parameter. We have
assumed that, except for the pressure gradient term, horizontal gradients (inx and y)
may be neglected relative to vertical gradients. Similarly, we have assumed that the
(conventional Boussinesq) fluid is of homogeneous density. For simplicity we will
from here on restrict our attention to cases where Coriolis may be ignored, e.g. tidal
channels or shallow coastal areas. Lastly, we have ignored molecular viscosity and
parameterized tangential stresses through an eddy viscosity formulation.
To solve for « and v, we require no-slip at z = z, (the bottom)

u=v=_0 %)

where z,, the roughness length, represents a small distance above the true bed. Flow
over a smooth surface will have a small roughness scale due to the thickness of the
viscous layer, z, = v/9u, . Hydraulically smooth surfaces are rare in marine settings
and therefore we use the hydraulically rough flow parameterization. In hydraulically
rough flow z, represents the effect of geometric roughness variation upon the
turbulent momentum transfer to the ultimately viscous flow layer on, over and
around the bed roughness elements. Hydraulically rough flow over sand grains of
diameter k, has z, = k,/30 (Nikuradse, 1933). Similar expressions exist for many
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types of regular or irregular roughness which can be characterized by a length scale,
k, (Smith, 1977, Grant and Madsen, 1982; 1986). At the top, z = h, we specify the
surface velocity

u(h, 0) =u(t), vk, 1) = vi(0) ©)

and treat the pressure term as described in Appendix B.
We use an eddy viscosity closure which is a function of the turbulent kinetic energy
(TKE)

A, = Cik!"? 7N

where C, is a constant, { is the mixing length and %, is the turbulent Kinetic energy.

b. Turbulent kinetic energy. The equation for the turbulent kinetic energy k, relates
the time rate of change of k, to a production term, a vertical redistribution term and a

dissipation term as
ok, y oulr |av]P) o Aa’/é,_, g
a -~ M| Tl | Tl ®)

where we require no fluxatz = z, and atz = A

—=0. ©)
The turbulent kinetic energy diffusion is given by
A, =CA, (10)

and the dissipation term is parameterized as

ES/Z
e=Co (11)

We use the parametric form of the mixing length, /, given by Blackadar (1962)

z j:h 2k} %dz
I(z) = s b=y (12)
EERNNE

The nondimensional constants are k = 0.4, C, = 0.5, C, = 0.73, C, = 0.125 (C. =
C3) and y = 0.4 (Blackadar, 1962). Mofjeld and Lavelle (1984) have examined the
effect of the coefficient y on the boundary layer solution and conclude that near the
bed it is not a critical parameter. However the outer part of the boundary layer is
affected as the depth of maximum eddy diffusivity is proportional to y. We err on the
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Figure 1. Definition of mesh and model domain. Velocities are staggered relative to the
kinetic energy, eddy viscosity and concentration. In the log-linear transformed domain, the
grid spacing is constant. A point velocity profile is shown and the logarithmic region, the
boundary layer thickness and the free-stream regions are indicated.

side of a large v, or thicker boundary layer. Quantitative differences in boundary
layer thickness due to different values of y could be absorbed in the definition of
boundary layer thickness, i.e. 8, = s/ Or kit /0 Or cwisT.

c¢. Numerical considerations and discretization. The numerical treatment of the momen-
tum and TKE equations follows closely that of Ozer et al. (1988) and Davies and
Jones (1991). The discretization scheme uses 2nd order centered differencing for the
interior and the boundaries, with variables staggered as in Figure 1. A banded matrix
solution is required at each step for velocity, turbulent kinetic energy and concentra-
tion—tridiagonal for the interior points and appropriately modified at the bound-
aries. The treatment of the pressure gradient term when specifying the free-stream
velocity is detailed in Appendix B.

The procedure per time-step is to first solve for velocity, followed by a solution for
the turbulent kinetic energy. Using the mixing length equation (Eq. 12) we compute
the vertical eddy viscosity profile for that particular time-step. The concentration
equation is then advanced in time with updated A4, values. The computation is
repeated in the next time step.

Initially the values of velocity are set to zero. The initial turbulent kinetic energy
and the eddy viscosity are set to non-zero values: k, = 10~*m2 s-2 and 4, = k"2,
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The concentration profile is set by a steady Rouse profile (see Eq. 19 below). The
hydrodynamic component of the model is allowed to “spin-up” for 3 periods before
marching forward with the solution of the concentration profile. The concentration
profile is allowed to spin up for ten additional periods before solutions are examined.
After the spin up phase, transients from the initial values are no longer observed.

3. Time dependent TKE closure versus simple eddy diffusivity

In this section we compare the solutions obtained with TKE closure (Section 2) to
those obtained with simpler, externally specified closures. Although most simple
eddy diffusivities give similar velocity profiles near the bed, large differences in the
suspended particle load distribution with height will be demonstrated. The simple
closures obtain the turbulent boundary friction velocity scale, ux, from the outer
forcing velocity, U,, through drag coefficients, C;,. The simplest of these other

closures use eddy diffusivities of constant, linear or mixed formulations (Soulsby,
1990):

Constant Az, 1) = CaUi(t)

Linear Az, 0) = kzy/C,U,(1)

Mixed Az, 1) = k2y/C U (1) z < Zy, (13)
Afz, 1) = kZy JCUND) 2> Loy

Sample runs of the model for a tidal flow with moderate fall velocities are shown in
Figure 2 for the three simple eddy diffusivities and the TKE method. The parameters
used are listed in Table 1 (row 8). The plot of concentration times z versus logarithm
of z preserves area as an indicator of total concentration. The plot resolves the
relative contribution of near-bed to outer-bed regions by scaling concentration so
that area under the logarithmically stretched z coordinate is directly proportional to
larval abundance. The TKE example (Fig. 2d) shows that much of the larval density
oscillates up and down close to the bed, due to time variable diffusivity.

The simplest constant eddy diffusivity gives very poor results near the bed, but
models the outer region adequately. The concentration profile shows the near bed
region is too intensively stirred, with almost no larvae within 20 cm of the bed. The
linear diffusivity profile resolves the bottom well, because the form of wkzus is
compatible with the known asymptotic “inner layer” boundary layer solution. But
because the linear diffusivity increases up to the surface the outer region is overly
stirred and too many larvae are suspended in the upper region. Unlike the constant
diffusivity case, there is some larval concentration near the bed, but the magnitude is
low because much of the larvae are kept in suspension higher in the water column.
The mixed method matches the best of both forms to give the proper asymptotic
limits in both inner and outer regions. The point at which they are joined, Z;,, is
externally specified in this case. It can be seen that further refinements are possible
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Figure 2. Eddy diffusivity, and concentration profiles over time during a tidal oscillation for
the case of (a) constant, (b) linear, (c) mixed constant and linear eddy diffusivities and (d)
the case using the turbulent kinetic energy closure. The concentration plots are scaled by
multiplying by z. This creates a log-linear plot where area under the zC(z) curve is
proportional to total mass in suspension.

by introducing additional ad hoc parameters such as Z; , to describe features such as
boundary layer thickness, phase shifts between outer velocity, inner velocity and
eddy diffusivity and minimal turbulence levels. Most of these features are natural
results of the TKE formulation.

The drag-coefficient forms of eddy diffusivity create several unrealistic features.
Foremost is that during an oscillating flow the drag coefficient formulation allows the
diffusivity to become zero at slack water causing an unrealistic increase of the near
bed concentration. This does not occur in nature (except under conditions of
extreme weak forcing). The concentration profile equation becomes almost purely
hyperbolic giving rise to numerical difficulties under the solution scheme used here.
We imposed a minimum level of diffusivity (10~3m? s~! for the constant case and
v = 1.5 X 10-%m? s~! for the linear case). The very low diffusivity around slack water
is much less than the minimum of the TKE closure. Differences among the closure
schemes greatly affect changes in the maximum concentration near the bed. The
discrepancy needs to be resolved with laboratory observations as it can be quite
significant to predicting settlement rates.
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Table 1. Parameters of cases used in figures. All units are in meters and seconds. A constant
value of z, = 0.002 m was used for all cases.

Depth Period

Case h T U, wy W Wpmae Rl2o Bulh wplww, wiiw;
1 Tide 100 21600 0.21 0.0008 — 0.01 50000 0.14 0.18 —
2 Tide 100 21600 0.21 0.0015 — 0.01 50000 0.14 0.37 —
3 Tide 100 21600 0.21 0.0030 —_— 0.01 50000 0.14 0.74 —
4 Tide 100 43200 0.24 0.0008 — 0.01 50000 0.28 0.18 —
5 Tide 100 43200 0.24 0.0015 — 0.01 50000 0.28 0.37 —
6 Tide 100 43200 0.24 0.0030 — 0.01 50000 028 0.74 —
7 Tide 100 43200 0.52 0.0015 — 0.02 50000 0.55 0.19 —
8 Tide 100 43200 0.52 0.0030 — 0.02 50000 0.55 037 —_
9 Tide 100 43200 0.52 0.0060 —_ 0.02 50000 055 075 —
10 Tide 100 86400 1.13 0.0030 — 0.04 50000 219 0.19 —
11 Tide 100 86400 1.13 0.0060 — 0.04 50000 2.19 0.38 —
12 Tide 100 86400 1.13 0.0120 — 0.04 50000 219 0.75 —
13 Wave 10 20 0.28 0.0030 — 0.04 5000 0.0t 0.19 —
14 Wave 10 20 0.28 0.0060 — 0.04 5000 001 038 —
15 Wave 10 20 0.28 0.0120 — 0.04 5000 0.01 0.76 —
16 Settle 100 43200 0.52 0.0030 0.000003 0.02 50000 0.55 037 0001
17 Settle 100 43200 0.52 0.0030 0.000003 0.02 50000 055 037 0.010
18 Settle 100 43200 0.52 0.0030 0.000003 0.02 50000 0.55 037 0.100

The TKE closure shows considerable phase shift in A, from top to bottom, with the
point of maximum diffusivity moving up and down through the wave cycle. The
simple drag coefficient formulations lack this phase shift. The phase differences are
evident in the diftusivity profiles but do not strongly affect the mean velocity profile.
This characteristic has allowed successful modeling of velocity profiles with drag
coefficients. However the larval distribution profiles are qualitatively affected by
these differences in diffusivity. Part of the complicated time dependent structure
near the bed is created by the time lag of falling larvae relative to the changing
diffusivity. These interactions cannot be modeled accurately with the drag coefficient
formulation.

4. Boundary conditions for settlement and resuspension

Larval settlement is assumed to be driven, in part, by the near-bed supply of larvae
from the overlying water column (cf., Eckman, 1990). Thus, the bed settlement flux
will be assumed to be concentration specific and, additionally, a function of processes
operating at the bed including animal behavior, hydrodynamic forcing and the
physical properties of the bed. That is, the settlement flux is always directly
proportional to the supplied concentration specified just above the bed. In this
manner the two major components of the system, the model of the temporal and
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spatial variability of the concentration distribution in the water column, and the
model of larval settlement flux, may be decoupled.

Suspended sediment models have often specified the bottom boundary condition
by modeling an underlying bedload or saltation layer. A model of bedload dynamics
is used to predict the height of the bedload layer and the concentration of saltating
particles at that height (e.g. Smith and McLean, 1977, Wiberg, 1988; Wiberg and
Smith, 1989). This concentration is then taken as the bottom condition for the
overlying suspended sediment model. This technique is appropriate for suspended
sediment whose source is the bed and for which a dynamic bed load model may be
devised. However, larvae do not interact with the bed only as ballistic particles and
another approach to the boundary condition is necessary for this and additional
reasons. First, a population of larvae which have developed to a competent stage
have been in the water column for hours or days. These larvae do not have a local or
continuous source at the bed. Second, larval selection or rejection of the bed is not
dictated by probability of ejection by saltation motion. Selection can be viewed as an
interaction with the bed which results in either attachment or rejection back to the
suspended flow. The depth of the interaction layer will not be determined by a
balance of gravity and ballistic trajectories, as is the case with sediments, but rather
will be a function of the size and sensory capacities of the larvae, and perhaps the
turbulence strength (see below). Moreover, larvae may actively swim away from the
bed when rejecting it rather than simply rolling away along the bottom (e.g., Butman
et al., 1988; Pawlik et al., 1991).

A dynamic flux condition allows full time dependence in the boundary condition
and concentration term. The total flux at the bed is a combination of the flux due to
fall velocity and turbulent eddy diffusion and that due to the settlement/erosion flux

aC
® = wC ~ Avg - (w,C + w,Cpy) (14)

where w;, scales the concentration-specific settlement flux. w, and C,, are erosion
parameters which would describe bed erosion flux in a suspended sediment model
(or spawning, in a larval model). In the cases considered here the resuspension/
erosion flux is set to zero. Finally, with this flux boundary condition, the near-bed
time rate of change of concentration at z is

aC
ot

ad
, oz

(15)

Z
An alternative form of the settlement flux, &5 = w,C, can be posed indicating how

the behavior of larvae can impact the settlement flux. The bed settlement flux can be

specified in terms of the probability per unit time, p, that N larvae per area will settle.

This is apparently a more convenient statement of flux to be measured in the
laboratory. However the transference of number per area to number per volume
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Figure 3. The net flux of larvae into (and out of) the near-bed region over the distance z,
results from the combination of three distinct flux terms: ®,,_is the flux from above due to
fall velocity; ®,, is the flux due to turbulent diffusion (which can be into the near-bed region

if the flux is from above z, or out of the near-bed region if the larvae within z, are being

resuspended); and, &, is the flux out of the z, region to the bed through the larvae’s
permanent attachment or settlement.

requires the specification of an interaction distance, z.. This is the distance in which a
larva is close enough to the bed to interact with the bed, sense and finally attach to
the bed. The settlement flux can be expressed both ways,

&b =pN =pz.C =w,C (16)

where C is here the average concentration of larvae below z,. The interaction
probability per time ( p) is applied to all individuals within the interaction distance.
An experiment which measures p and N either implicitly assumes an interaction
distance or does not model the transition from suspension to the bed, i.e. all the
larvae begin in contact with the bed and a probability of attachment or metamorpho-
sis is measured.

The probability of attachment, and the interaction distance z., must be derived
from experimental observations of the behavior of settling larvae. In this paper we
simply parameterize their product as the settling velocity, w;. This allows evaluation
of the range of values of w, for which it controls the larval settlement rate. It will be
shown that the flux of larvae to the bed can be controlled either by the settling
velocity or by the hydrodynamic flux of larvae from higher in the water column to the
near-bed region due to advection (larval fall velocity) and turbulent diffusion. The
near-bed fluxes within the interaction distance z, are diagrammed in Figure 3.

Larvae above the interaction distance, z,, are assumed to have a zero probability of
settlement. Therefore it is of fundamental importance to determine the number of
larvae below z. and how this number varies as a function of time. In a no-settlement
case ( p = 0) the concentration of larvae below z. may reveal the times of potentially
maximum settlement rate. Therefore, even though the settlement model requires
only w;, specification of z, can be quite informative.

Two simple methods of specifying z, can be used. First, it is taken to be a simple
geometric scale related to the size of a larva or the distance over which it can sense its
surroundings. We have chosen a multiple of the bed roughness (3 &, or 90 z, ) which
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we assume scales to the approximate size of a typical larvae (0.1 — 1 mm). Alterna-
tively, z, may depend on the temporal pattern of turbulence near the bed. In an
extension of Dade et al.’s (1988) model of fine-particle contact with the bed, here it is
assumed that larvae can contact the bed only within the “quiet” interval between
intense bursts of turbulence that characterize the sediment-water interface (e.g.
Cantwell, 1981; Dade er al, 1988; Gross and Dade, 1991). In hydrodynamically
smooth flow the quiet period, ¢,, scales as 40 v/ux? (Bandyopadhyay, 1987). Alterna-
tively, use of an outer scaling in hydrodynamically rough flow, produces a similar
relationship, ¢, = 63, /Uy, where 3, is boundary layer depth and U, is mean outer
velocity (Cantwell, 1981). Thus, larvae closer to the bed than wyz, should be able to
contact the bed within one quiet period. This distance is:

z, = 40wpv/ux?, a7n

More study of the form and dependence of z, on flow parameters and based in
experiment are necessary. Here a simple ux dependent form for z, is presented to
illustrate the possible effect of time dependence of z, upon total settlement rates.

We apply one final condition to our parameterization of settlement flux. Just as
inorganic sediment has critical stress thresholds for erosion and redeposition, we
expect that larvae will not settle when the bed stress exceeds some critical shear
stress, 7., in part because of the mechanical damage potentially suffered by soft-
bodied organisms that would settle among jostling grains. Thus, the probability of
settlement varies as a function of bed stress. The functional dependence of w, on T is
unknown for any species. For illustration we set the settlement velocity to zero
whenever a specified critical stress threshold is exceeded

w, =0 T> T,
W, = pz, T<T,.

(18)

We will use 7, = 0.17,,, to illustrate the time dependence of settlement as affected by
Te-

5. Dimensional analysis

There appears to be a large number of parameters required to specify any case of a
sinusoidally time-dependent boundary layer and larval suspension and settling.
These will be examined by dimensional analysis to reveal fundamental non-
dimensional parameters so we can examine the behavior of the model and its
sensitivity to this simplified non-dimensional parameter set.

The dimensional quantities are: z, ¢, u(z, t), v(z, £), c(z, t), us(t), y, Yspmar, T, b, 25,
Croaty W, Wy, k.(z, 1), €(z, 1), A(z, 1), p, v, f. Some are either fixed (density of water,
Coriolis) or fully specified internal to the model (k(z, 1), €(z, 1), A,(z, t)). Most are
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predicted by the model when all external forcing is given (u, v, ¢, ux as functions of z
and ¢). The variables which are externally specified are: uy, Uspar, T, 1, Zoy Croats Wp, W

This list has been-divided up between externally specified parameters and those
variables which are predicted by the equations of motion and suspension. There are
several choices to make which affect the way we specify the model. For instance, the
outer velocity field, u,, could be found given the near bed stress, -+, , Or vice-versa.
The near-bed stress will be specified because it is less affected by bed roughness
changes and more closely connected to the strength of external forcing as given by an
imposed external pressure gradient.

The momentum field can be fully non-dimensionalized by specification of the four
variables u«p,q, T, h, z,. The concentration field and the bottom boundary condition
are specified with the addition of C,,., wy, w;. These in turn may be combined to
provide the non-dimensional controlling parameters:

h/z,

W/ ey

M [% o, T/ 277]
h h h

W/ W

The model gives all other variables as functions of these parameters and the
independent time and space parameters, ¢/T and z/h (or z/z,).

By specifying the model with the four parameters, h/z,, Wp/tUepae, Uspax T/h, and
wy/wy, we can examine many apparently different field conditions in a unified
context. We chose these four parameters because each has an easily identifiable
physical meaning. They correspond to relative roughness, Rouse number, depth
limitation and a ratio of settlement flux to advective flux. At times one might want to
consider different non-dimensional parameters such as w,T/h or wy/u+,,. These are
not new independent parameters. They can be formed from the above set of four
parameters and do not define additional different physical situations.

® ©1/z,, Relative roughness

The relative roughness, h/z,, is the ratio of the flow Reynolds number (u, 4/v) to
the roughness Reynolds number (u,z,/v). In most field situations the relative
roughness is large, i.e., > 10*. Kinetic energy closure requires large Reynolds number
flow with a hydrodynamically rough bed described by constant z,. Therefore the
model does allow small values of h/z, to be investigated. On the other hand,
variations in A2 /z, do not affect model results in the limit of large A/z,,.
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® 5y, /h, Boundary layer depth/Full depth

The height of an oscillating turbulent boundary layer will be determined by the
turbulent strength and the period of the oscillation; 8, = ., 7/27 where ¢ is a
constant of order unity. The factor of 2w is included for consistency with commonly
accepted terminology where radian frequency is used. The exact value of « is set by
the definition of the top of a boundary layer. von Karman’s constant, x = 0.4 = q, is
often used in wave boundary layer studies (Grant and Madsen, 1986). We will use
a = k. The parameter 3, /h is the ratio of boundary layer depth to total depth. If 3, /A
is less than one then the depth of the water column is greater than the boundary layer
depth and the turbulence generated near the bed will not communicate with the
surface. On the other hand if 8, /A is greater than one the boundary layer is said to be
depth limited and turbulence will be able to suspend material all the way to the
surface. In an oscillatory flow where the parameter 8, /4 is approximately one, the
boundary layer will interact with the surface at maximum flow and not at minimum
flow. These three cases will be seen to be important classifications of the behavior of
the system.

® Wi/ K+pay, RoOuse Number

The steady state profile of larvae in suspension using a linear eddy diffusivity (as is
appropriate near the bed) and uniform fall velocity has the solution of the Rouse
profile (the concentration is known at a level z;):

C@) = Ca)(z [2)r. (19)

The exponent wy/ku, is known as the Rouse parameter and is a measure of the
relative strength of downward flux due to fall velocity versus the upward turbulent
suspension flux. A smaller Rouse number describes a more uniformly mixed profile,
while a large Rouse number characterizes larvae of large fall velocity which remain
close to the bed.

® w, /wy, Settlement velocity to fall velocity

There are three mechanisms of larval movement in this model. The advective fall
flux, wyC, the diffusive flux, 4, dC/dz and the bed settlement flux, w,C. At steady
state, with zero settlement, the advective flux and diffusive flux balance and resuit in
the Rouse profile. However when settlement is allowed the fluxes are out of balance
and the ratio of settlement flux to either advective flux or diffusive flux becomes
important. Either w; /u+,,q, or w; /wy may be chosen as the parameter to describe these
ratios. The combination of one of these and the fundamental parameter wy/Kits g,
provides the other.

Another useful nondimensional parameter is the ratio of the distance a larva can
fall in one cycle to the total depth, w;T/h. This is analogous to the turbulent
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boundary layer depth limitation parameter. (In fact it is the product of 8, /4 and
Wy /U, and therefore not an additional independent parameter). The time depen-
dence of larvae adjusting to changes in turbulent intensity will be described by this
number. If w;T/h is large then larvae may possibly traverse the entire water column
and drop out within one cycle. If w,T/h is small then there may be little time
dependence in the concentration profile shape.

Table 1 lists some parameter combinations which are possible in nature and their
non-dimensional parameters. The model parameters of the figures are listed in this
table. Some other combinations of parameters are not physically realizable or
important in the ocean. For instance values of u.,,, fall mainly in the range of 0.5 —
5.0 cm/s and in shallow waters there is a spectral gap between tidal forcing and
wind-wave forcing with periods of 5 to 20 seconds. Intermediate frequencies such as
internal waves might be considered but we direct our attention to the tidal and
wind-wave cases.

6. Results

An important hydrodynamic control of larval settlement will occur through the
supply of larvae to the region below z.. We examine this control by fixing the
settlement flux at zero. Thus the total load of larvae in suspension is constant for
these cases, and larvae move up and down through the forcing period. A variable
describing the proportion of larvae found close enough to the bed to interact with it is

[ “C)dz
€= JZ C(z) dz .

This ratio defines the relative pool of potential settlers, and it varies from 1.0 for
large z, /h to zero for z, = z,.

The model cases below are forced by a single sinusoidal frequency. This simulates
tidal flow in a channel or uniform shelf, or for high frequencies it simulates a
monochromatic wind-wave field. Figure 4 shows the proportion of all larvae found
below z,, for both constant and variable z. (Eq. 17), as the boundary layer oscillates
through one period (Table 1, row 8). When the stress is high, at the beginning,
middle and end, most of the larvae are suspended higher than z, and ézc is small. As
the stress decreases through the ebbing current the near bed larval load increases.
The maximum lags the time of lowest stress slightly because larvae are falling toward
the bottom and still accumulating near the bed even after the stress has begun to
increase.

The constant formulation for z, was chosen to be three times the diameter of the
grain size of particles comprising the bed, which we take to represent the approxi-

(20)
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Figure 4. C’Zc (the proportion of larvae below the level z,) as a function of time. z. = 90 z,: solid
line. z; = 40 wyv/u Z: dashed line.

mate scale of a “typical” larvae. For the variable z, = 40 wyv/u%, the layer thickness
varies inversely with bottom stress, approaches maximum thickness during low stress
and thins considerably when the stress is high. There is a greater change in
proportion of larvae below z, throughout the tidal cycle in comparison to the constant
z, case. In both cases, it is clear that the pool of larvae available for settlement is
substantially greater at and near slack water than when currents are strong.

The four nondimensional parameters k/z,, Wy /Kllopaes O /h, and wy/wy, interact
with one another to provide a rich set of cases which will be presented in forms
similar to Figure 4. For these cases the relative roughness number is large and
constant. Small Reynolds number flows violate assumptions of the TKE modeling
method. Another non-dimensional ratio could be considered, namely the ratio of
z./h or z./d,. We simplify the evaluation of the nondimensional parameters by
considering only the case of fixed z. and therefore holding constant the ratio of z. to
full depth, . A zero fall-velocity, fully mixed profile, would give Czc equal to z. /A,
which could be a misleading artifact when z, is varied.

Before considering the effects of settlement, the purely hydrodynamic control of
larval supply to the bed will be examined through variation of the two parameters
Wy /Kl+yq, and 3y /h. The temporal variability and the magnitude of ézc will depend on
the thickness of the turbulent boundary layer and upon the thickness of the
larval-containing layer. Cz,: will be decreased by thicker turbulent boundary layers,
UsmaeT /2 (Or 8y /h), or thinner larval-containing layers, and increased by larger wy
(or wy/ktt=y,). Figure 5 examines these effects on C,, for a range of wy/kits,, and
8y /h which might be found in tidal flows. The range of these parameters in nature
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Figure 5. Each plot in this series shows the dependence of Czc on phase of tide. The two
parameters wy/ K-y, and 3y,/h are varied among figures. There is a strong dependence of
the near bottom concentration profile on wy/kit«,,, and a weak dependence on &/h. The
first column of 3 plots should be cross-referenced to rows 1-3 in Table 1. The second column
of 3 plots to rows 4-6 in Table 1, etc.

may be larger than shown in this figure. But, as the figures show, their effects quickly
reach asymptotic behavior.

® 3y /h

A boundary layer is not depth limited when the thickness of the layer containing
significant turbulent kinetic energy is less than the water column height. When 3,/
is less than 1.0 the total depth is large enough that the boundary layer does not
interact with the surface and any additional increase in /2 will not affect the near bed
structure. A depth limited boundary layer is one in which energy generated by shear
stress at the bottom is found distributed throughout the water column. When &, /4 >
2.5 the boundary layer is clearly depth limited and larvae are well mixed all the way to
the surface. At times of maximum u,,, (¢/T = 0.0, 0.5) the larvae are mostly above z,
and Czc is small. The increase of the amplitude of the peak in ézc at slack water is
complicated by the time dependence of the flow. For the time period of slack water
0.15 < /T < 0.35 the particles fall from above and fill the region below z,, thereby
increasing Czc' The amplitude of the peak in ézc at slack water increases with 8, /A
because, in an absolute sense, this period of slack water is longer when the boundary
layer is depth limited. That is, for constant wy/«u+y,, and h, a larger 8, /h can only be
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created by increasing T and thereby increasing the time of slack water. The peak of
C,, increases because more time is available for larvae to fall below z, at slack water.

® W/ Kllnpgy

The depth-limitation effects on temporal variation in C_',c are small when compared
with the variation achieved when wy/Kitsy,, is varied (Fig. 5). When wy/kits,,, is
increased by only a factor of two the proportion of larvae below z, grows substan-
tially. This reflects changes in the height of the larvae containing layer (i.e., the
region below which most larvae are contained) which is controlled by w;/ki«,,,, as in
the Rouse solution for suspended sediments. In the field this parameter can vary over
several orders of magnitude in part due to larval swimming behaviors. But, as Figure
5 shows, for all wy/kite,, < 0.10 the larvae are well mixed above z, and for all
Wi /Kl > 1.0 the larvae are almost all below z.. The range of wy/wit«,,,, Which spans
between the asymptotic cases is only 0.1 < wy/kue.,,, < 1.0. Larvae may have large
gravitational fall velocities but because they actively swim their effective fall velocity
may be near zero. Alternatively swimming behavior may cause the effective fall
velocity to be several times their inert downward fall velocity. However within a
boundary layer which is actively mixed by a large u.,, the frequency of bed
encounters by an individual larvae may be large even though the ratio wy/wu.,,,, is
small (Denny and Shibata, 1989).

Boundary layers forced by wind generated waves are much thinner than tidal
boundary layers. The time scale is 5 to 20 seconds with &, = 0.005 — 0.050 m/s.
Wave generated flows are seldom depth limited boundary layers as they are only a
few tens of centimeters thick, or three orders of magnitude thinner than tidal flows.
Therefore we might expect rather different behavior. Figure 6 demonstrates that
even with large fall velocities the larvae remain at constant levels above the bed over
a period of oscillation. Within one wave period a larvae may fall only a few
centimeters each decelerating phase. The larvae fall even less because the turbulent
kinetic energy responsible for resuspension is always relatively high near the bed.
Therefore the larvae remain near a steady state level above the bed, well mixed
throughout the boundary layer, but confined to the thin region where turbulent
energy is maintained. The ratio of thickness of the boundary layer to z, becomes
important when it is small (=1 — 100) as in these cases. Greater than fifty percent of
all larvae occur below 90 z,, (Fig. 6). In this figure we have sampled smaller values of
z, to highlight the weak temporal dependence of Czc' The only time dependence is
shown very near the bed over distances the particles can traverse within one cycle.
This distance is less than 90 z,, smaller than the size of larvae. The role of time
dependence in wind generated wave boundary layers will not be expressed in
changing concentration near the bed. But the temporal variability of near bed stress
will be large.
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Figure 6. The dependence of Czc on time during a 20 s oscillation. The three plots are for three
values of Wy/Kli+pmay, as described in rows 13-15 in Table 1. Within each plot the series of
curves are for z, = {z,, 102,,20z,, . . . 90z,]. Most of the larvae reside quite close to the bed.
Because the magnitude of the energy remains relatively high throughout a cycle, there is
little time structure.

® w, /wy Settlement cases

The zero settlement flux examples of Figures 4 and 5 indicate that for tidal flows
most larvae are available for settlement for a short period at slack tide, and that
considerably fewer are available when the flow is strong. Moreover, the slack period
is also when the stress will fall below any defined 7. for larval settlement. We
therefore expect that settlement will occur primarily or only during this short time
interval in tidally oscillating flows.
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Figure 7. The effect of settlement on total larvae in suspension (Cy solid line) and near-
bottom concentration (C-'zr dashed line) for four values of w,/w; = 0,1073,1072,10-". The
settlement flux is zero unless 1 < 7. = 0.11,,,, between times 0.17 and 0.29. The total larval
load drops when the stress is below critical. Larvae are removed from the lowest strata and
replaced by fall velocity or turbulent diffusion from above. When w is large the larvae do not
fall fast enough to keep the concentration near the bed high and total settlement becomes
independent of w, /wj.

We now consider a series of non-zero flux cases which will demonstrate the
relative importance of boundary processes and larval supply from the water column
to the bottom to settlement rates. The boundary processes which control larval
settlement, which are parameterized by w, include lift and drag forces on larvae and
behavioral responses to the substratum.

In the following cases critical stress (above which settlement is set to zero) was set
to be 10% of maximum stress (Table 1, rows 16-18). The cases in which settlement is
allowed are not steady state. Therefore the initial conditions will establish part of the
solution. By starting with a steady state Rouse profile at time zero, and allowing the
settlement flux to occur across nine periods, a nearly periodic solution is approached.
In Figure 7 we show total concentrations of larvae in suspension (per unit area of
bottom) and the proportion below z. (for z, = 90 z,) on the tenth cycle, non-
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dimensionalized by the total concentration in suspension at the beginning of the
cycle. By this time the initial transients from time zero have decayed and each
successive nondimensional cycle is spatially and temporally similar, differing only by
the concentration at the beginning of each cycle.

Figure 7 shows the effect on near bed concentration when settlement velocity is
varied over several orders of magnitude. The parameter w, /wy is used to scale these
examples. When w /w; is small the flux out of the bottom is limited by w and there is
a continuous slow drop in total concentration when 1 is less than 7. As w;/wy is
increased the concentration of particles near the bed decreases quickly while 7 is less
than 7.. The total concentration drops rapidly as the near bed layer is depleted.
Thereafter the drop in total concentration is limited by the flux from above the bed to
the near bed region within z.. Because the settlement flux becomes limited by the fall
velocity and turbulent diffusive flux above the bed, the near bed boundary condition
no longer controls settlement flux. For this case it appears that when w; /wy is greater
than 1072 it is no longer a controlling factor. The critical value of w,/wy is also
dependent on the parameter wy/kus . For large wy/«u.,,, fall velocity dominates
the flux toward the bed. For small wy/kits,,, turbulent diffusive flux will be more
important and the flux limitation will be described by the value of w; / ki«

Figure 8 shows the balance of advective and turbulent diffusive fluxes at the height
of z. and the settlement fiux at the bed. Before and after settlement the advective and
diffusive fluxes are large with only a small difference accounting for the changes in
ézc' During the settlement period the magnitude of the advective and turbulent
diffusive fluxes drops quickly with the drop in near bed larval concentration and u,.
When w,/w, > 10-2 the settlement flux is limited by advective flux, i.e. the two are
nearly in balance, and the turbulent diffusive flux approaches zero. Turbulent
diffusive flux does not appear to be a limiting quantity. The relative strength of the
advective flux to diffusive flux, wy/u«,., will establish the depth of the concentration
profile prior to a settlement period while the ratio w,/w, will establish whether the
flux will be limited by settlement velocity or advective velocity.

7. Discussion

The behavioral response of larvae to the substratum, driven by the composition of
the bed as well as by the degree of larval competence to settle, will determine
whether near-bed or water-column processes govern the net settlement. The model
indicates that net larval settlement will be governed by the settlement velocity (w;)
when it is small, relative to the larval fall velocity (ws). For this case, both the
settlement velocity and settlement flux will be low, and net settlement will be
independent of larval advection and mixing in the water column. In contrast, at
higher p, the settlement flux will be governed by the supply of larvae from higher in
the water column to the near-bottom region. The model indicates that hydrodynamic
boundary processes may be important to settlement only when the probability of
accepting the substratum (per unit time) is comparatively high.
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Figure 8. Near-bed fluxes for cases shown in Figure 7. Settlement flux at the bed, w,C(z,),
(dashed line). Advective flux at the level of z., wyC(z.), (negative solid line). Turbulent
diffusive flux at the level of z,, A, (9C/dz),-, , (positive solid line). Total flux, ®, at the level
of z., (dash-dot line). The shaded areas indicate periods of excess bed stress when w, = 0.

The Rouse parameter (wy/«u, ) describes the main hydrodynamic control of larval
settlement. It determines the distribution of larvae throughout the water column,
ranging from well mixed for small Rouse parameters, to near-bed concentrated for
large Rouse parameters. Although it is termed a hydrodynamic control, it should be
noted that the Rouse parameter is also subject to strong behavioral modification
through the potential effect of larval swimming on wy. Even a factor of two change in
wy by larval swimming can exert profound effects on the availability of larvae for
settlement (Fig. 5). Such changes in wy are easily imposed by larvae on gravitational
sinking speeds which typically range from 0.01 — 1 cm/s (e.g., Young and Chia, 1984;
Butman, 1986).

The fluxes of larvae into the near bed larval interaction region of height z. are
schematically shown in Figure 3. Although the time rate of change of concentration
within the z_ region is always small relative to the flux gradients, the number of larvae
within the region is controlled by the relative importance of the flux terms (Fig. 8).
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Figure 9. The interaction of settlement flux, ®s, fall velocity flux, ®,, and diffusive flux, @, ,
are described by the ratios w,/wy and wy/kttsma. The lines demark sections where the
relative effect of one flux dominates over the other two. Within a distance z. of the bottom,
depletion of larvae occurs only in the sections where ®; is the largest of the three fluxes
(hatched area). Otherwise the settlement is small and the source from above, either through
(I>wf or @, , is enough to prevent depletion within the z, region.

When settlement flux, @y, is largest, advection and diffusion, <I>wf and ®,, of larvae
from above do not keep up with settlement and the region becomes depleted of
larvae. When ®; is small, one or the other of the source fluxes will dominate,
maintaining a concentration of larvae within the region. When @, _ is the strongest
flux the profile is well mixed throughout the boundary layer, including the region
within z.. On the other hand, when CI)wf is largest the profile increases towards the bed
as a Rouse profile.

The relative importance of the flux terms can be plotted on a single graph of w,/w,
VErSUS Wy/Klheyq, (Fig. 9). From our model results we have found that the balance of
settling flux to fall flux is approximately achieved when w;/w,; = 10~2 (Figs. 7 and 8).
The separation of Rouse-type profiles from well mixed profiles occurs at
Wyl Kidepae = 0.75 (Fig. 5). These lines are plotted along with the line representing the
balance of settling flux to diffusive flux, wy/wy X wy/kite,,, = 0.75 X 10-2 The relative
importance of flux contributions within the different sections is indicated. Note that
on this graph the depleted larvae cases occur in only two sections, where ®g > @, >
<I>wf, the well mixed case, and &g > <I>wf > CD,,* , the Rouse-type case. The two sections
at the bottom of the graph where ®; is minimum are the zero or very small settlement
“steady state” cases. The other two sections wherein @y is greater than <I>WI (ord,,)
but is less than the other flux, correspond to conditions where settlement is
maintained by diffusive flux, ®,, > &5 > <I>w[ (or fed by the fall flux, <I>w/ > ®g >
®,, ).

Larval behavior can change net settlement by affecting either wyor w,. Changes in
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w; will only affect the settlement flux in regions of the graph which are amply supplied
with larvae, the non-depleted regions. And similarly, changes of w, will only affect
settlement flux when ®g dominates. Simply stated the net settlement depends only
upon the limiting flux term. This graph suggests that experimental evidence of larval
control over net settlement will be found only in regions limited by fluxes that can
be affected by larval behavior. In the sections where CDWI is limiting, wy/kuep,, < 0.75
and w,/wy > 0.01, larval swimming behavior may affect net settlement. Larval
settlement behavior may affect net settlement only in the sections where @ is
limiting, <I>wf >, > &, and (DL,* > <I>wf > &g (where wg/wyis the smaller of 0.01 or
wy/wy < 0.75 X 10~ %cu, /wy). These sections of Figure 9 define the ranges of the
parameters wy/wy and wy/Ku+,,, Wherein larval control of net settlement can be
observed.

Larval swimming and responses to the substratum may have dominant effects on
the settlement rate. These behaviors must be studied and quantified accurately if we
are ever to discern the relative influences of behavior and hydrodynamics on
settlement. In particular, we do not know even approximate ranges of the parameter
p, which are needed before we know whether it is important to focus on the boundary
(loss) or the internal flow (larval supply) in predicting settlement rates. This model
has helped to point out that p or w, can be studied independently of a complicated
turbulent boundary layer.

We have so far made the simplifying assumptions that wy is independent of time
and depth, and that p exhibits a simple shear dependence. Whereas these terms may
be impacted significantly, if not dominated, by larval behavior, there is little doubt
that nature will prove to be more complex. For example larval swimming may be light
and pressure (and therefore depth) dependent, and may be sensitive to turbulence or
Reynolds stress (Jonsson et al., 1991; Pawlik er al., 1991). Attachment probability, p,
may exhibit a far more complex dependence on u, than that assumed herein, due to
influences of lift and drag forces on larvae exploring the bottom (cf., Eckman et al,
1990). These shear and depth dependent behaviors are poorly understood, yet they
may greatly impact predictions of larval settlement rate.

The model predicts that there may be substantial temporal variability in rates of
settlement over tidal time scales (Figs. 4 and 5). Most of the settlement may occur at
and near periods of slack tide, and comparatively little during periods of strong flow.
If it is realized in nature, this prediction could help to explain oft-noted spatial
heterogeneity in benthic recruitment, as settlement may be most intense where a
patch of planktonic larvae are located when the tide goes slack. However, it is
possible that larval behaviors, such as flow-dependent swimming responses, may
mask or override this predicted pattern of settlement (Pawlik e al., 1991).

Our examples all used a simple sinusoidal outer velocity forcing. Other time
dependencies could be studied. Steady state cases are simply profile solutions which
are asymptotically approached for very large xu, T/2wh = §y/h cases. Another class
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of time dependence not discussed here is that of rotary currents. The current speed
need not ever pass through zero and thus u,, k, and therefore A, may not vary
strongly in time. Under these conditions the suspended larval concentration ap-
proaches the steady state solution. In nature we expect to encounter a variety of time
scales which will interact to provide a more complicated time dependence. For
instance, the spring-neap tidal cycle may intensify settlement rates on a bi-weekly
schedule or storms may interrupt the simple tidal forcing and settlement patterns.
These cases may be important in some settings. But the conclusions gleaned from the
sinusoidal forcing cases will still hold when the dominant time scale of interest can be
identified.

The continuum one dimensional model of larval suspension is best used to give
gross availability to the lowest layer. Although the momentum and energy equations
are well posed and naturally require resolution near z, of fractions of z,, the
boundary conditions on larval suspension near the bed seem to behave unrealisti-
cally. The no-flux condition at the bed results in a strong gradient of concentration at
heights of order a few z, and always a large concentration in the lowest resolved
depth stratum. A larvae of length =30 z, cannot increase in concentration across
length scales of a few z,. There is no abnormal effect of these artificial, near-bed
conditions on the outer concentration profile nor on the flux toward the bed. But
they point out a weakness in the conceptual model. Namely the extrapolation of
steady state conditions to settlement conditions near the bed yields an unrealistic
view of large larval gradients and rapid flux. However the large concentration very
near the bed is only a transient phase found before and just after settlement flux is
started. Because we are using bed flux conditions which are specific rates (i.e. a
settlement velocity times the near-bed concentration) the boundary condition is
affected by the realism of the concentration near the bed.

A computational approach which avoids continuum concentration problems is to
use Lagrangian particle tracking methods (Gidhagen et al,, 1988; Thomson, 1984).
Particles representing individual larvae are released into the turbulent flow defined
by the TKE model and allowed to advect and “random walk” through the water
column. The larvae will be allowed to interact with the bed when they are within z,
just as in our model. But because the larvae can be given finite size they will not
“overconcentrate’ at distances too close to the bed. More realistic conditions near
the bed should result.

8. Concluding remarks

A model of suspended larval concentration was used to demonstrate the relative
effects of hydrodynamic and behavioral controls on settlement. A relatively simple
TKE closure method provided a fully time dependent profile of turbulent eddy
diffusivity. Non-dimensionalization yielded four parameters which describe most of
the model cases: z,/h, 8y/h, wi/Klispme and w/wy. The range of effect for these
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parameters is surprisingly narrow. The system quickly approaches asymptotic behav-
ior outside the ranges demonstrated. From a purely hydrodynamic standpoint the
Rouse parameter wy/ku-,,, had the strongest influence on availability of larvae to the
bed for settlement. The settlement flux will be limited by w;, which parameterizes
settlement behavior near the bed, and by rate of supply of larvae from higher in the
water column. The rate of supply will be the larger flux of either fall velocity flux or
diffusion flux. The controlling parameter of settlement is thus the smaller of w,/wyor
W/ Kooy

This methodology provides a framework in which we can work on the controls of
larval settlement rates. Most of the unknown problems fall upon the parameter, w,,
and the probability of larvae selecting the bottom for settlement. Progress on the
biologically complicated problem involved in estimating w, = pz, must be made
before we consider further dynamic interactions with time varying flow and variable
bed roughness.
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APPENDIX A

Numerical treatment of the concentration equation

The equations are transformed from (z, t) coordinates to log-linear (&, ¢) coordi-
nates, €.g., Davies et al. (1988), where

_1f (2
£=x ln(z_o *

z - z,,)) (A1)

Zy

and

x=1In (;3) ¥ (h - Z") . (A2)

o Zx

Here 4 is the height of the model domain, z, is the roughness length and z, a
stretching term in the coordinate transformation where z, < z, < k. Our numerical
treatment of the momentum and energy equations follows the staggered formulation
of Ozer et al. (1988) and Davies and Jones (1991). The details of the discretization of
the concentration equation follow next. In log-linear coordinates, Eq. (1) is

aC 1( zi)?_(wf_C)_l( z*)a

o)l ) 5
a T o\ T1®) e T oap\ tag)eE\l T xg) ] W)
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and in discrete form

5Cy k ad’ (2¢) ntl o ntl o (&)
rAt —— [(witiC - (Wf)kfll/z A+ (=0, —— 3
X [(Wf)ZH/zCZH - (Wf)Z—n/zcz—l] = 0007 (2c) (A4)

X [r(zes1)(A, 21,',285CZ+‘ = HZ)AL 1/285C"+1

+(1- ®mn)’(5k)[’(zk+1)(AV)Z+1/28§C2 - r(zk)(Av)Z—I/ZBECI’:—I]

where the only unknowns are the C"*'s. The &, and & are forward difference
operators in time and space respectively, e.g., §Ci = Ci*' — CL r(E) =
(xz « AE)"" X (1 + z, /Z;) and analogously for r(z,) and r(z;+,). The subscripts k + 15
indicate averaging of the variable, e.g., (w)ii,,= 0.5[(w)ii! + (w)i*'], where k is
the spatial index and n the temporal index. The Z corresponds to locations where the
concentration is evaluated and z without the tilde to the mesh locations where the
velocity is evaluated (Z and z are staggered, Figure 1), and 8,, and 6,,, are weights
between time # and n + 1 such that the formulation is fully implicit if they are 1 and
fully explicit if they are 0. Here we use (8,4, 6.,.) = (0.5, 1.0).

At the bottom we explicitly write an equation for the time rate of change of C as a
function of the advective and turbulent flux from “above” and the settlement/
resuspension flux from “below”

aC 1
al 82 [q)above (Dbelow] (A5 )
where
P C-A4 BC) A6
above = | Wr ) ( )
and
Ppeton = (WC + W Cpea) |- (A7)

Here w; is the settlement velocity, w, is the erosion rate/velocity and C,,, is the
concentration in the bed. In discrete form (AS) — (A7) at the bottom, k = 1, are

3.CY .\ | Bad g n
Ttl = —r(Z) 2 [(Wf)s/zlcn+l + (Wf)'llleC"H] = Bon ’(21)(/‘1‘:)1721((:2)rl - C1

"+]e n+l n+l n+lentl (1 — B”d) 7 n n n
) (3C = C3 )+ By w, T Ch + 5 [(wp)3,2C3 + W)1C

n

n n n Wy e”d
- econr(zl)(Av 1/2(C2 - Cl) - 2

(3CT = C3) + 0, Chy (A8)
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where 8y, is the weight between time n and n + 1. Note that wyis staggered relative to
C and hence (wy);, interpolates onto C; and similarly for (wy),; and C,. The value of
C at the bottom is approximated by C;-y = (3C; — C;)/2. At the top we impose a
condition analogous to (AS) and require zero flux, i.e., no particle source/sink at the
top, dasove = 0, and e, 1s Of the same form as (A6). The system of equations is set
up in tri-diagonal form and solved with standard banded matrix solver.

APPENDIX B

The pressure gradient term

Knowing the value of the pressure gradient term

-4

solutions to (3) and (4) are obtained by requiring no stress at the top

Ao 42 B2
vaz_? vaz_ ( )

and no slip at the bottom (Eq. 5). Since P is known it is imposed at each step as a
known (“right-hand side”) term. However, if P is not known a priori but we do know
u, and v, (Eq. 6; the free-stream/geostrophic velocity components above the
boundary layer), then we calculate P as part of the solution (Ozer et al., 1988) as
follows.

As above, we require no stress (B2) at the top, and no slip at the bottom and write
the resulting system of equations in discrete matrix form

Anwn+l =B + eanHI (B3)

wherew (=u + iv, i = \/—_1) is the vector of unknowns, i.e., at time n + 1; I is the unit
vector; A is the left-hand-side matrix of known entries; B the known right-hand-side
vector; and 6, is the temporal weighting of the pressure terms which we treated fully
implicitly, i.€., 8, = 1. Redefining w as

wn+1 — w:‘+l + epPlH-lAn-H (B4)
we can rewrite (B3)
An(wg:rl + eanH}‘nH) =B+ BPPnHI (BS)
where wt! and A7+1 are solutions to
A'w [ = B" (B6)
A"N'H =1 (B7)

The unknown pressure gradient term is obtained using the known velocity w,/"*! at
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node k! (Eq. 6) at the top of the model domain
witl =it 4 gt = w 4 g P

or

Pn+] =

141 n+1
8 }\,,H( K~ Wi )
p'Nkl

639

(B8)

(B9)

where wi*! and A*! are known from the solutions to (B6) and (B7). The remaining

wrtl fork = k; to (kI — 1) are obtained from

WZH = w':k+l<l + eanHM:H (BlO)
Table of Symbols
Quantity Dimension Description
A, -t Eddy diffusivity
C #1-3 Concentration of larvae (number/volume)
C, TKE closure constant
C. TKE closure constant
C. TKE closure constant
C-'zc Proportion of larvae within distance z, of bed
Cy Drag Coefficient
Cheq #1-3 Concentration of larvae in bed
Croral #1-2 Total initial number of larvae in suspension per area =
"z, t=0)dz
f -1 Corlolis frequency
h { Total Depth
ks, 1 Physical bed roughness scale
k. 13- Turbulent kinetic energy
L1, ! Mixing length and asymptotic value
N #1-? Number of larvae per area
p 11 Probability of settlement per time
P mil-t-2 Pressure
t t Time
ly t Quiet time between turbulent bursting
T t Period of oscillation
u,v It Velocity of flow in X, Y directions
Uy, Vi, It-! Maximum outer velocity components
U g max It Maximum shear stress at the bed
Uy It-! Shear stress velocity scale
w It Complex velocity
We I Erosion velocity
wy It Fall velocity of particles
W it Settlement velocity
z ! Height above the bed
2z, I Interaction distance of larvae with bed

2, { Roughness length scale of sea bed (z, = k,/30)
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Table of Symbols Continued

Quantity Dimension Description
Zy ! Log-linear transformation height
Zs, 1 Height of linear drag law
Y TKE closure constant
Bp1 ! Depth of turbulent boundary layer
€ -3 Turbulent kinetic energy dissipation
K von Karman’s constant = 0.4
v 2! Molecular diffusivity
p ml 3 Density of water
T mi-2 Bed shear stress, pu? = 7,
Te ml~i? Critical stress threshold for deposition
o #1251 Flux of larvae
(O #l-2%1 Bed settlement flux
b, #1-2% ! Diffusive flux
D, #l-2%! Advective fall velocity flux
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