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The stability of a canonical front

by John KrolP

ABSTRACT
The stability of a geostrophic frontal current of constant slope over a stratified ocean is

investigated using asymptotic techniques for large horizontal wavenumber and a small Burger
number. The front is called canonical because it should approximate the edges of eddies or
boundary currents. Results show that the front is unstable for an along the front wavenumber
greater than flVo where Vo is the current velocity. But the instability is confined to a region
near the vertex of the front of horizontal extent O(Volf). The flow becomes more unstable for
increasing wavenumber and it is speculated that this region near the vertex will be strongly
mixed, rounding off the sharp vertex of the steady state flow. There will be strong internal wave
propagation from the interface of this region into the ocean when the frequency is greater
thanf.

1. Introduction
In the past, eddies and fronts in the ocean and atmosphere have been studied

using the quasi-geostrophic approximation where the time dependent terms and
nonlinear terms in the equations of motion are assumed small compared to the basic
geostrophic balance. Examples of its use are Hoskins and Bretherton (1972) for
fronts and McWilliams and Flier! (1976) for eddies. However, in many cases the
necessary condition for its use, that the Rossby number, E, be much less than unity, is
not fulfilled. For example, the typical isolated eddy has E = 1/4 (Joyce, 1984) where E

is defined as the ratio of the absolute value of the angular swirl speed to the Coriolis
parameter. This is not a small E, and also, the eddy has a significant density jump
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across its sloping interface with the surrounding water which cannot be handled by
standard quasi-geostrophic dynamics.

More recently the "reduced gravity" or "1.5 layer" model has been used. This
consists of an active homogeneous layer of inviscid fluid over an inactive homoge-
neous layer of higher density and infinite depth. The aspect ratio of depth to
horizontal scale in the top layer is assumed small and the time dependence and
nonlinear effect are order one.

This model was first applied to fronts by Griffiths et al. (1982) and showed that
instabilities can exist. Subsequently, Killworth and Stem (1982) applied it to a
density driven boundary current and found the flow can be unstable for a mean
potential vorticity increasing toward the boundary and the mean current vanishing at
the boundary. At about the same time Paldor (1983) applied it to essentially the same
type of current but with uniform potential vorticity and found the flow to be stable.
Cushman-Roisin (1986a) assumed a time scale much larger than inertial and derived
a model which might be characterized as a combination of the quasi-geostrophic and
1.5 layer models which can deal with situations where the interface slopes are
important.

The 1.5 layer model was first applied to eddies by Cushman-Roisin et al. (1985).
Actually, the application to eddies goes back to the problem of a rotating fluid with a
varying elliptical bounding surface. That nonlinear problem has a long history (see
Lamb (1945), Chap. 12). It was found that solutions to it can be found in a form
separable in time and horizontal space with the equation in horizontal space in the
form of a polynomial. Later, Ball (1963) found integral constants of the motion. The
long wave shallow water equations used for that problem are the same as those that
result from the 1.5 layer model. This was exploited by Cushman-Roisin et al. (1985)
to identify and investigate two special cases of the general solution applicable to
oceanic eddies. One was the "rodon" solution in which an ellipsoid of constant size
rotated uniformly anticyclonically. The other was an axisymmetric anticyclonic
vortex with an oscillating horizontal divergence (later called the "pulson" solution by
Kirwan and Liu (1988». Subsequently, Young (1986) classified the general vortex
solutions in size, shape and orientation with changes in size being at the inertial
frequency, changes in shape superinertial, and changes in orientation being either
sub or superinertial. Cushman-Roisin (1987) found an exact solution to a combined
pulson-radon case. Cushman-Roisin (1986b) and Ripa (1987) investigated the
stability of the general rodon case and showed that instabilities occur if the
eccentricity of the eddy is sufficiently large. They also showed that the normal modes
of the perturbation of these cases will be a function of finite degree polynomials.
Kirwan and Liu (1988) investigated the general separable solutions for a wide range
of conditions. These conditions were not confined to what are considered realistic for
oceanic application.

The next logical step in modelling a more realistic eddy or front is to add a
stratified interior. We are not only interested in the influence of this additional effect
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on stability but also in the character of the internal waves that could be generated.
Our investigation began with an investigation of a circular eddy. It became apparent,
however, that it was the dynamics occurring at the edge which were most important.
So it was decided to study a front of constant slope first.

Some previous work may indicate what we should expect. Kroll (1982, 1988)
investigated the stability of a mixed layer that included a mean flow over a stratified
ocean separated by a density jump interface. The main difference with the present
study was that the interface had no slope. Results from that study indicated an
instability for wave perturbations in the direction of the mean flow. So we might
expect an unstable wave in the direction of the mean frontal current no matter how
the mean potential vorticity varies.

The front investigated here has a constant slope and should be about as simple as
is possible while still retaining the essential physics. The results, at least to some
degree, should apply to any front or eddy edge where the curvature of the front is
sufficiently small over the scale of interest. Hence we call this front "canonical."

2. Formulation of model
We consider a frontal current in a layer with depth h(y) and uniform density PI

which overlays an infinitely deep stratified ocean with density P2(Z) > PI' We will
designate the top layer as the "current" and bottom layer as the "ocean."

We assume the system on anf-plane and that the surface acts like a rigid lid. In the
current we have the usual shallow water (nonlinear) equations. In the ocean we
assume no heat conduction, density perturbations sufficiently small to use the
Bousinesq approximation, a linear equation of state, motions sufficiently small that
nonlinear terms can be neglected and vertical scales of motion much less than that of
the horizontal. The equations of motion are then:
For the current:

For the ocean

1
UII + UIUIx + VIUly - fvl = - -Pix

PI
1

VII + UIVIx + VIVly + ful = - -Ply
PI

UIx + Vly + Wlz = O.

-1
u2t - fv2 = - [P2x - g(P2( -h) - PI)hxl

PI
-1

v2t + fu2 = -;- [P2y - g(P2( -h) - PI)hy]

P2z, = gw2P7z

U2x + v2y + W7z = 0

(1)

(2)
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where P2(Z) is the density of the basic state in the ocean and the reference density PI is
assumed constant. The boundary and interface conditions are for the current:

at z = 0, WI = 0

at z = -h(x,y, t), h, + ulhx + vlhy = -WI

and for the ocean:

_ {hI + U2hx + V2hy = -W2 h > O}
at z - -h(x,y, t), 0 h = 0 and PI = P2'

W2 =
There is also a radiation condition that no energy must flow into the system from
l(y,z)I-H.O.

We now assume linear stratification, P2 = Po+ P2Z, P2 < 0 a constant. (P2( -h) -
PI) will varywithh but we will assume Ip2 [h/(po - PI)]I « 1 so that P2( -h) - PI = Po
- PI = ~P a constant. In effect we are assuming that the basic density jump between
the current and ocean layers is large compared to the density change within the
ocean layer in the region of interest. This region will be seen to be near the surface.
LetPI,2 = PI,2 - g~ph and nondimensionalize. We then have for the current:

Ull + U,UIx + V,U'y - VI = -hx - Pix

VII + UIVIx + V,Vly + Ul = -hy - Ply

h, + (hVI)y + (hUl)x = 0 (using the interface condition for the current)

for the ocean:

U2/ - V2 = -P'}x

V2/ + U2 = -P2y

Pal + B2w2 = 0

W2z + v2y + U'}x = 0

and boundary conditions:

at z = -h(x,y, t), h, + U2hx + vzhy = -W2 h > 0

0= W2 h = 0

and Pl(x,y, t) = P2(x,y, -h(x,y, t), t).

(3)

(4)

The nondimensionalizing was done as follows:
h - H,z - H,x,y - L = Jg'H/f(Rossby radius of deformation) (u, v) - Vo =

Jg'H,w - (H/L) Vo,t -lIf,P - pofLVo(po/pbassumed = l)andg' =g(6.p/po),
B = (H/L)(N/f) where buoyancy frequency N = J( -g/PO)"P'2 and B2 is a Burger
number.

Figure 1 shows the wedge-shaped front we are considering. For the steady state we
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Figure 1. The canonical front (dimensionless space variables).

assume ax = ar = 0, U2 = V2 = 0 which implies P2 = 0 so that PI = O.For the current we
assume VI = 0 and slope of the front is constant. Using overbars for steady state
values we then have

(5)

Thus for hy constant UI is constant, and assuming UI is unity, hy = -1. Physically,
there is no characteristic depth H, but rather the slope m = HI L characterizes this
flow. Dimensionally h = -my, U = Voso that given Vowe have m = f Voig', L = Volf
and so B = mNlf. The dimensionless potential vorticity of the mean flow is lIh(y)
which decreases away from the intersection of the front with the surface.

To be consistent with the assumption that Ip'2 [hi (Po - PI)] 1 « 1, we can show
that we must have B2 « 1. This is usually the case. For example for Vo varying
between 10 to 100 cm/sec, Nlf '= 100 and g' '= 3 we have B varying from l!Jo to l!J.

However, this assumption could be violated for certain possible combinations of
current speed, density gradient, and density jump between the layers.

The perturbation equations are found by expressing the dependent variables in
steady and perturbation parts, i.e.

( ) = () + ( )'. Dropping the primes we find for the current:

and for the ocean:

Uu + Uix - VI = -hx - Pix

Vir + Vix + UI = -hy - Ply

hr - (YVI)y - YUIx + hx = 0

U2/ - V2 = -P2x

V2/ + U2 = -P2y

P2zI + B2w2 = a
U2x + V2y + W2z = 0

(6)

(7)
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at
_ [hi - V2 = -W2 Ii > 0)

z = -hey), 0 = W2 Ii = 0 and PI = P2·

We do the usual linear stability analysis. We assume a plane wave solution inx:

(8)

(9)

For given values of the wavenumber k and the other parameters, we look for
solutions of the eigenfrequency 00 which have a positive imaginary part and are thus
unstable.

Eliminating III and VI in (6) we obtain for the current:

(10)

where c = oo/k and D = 1 - k2 (1 - C)2. Boundary conditions associated with (10)
are that (6c) be satisfied at y = 0 (which will imply that it be bounded at y = 0) and
that it be bounded for y _ -00.

For the ocean, eliminating lI2, V2, W2 in (7) we obtain:

(11)

where v2 = (002 - 1)/B2. Though we are assumingB2 « 1, v2 cannot be assumed to
be always large since 002 - 1 can be small. The boundary conditions associated with
this equation are:

at
(12)

at z = 0, y > 0: w2 = 0

and the radiation condition for Iy,zl- 00.

3. Energy balance
Before finding a solution to the system of equations, it will be useful to have the

perturbation energy flux balance in the current layer. This can be shown to be in
dimensionless form:

where we have integrated over the depth of the current layer and the long overbar is
an average over x (Ii and illare still the steady state quantities). The terms on the left
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are the rate of change of the kinetic energy density and the potential energy density.
The,first term on the right is the energy flux from the mean flow, the second term the
energy flux out of the current layer (internal wave radiation) and the third term the
lateral flux within the layer.

It will be useful to see how well our asymptotic solutions satisfy this equation. We
will integrate it over y from 0 to -00 in which case the third term on the right will
vanish.

4. Solution for special case: no stratification

For no stratification in the ocean, B = 0 which means P2 = PI = O. From (10) we
then have

(14)

where Y = -2lkJy andK = [e/(1 - e) + k2 (1 - e)2]12Ikl. The boundary conditions
are: at Y = 0, hy = -Kh and for Y -7 00, h bounded. A solution of (14) which is
bounded at Y = 0 automatically satisfies the boundary condition at Y = O. The
general solution is

(15)

where M and U are confluent hypergeometric functions. The property of these
functions is such that h will be unbounded at Y = 0 or Y -700 unless 1If(Y2 - K) = O.
So our eigenvalues are given by the equation

K = n + Y2, n = 0, 1, 2, ...

For these values we can show that eigenfunctions are

it = C e - YI2 L (Y)n n n

(16)

(17)

where the Laguerre polynomial, Ln(Y) = Ij=o( -1)i ('J) (1Ij!) yi. Thus, we obtain
finite degree polynomials consistent with the work of Cushman-Roisin (1986b) and
Ripa (1987).

From (16) we have the cubic equation:

'[2n+l 1] 1(c - 1)3- -I-kl- + k2 (c - 1) - k2 = O. (18)

The discriminant is (1140) - (1I27)[(2n + 1)/lkl + (1Ik2)P which is (1I-27k4)

x (Ikl- 2)2 [Ikl + (1/4)] ~ 0 for n = O.If the discriminant is ~O for n = 0 then it also
is for n > 0, so it is ~ 0 for all n ~ 0, and there are only real roots for w = ek. Thus the
nonstratified case is always neu'trally stable.
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Interestingly, Orlanski (1968) analyzed a flow with similar geometry but with a
bottom boundary and found the flow to be unstable. We note that we do not have the
long wave, low frequency instability of quasi-geostrophic theory (baroclinic instabil-
ity). The results most resemble that of Paldor (1983).

5. Asymptotic solution for stratified ocean (B > 0)
a. Rays in the ocean. We assume Ikl » 1and in the ocean let

P = A (y, z )eiikls(y,z)

and use ray theory (Kroll, 1975). Eq. 11 becomes

(19)

where we assume A =Ao + (1/lkI)A] + ....
We assume v = 0(1). Ifv is large then one should define a new vertical variab1ez =

zl Iv I for proper ordering in 11k. However, in assuming v = 0(1), we retain the same
terms at each order as when z is used. To lowest order in 1/ Ik I we obtain the eiconal
equation:

F(y, Z,p, q, S) = _v2q2 + p2 + 1 = 0 (21)

where p = Sy and q = Sz are wavenumbers in y and z respectively. To solve this
equation we use characteristics derived from the parametric differential equations:

On the interface z = y we define s = 0 and z = y = 'T. The parameters sand 'T are the
ray variables. (Actually the derivatives in (22) should be written as partial derivatives
but traditionally are not.)

From (22) we find the wavenumbers are constant on any given ray: p == p( 'T) and
q = q('T). The rays are given by the parametric equations:

y = 2ps + 'T, Z = -2v2qs + 'T. (23)

In addition we have the strip condition at s = 0: dSld'T = P (dyld'T) + q (dz/d'T),
which implies that

_ dS
S'('T) == d'T = p('T) + q('T) (24)
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where 5(r) will be S given at the interface. Combining (21) and (24) we find:

-v25' + Jv2S'2 + v2 - 1
p=--------

1- v2 and
5' - Jv2S'2 + v2 - 1q = ------ (25)

1 - v2

Also we can find S(s, T) using the last equation of (22):

S(s, T) = -2s + S(T) (26)

The proper sign for the radical in (25) was determined by the radiation condition.
The coordinate normal to the interface and positive downward is 'l') = y - z. The
group speed d'l')/dt must then be positive (radiation condition). If the time, t, is not
removed from the original system we can show thatdt/ds = -Fw = 2q2w/B2 so that

d'l') d ds B2 B2 ~_----
- = - (y - z) - = - (ji + v2q) = - Jv2S'2 + v2 - 1. (27)dt ds dt q2w q2w

(This can also be found using the second term on the right of (13), the energy flux
evaluated at the interface.) So the sign was chosen so that d'l') / dt > 0 for d'l') / dt real
when w is real and positive.

From (22) the slope of the rays is given by:

1 + 5'vJS'2 - (1 - v2)/v2

lIv2 - 5'2 (28)

We have two sets of rays according to 5'(T) ~ O.On Figure 2 we illustrate a ray pair
from one point on the interface for various conditions.

From the next higher order in 1I1kl in (20) we obtain an equation for the
amplitude to lowest order:

2[v2SzAOz - SyA~] + (v2Szz - Syy)Ao = 0 (29)

We note that dAlds =Az (dz/ds) + Ay (dy/ds) = -2v2qAz + 2pAy. Hence

dAo
ds - (v2Szz - Syy)Ao = O. (30)

To evaluate Szz and Syywe note that Szz = qz = qT (aT/aZ) and Syy = py = PT (aT/ay)
and find aT/ ay and aT/ az from implicit differentiation of the ray equations of (23). We
can then show that

dAo v2a
-+----Ao=O
ds 2v2as - Do

where a =pqT - qPT = -(5"/Do) andDo = Jv25'2 + v2 - 1.

(31)
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Figure 2. Ray pair from one point on the interface for various values of 5' and v. The angle
measures represent slope.

The solution can be written as

(32)

(33)

where G(T) is an arbitrary function of T.

b. Asymptotic solution in the current for Ik 1 » 1. For the current let h = (- 21 k Iy) -1/2
H(y) andi,! = (-2IkIY)-1/2R(y) in (10):

H" _ {k
2

(y + Yc) __ 1141 H = _ [R" _ [k2 + _1 114] R}
y y2 (1-c)y y2

whereyc = (2IkIKlk2) = (1Ik2)[c/(1- c) + k2(1 - C)2]. For k2large,y = "":Yc is a
turning point of the left side of (33). For -Yc < y < 0 buty not near -Yc or 0 we look
for an oscillatory solution. So we assume

where.! =.!o + (1IIkl).!1 + ....
For P2 = AoeiJkIS(y,z\ the interface condition (12) then yields to lowest order

v2B'1;{0

Ao(O, 'T) =. ( ik )
tiki Do - wlkl

(34)

(35)
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(36)

where ats = 0, S(y,z) = S(y,y) = S(y) = S(T). From (32) fors = 0, we then have
G(T) = v2B2£o(T)/ ilkl[l - (ifk/ooDolkl)], so

v2B~0(T)
Ao(s, T) = [ 'k] .

ilkl1 - oo~olkl JD5 + 2v2S"s

The radical in the denominator can vanish for S' < 0 which will be a caustic of the
wave field.

Similarly to (34) for -Yc < y < 0, we let H = ~ilkls(y) and, using the fact that P is
continuous at z = y and thatAo = O[(lIlki)]ho, we let R = 49f' / Ikl )ei1klS(y). Then (33)
becomes:

1 2i _ i _ _ ~ + Yc 1I4}
k/f"" + jkj S'7I" + jkj S"2- S'~-l-y- - k2y2 2

{
I 2iS' is'' S'2 ( 1 1 114) }

= - IkI3.9f" + J;2.9f' + Ti.9f -lkf.9f - jkj + Ik13(1_ c)y -lkl3y2 .9f

where2=~ + (lIlkl)~ + ... ,.9f =.9fo + (lIlkl).9f1 + ....
For the lowest order we have

S'(y) = ±O"(y)

where

I+YcO"(y)= - ,y<O.-y

For the next order we have

2iS'7I"o + is':7lQ = (S'2 + l}9fo

c. Connecting rays with the current. ~ and.9fo are connected at s = 0 using (35):

-i(002 - 1)
.9fo = (-2Ikly)ll2lkIAo = ( _ ~)~

Do oolkl

So we have

(37)

(38)

(39)

2'0 +
1 S" (002 - 1) (S'2 + 1)
-2=-+ - "k mo=oS' 2S' l

Do - oolkl

(40)
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which has a solution in the form

C 2% = -e-(w -1)snJ(-y)/2
o Ic0yS'

where sn is the sign in (38) and

- / /

I(-y)~I: R[~-~]dy"
-y -y wlkl

using the fact that

(41)

(42)

(43)

(44)

- Jv2yc + YDo = Jv2S'2 + v-I = .-y

The integral (42) can be integrated in terms of elementary functions. Its form will
depend on whether or not v2 > 1, and the behavior of Do when y < v ZYc. In the ocean,
eilkIS(y'z) = ei1kl(-2r+S(T)) from (26). This term must decay moving away from the
interface wheny < vZYc- We can show that S = (y - z)/Wo and y - z increases away
from the interface. Therefore ify = z < -vzyc then Do = iJ -(y + v'lyc)/ -y so that
e -2iIk~ decays. This also means that the pole from the bracketed term in (42) can
occur only for y < -v2yc and k > 0 for w > O.

To integrate (42) we let y = -y soy > 0, and we can show that

1(-) Ycw2 !LY Jv
2
yc - y' d-' ik Ly J? ~/)Y = - -- ----- y + - -----Liy

w2
- 1 0 VYc - Y'(yP - y') wlkl 0 VYc - Y'(Yp - y')

where yP = (w2/B2)yc· If we let fJ.2 = (v2yc - Y)/(yc - y), the first integral can be
evaluated and letting 1i2 = Y/(Yc - y) the second can be evaluated. The result, valid
for 0 < y < Yc < v'lyc < yp (consistent with v2 > 1, w2 > B2) is

_ -ycw2 { (fJ. - l)(v + 1) (fJ. - fJ.o)(v + fJ.o)
I(y) = w2 _ 1 Log (fJ. + l)(v - 1) - fJ.o Log (fJ. + fJ.o)(v - fJ.o)

2ik ( --)}- wlkl tan-I Ii - lio tan-I ~

where fJ.~ = (Yp - v'lyc)l(yp - Yc) = 1/(w2 - B2) and Ii~= yp/(yp - Yc) = w2/(w2 -
B2). We are interested essentially in 0 < y < Yc but also need solutions for v2 < 1 and
w2 < B2. Moreover,yc, vzyc andyp can be complex for w complex. We can show that
(44) is consistent with the required decay property of Do in (42) for all cases for our
parameters including complex values when the cut for the log and tan-1 function is
taken down the negative imaginary axis and the same cut for Jw2 - 1 and Jw2 - B2.
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The result above also includes the case for Yp < Ye (w2 < B2) when a log singularity
occurs for y = YP' To properly deal with it, one goes back to the original system and
looks for a boundary layer abouty = yp which turns out to be 0(1/ Jik/). Using (32) in
(18), the interface condition (12) becomes

B2v2h = e;~s{kG (Y)[i(P + v2q) +~] + G'(y) ~: (q + P)} (45)

Using it from above, P = G(y )eilkIS(Y) lDo for s = 0, and lettingy = -yP - T) 1Jik/ in
(33), we find to lowest order in 11Jiki that 5'2 = 5;l= (Ye - yp)lyp which implies that
i(p + v2q) + l/w = i v2S,2 + V2 - 1 + 1/w = O.The next order then yields

G"" - i13T)G" + bG = 0 (46)

where 13 = yeI25'oY; and b = B2YeI2w5'o2yp- We can show that the solution which for
T) ~ ±oo matches (41) is

(47)

whereE* is the complex form of a parabolic cylindrical function and a = -[(bl13) + (i/2)].
E*(a, 0) is finite so there is actually no singularity. We can show that G(T) ~
-00) = ie'ITuG(T) ~ 00) and show that this property is preserved by (44). To lowest
order we will neglect the correction due to this boundary layer and also neglect
correcting for the even more singular case when w = B (Yp = yJ. We will use (44) for
all cases.

So putting it all together for both signs, we have

it = 1 {C] e-[«,,2-1)/2Jleilf'liT + C2 e[(W2-1)/2J1e-ilkliT} (48)
o J-2lkly # R

d. Expansions about special points. So far we have a lowest order solution in the
current for 0 < y < -Ye away from the turning point y = -Ye and the singular point
and boundary pointy = O.

We can show from (33) there is a boundary layer of O(1/k2) near y = O. We lety =
-~/k2 and can show that R = 0(1/k2) H from (12), using the ray solution. So to
lowest order (33) becomes

rYe 1/4]
Ho~~ + l~+ f Ho = 0

The solution which yields bounded ho is

(49)

or (50)
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(51)

This solution must match (48). From (38)

J:m+Yc AYc [ AYc 1T]O'(y)= --,-dy' = y -- + Yc tan-l -- --
o. -y -y -y 2

Noting that for y ~ 0, O"~ JY; Ikl/~, 0' ~ (-2.fYc/ Ikl)~ and I ~ 0 in (48) and
using the asymptotic expansion ofJo(2&) for ~large, we find the common part to be

(52)

and

For y ~ Yc we can show from (33) that there is an O( Iki)-2/3) boundary layer about
the turning pointy = -YC'We lety +Yc= '/lkI2/3 and can show R = O(lIlkl)H. So to
lowest order (33) becomes

having the solution

(53)

.(~~)
Ho = BoAI\y:13 or h = Bo AJ~~)

o J-21kJy \y~/3' (54)

We match this for' ~ 00 to (48) fory ~ -Yc. Using the asymptotic expansion of the
Airy function, Ai(z), we have the common part

BoY-1112h = c lei(1T/4)e2l3(,y;1/2~3/2) _ e-i(1T/4)e-2/3(,y;1/2t3/2lj. (55)
o 2i,lIV21TjkIYc

We note that fory ~ -Yc> 0" ~ Ikl-l/3y;1/2 ,1/2 and (J~ % Ikl-1y;1/2 ,3/2 - (1T/2)
Yc and match (55) with (48) and obtain

BoY-l 112
C Ik 11/6.'1/4e-(w2-I)J(ycll2e-i(1TI2)lklYc = __ c - ei(1T/4) and

I Yc 2i ,;;,
BoY-l 112

C Ik 11I6.,1/4e(w2-1)J(Ycl/2ei(1T/2llklYc = - c e-i(1T/4)
2 Yc 2i';;

where I(yc) is I( -y) evaluated at y = -y =Ycfrom (44). Eliminating Cl and C2 using
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(52) we can show that the eigenvalues are given by

{
lkl'TT _ i(w2

- 1) _}
cos -2-Yc - 2 I(yc) = 0

Ikl'TT _ i(w2 - 1) _ 'TT
or -2-Yc - 2 I(yc) = 2" (2n + 1)

(56)

(58)

n = 0, 1,2, ... Based on the exact solution for no stratification, (16), we assume n ~
o only. Rewriting (56) we have

Yc {I + ~i;,M(W)} = 2n1~ 1 (57)

where M(w) = Log [(v + l)/(v - 1)] - I-Lo Log [(v + I-Lo)/(v - I-Lo)l - i'TTk(1 -
j:Lo)/ Iklw with I-Lo and j:Lo defined in (44) and cuts for complex functions as described
for (44).

We would like to calculate the solution for higher order terms, but this was not
done because the equations become excessively more complicated. However, let us
look at our scaling after the fact. For (2n + 1)/lkl « 1, the unstable solution can be
shown to have w - k implying v » 1 so that (35) implies that P = O(B)h. So in
actuality we must also have B « 1 for asymptotic validity. But this is consistent with
our assumptions for the model. For v = 0(1), (35) implies thatP = 0(B2/ Ikl) h.

An analysis of the next order for the ray solution in the ocean away from any
caustics yields (1/ Ikl) AdAo =< (3/8)/(2n + 1) for v ~ 0(1) and =< 0(v4) for v « 1.
Clearly we should expect the best quantitative accuracy for B « 1 and n large.
However, the similarity of the stability patterns for all n suggest that even the n = 0
case is at least qualitatively useful. Since the model itself is only an approximation of
a portion of a real flow, qualitative results are most important. Results using our
solution in the energy balance will be discussed later but are encouraging.

Let us examine (57). ForB = OthenM= Osowehaveyc = 2K/lkl = (2n + 1)/lkl
which is the exact solution previously found from (16). Thus our asymptotic solution
for the eigenvalues for this special case is exact. The asymptotic eigenfunctions are
certainly not exact. This degree of agreement does not mean we can expect similar
accuracy for the B > 0 case, but it is not discouraging.

We saw from (18) that the eigenvalues for the B = 0 case are always real. For 0 <
B « 1, Ikllarge and Re(w) > 1 we can show that (57) can be written approximately

{
i [2B iB 2]} 2n + 1Yc 1 + jkj -:; Jw2

- 1 + 2w = -I-kl-

where Yc = (1 - C)2 + (1/k2) (c/(1 - c . For Ikllarge and B = 0, we have to lowest
order the three roots 1 - c = ± (2n + 1)/lkl and 1 - c = 1/ Ikl(2n + 1). Assuming
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Figure 3. The unstable root: n = O. Contours of constant values of the imaginary part of
eigenfrequency (Wi)' Smaller numbers along contours are the real part of eigenfrequency
(w,). Shaded regions are neutral.

B ~ 0(1/ JikT) we can show from (58) that

w~ k [1 + J2nlk~ 1 ± i:J~k~ 1 (1 + J2nlk~ 1) + ... ]

for two of the roots and for the other

[
1 2iB ]

w ~ k 1 - Ikl(2n + 1) - -rrk(2n + 1) + ....

Only the root for the top sign in (59) can be unstable (1m (w) > 0). This is for k > 0
and 1 > J(2n + 1/ Ikl). If k < 0 and 1 > J(2n + 1)/ Ikl then Re(w) < 0 and these
results are invalid since we assumed Re( w) > 0 in our radiation condition. If proper
adjustments are made, the Re( w) < 0 case can be resolved and it can be shown that
the only unstable case is the one mentioned above. For 1 < J(2n + 1)/ Ikj, (59) is
not valid, but the numerical solution of (57) shows there are no unstable waves in this
case. Thus one of the three roots for the B = 0 case becomes unstable immediately
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Figure 4. The unstable root: n = 1.

for increasing B if (2n + 1) / Ik I < 1. This unstable wave is in the direction of the
current.

6. Results and discussion

Figures 3, 4, and 5 show the solution of (57) for n = 0, 1 and 5 of the one unstable
root. The contours are of constant Im(w) = Wj, the shaded regions are neutrally
stable, and the numbers along the curves are values of Re( w) = Wr• In every case there
is no instability for k < 2n + 1. The graphs tend to be divided in two regions: A
subinertial region (Re( w) < 1) with a wedge shape for k in the neighborhood of 2n +
1 and a superinertial region (Re(w) > 1) for larger k. In general we have a greater
instability for increasing k and increasing B.

The pattern of Figures 3, 4 and 5 remains similar as n is increased but the pattern is
translated by k = 2n. Figure 6 shows how at a point B = .4, k = 5 + 2n the field
changes little for increasing n for n ~ 5. Thus the form of the field is fairly constant
for n for the proper translation in k.
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Let us consider the flow of energy away from the interface associated with the
instability. The portion of the interface from which we can have wave propagation is
controlled by two overlapping "windows": -Ye < y < 0 and -v2 Ye < y < O. The
"current window" is determined by the current layer where the portion of the
interface for y < -Ye will have an exponentially decaying field in the current with
5'2 < 0 yielding complex values for p and q and thus an exponentially decaying field
in the ocean. The "ocean window" is determined by an interaction of the current and
the ocean where the portion of the interface for y < -v2jic will yield complex values
for p and q and exponential decay also. Thus the least open window determines the
extent of the propagation from the interface. For v2 > 1 the interval is [- Ye, 0] and
for v2 < 1 it is [-v2 Ye, 0].

For B fixed and k increasing, Yc decreases and v2 becomes > 1 and increases. So for
increasingly large k, Yc ~ 0 and the window is closing down even though Wj is
increasing. An analysis of the energy flux through the window reveals that it remains
approximately constant aSYe ~ 0 (the flux density increases) for a fixed average value
for the initial perturbation of h. So we get an increasingly more concentrated beam as
k increases. On the other hand for decreasing k, v2 becomes < 1 and decreases so
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Figure 6. Typical variation of unstable eigenfrequency, w with n for B = .4 and k = 5 + 211.

For U2<1

Figure 7. Typical ray fields in dimensionless space for S' ~ 0 and v2 ~ 1. Dashed lines are
envelopes of rays, caustics in the field. The angle measures represent slope.
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Figure 8. Typical ray fields in dimensional space as k increases. The horizontal scale is in

kilometers. The left column is for S' > 0, the right S' < O.The conditions (dimensionless)
are: (a) k = 2.1, w = 1.001 + .025i; (b) k = 2.5, w = 1.30 + .078i; (c) k = 3.0, w = 1.67 +
.088i; (d) k = 3.5, w = 2.05 + .090i; (e) k = 5, w = 3.20 + .094i; (f) k = 10, w = 7.30 + .114i.
For all cases n = 0 and B = .1.

v2yc decreases completely shutting down the propagation as v2 .....,. 0 for w = 1,
dimensionless inertial frequency.

Figure 7 shows typical rays in the nondimensional system for the cases for positive
and negative S' and for v greater and less than 1. For S' < 0 we have caustics which
are given by (36) where the amplitude becomes unbounded for D~ + 2v2 S" s = O. Of
course the field will not be infinite in a real ocean but we would expect larger
amplitudes along these caustic lines.

Figure 7 is somewhat misleading because the slopes in the figure must be
multiplied by the slope of the front, m, to have a realistic picture. In Figure 8 is a
much more realistic geometric representation of the ray field. For typical conditions
we see how the field changes as k is increased and the "window" gradually closes. We
see that the front is essentially a surface source of internal waves.

We now want to see how well our asymptotic results satisfy the energy balance
equation (13). We can construct a composite asymptotic solution for the eigenfunc-
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Figure 9. The error in balancing the energy equation (13) integrated over the current layer for
B =:: .1 and k = ko + 211.

tion h by adding (48), (50) and (54) and subtracting the common parts, (52) and (55).
We then integrate (13) numerically over ally < 0, using these eigenfunctions.

The accuracy appears to be quite good considering we have a zeroth order
solution. As expected the accuracy increases with increasing nand k. This is
exemplified in Figure 9 for B = .1, where the "error" is the difference of the left and
right sides of (13) divided by the left side. We see that the results for n = 0 are poor,
as expected, but improve dramatically for n ~ 1. Calculations for the superinertial
instability are more accurate than for the subinertial instability. The accuracy
decreases with increasing B, but for n ~ 5 we can have B :::::1 and still have about a
10% error for most values of k.

In general the energy is partitioned almost equally between kinetic and potential.
The only difference seen between the superinertial and subinertial instability in the
energy equation is the expected difference in the energy flux away from the interface:
significant for the former, negligible for the latter.

7. Conclusions
Our canonical front is quite unstable for sufficiently large wavenumber (> IlL =

fIVo). Though the analysis is valid only for small Burger number (B2), instability for
B = 0(1) might be expected since the instability appears to increase withB. However,
if the front is viewed as the edge of an eddy or boundary current, we would conclude
that these flows are essentially stable since the instability is confined to such a small
portion of the flow (O(Volf), typically less than 10 km versus 0(100 km)). Even so, the
instability is of interest as a local source of internal waves and though the energy loss
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from the mean flow due to the internal waves should be relatively small it could be
significant in long term evolution of eddies and fronts.

We might speculate on the effect of the instability on the mean flow. Since high
wavenumber, high frequency waves- are the most unstable and are confined nearest
to the ve"rtex of the wedge, we would expect the vertex to be gradually rounded off.
This round off would have a horizontal scale of Volf and be independent of any
viscous effects. Thus we would expect round off even if there is no friction. Would the
entire unstable region for all wavenumbers gradually be vertically mixed, erode away
and eventually shut off the instability and internal wave production? Linear stability
analysis cannot answer this, but the portion of interface which can be unstable which
is farthest from the vertex (and eroded away at a slower rate) produces near-inertial
waves. Thus we might expect to see a dominance of near-inertial motion beneath the
front. This speculation suggests looking to develop a model which takes into account
this expected mixing.
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