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Retroflection and leakage in the North Brazil Current:
Critical point analysis

by G. T. Csanadyl

ABSTRACT
In an attempt to throw light on the complex flowpattern of the North Brazil Current near its

point of separation from the coast, the flow in the neighborhood of boundary- and internal
stagnation points ("critical points") has been analyzed. The underlying hypothesis is that fluid
masses of widely different potential vorticity come in contact near such points. In a one-and-a-
half layer idealization of inertial, frictionless flow the key control parameter is the ratio of
potential vorticities of the converging fluids. This determines the angle of flow after separation,
and, for given buoyancy and depth scale, the volume of each kind of fluid transported past the
stagnation point. A quasi-geostrophic calculation also gives a realistic picture of the streamline
field near a stagnation point.

Using the analytical results, a critical point analysis has been carried out on the observed
pressure field of the separating North Brazil Current. The results support the idea of direct
leakage along the coast into the Guiana Current. They also suggest a second, indirect route of
water transport from the North Brazil Current to the North Equatorial Current, via the interior
of the cyclonic gyre between the North Equatorial Counter Current and the North Equatorial
Current.

1. Introduction
The behavior of Western Boundary Currents is often complex, perhaps in no other

place more so than off the North Brazil coast, where the North Brazil Current (NBC)
performs its seasonal antics, alternating between continuation into the Guiana Current
and retroflection into the North Equatorial Counter Current (NECC). Apart from its
changing preferences between eastward or westward continuation, the NBC, as other
boundary currents, is attended by a parade of cyclonic and anticyclonic eddies. The
flow pattern in the region of NBC retroflection is so complex that even some of its gross
features have only been recognized recently.

Similar complexities are encountered in other branches of fluid mechanics, notably
in aerodynamics, relating to airflow over the wings of high-speed aircraft, which is
subject to three-dimensional separation. In such situations, "critical point analysis"
has been helpful in interpreting observations (Perry and Chong, 1987). Critical points
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are flow singularities, such as interior stagnation points. Identifying such points, and
analyzing the flow in their neighborhood yields valuable clues to the large-scale flow
pattern.

In oceanography critical point analysis has not been tried, but should be worth
exploring. On account of earth rotation, such analysis is more complex than in smaller
scale flows. The simplest realistic model is one with a single active layer ("ol11e-and-a-
half layer model") which may be expected to simulate the surface flow over a sharp
thermocline reasonably well. Such a model should give useful insight into the circum-
stances of NBC retroflection, particularly in regard to the poleward escape of equatori-
ally formed warm water. More generally, a boundary stagnation point model of this
kind portrays one possible mechanism of Western Boundary Current separation,
brought about by the blocking effect of fluid of higher potential vorticity.

According to current conventional wisdom, the separation of Western Boundary
Currents from the coast is associated with the surface outcropping of the thermocline
(Veronis, 1981; Parsons, 1969). This is clearly not the only mode of separation: in the
separating NBC the thermocline remains totally submerged. Even in such currents as
the Gulf Stream only some upper thermocline layers come to the surface, while the
Stream as a whole separates, including especially layers colliding with slopewater. In
any case, the local dynamics of separation (whether or not accompanied by full
upwelling of some isopycnals) remains to be elucidated. Separation due to "blockage"
(presence of a higher potential vorticity fluid mass at the coast) is a plausible idea:
without claiming it to be the only possible mode of boundary current separation, its
details seem worth exploring.

In an earlier study of NBC dynamics (Csanady, 1985, to be referred to as Cl) the
northward intruding boundary current was supposed to run into a higher potential
vorticity "northern" water mass, to be deflected from the coast and turned back. Model
calculations were actually made only for the flow approaching the point of retroflec-
tion. The existence of a boundary- or interior stagnation point was inferred from such
calculations, without investigating whether or how a stagnation point could be main-
tained in steady flow. The calculations below close this gap and show in detail how a
relatively weak opposing flow of high potential vorticity fluid can deflect a more
massive boundary current coming from a lower latitude.

2. Inertial ftow in a single active layer
Following up on the analysis in CI, a 1-1/2 layer model will be used to describe the

dynamics of flow near a boundary- or internal stagnation point. Internal friction, and
driving by local winds will be neglected, on the hypothesis that the pattern of the flow is
governed by the inertia of the converging water masses. The underlying conceptual
model is that these waters are set in motion in the oceanic interior by the large scale
wind field, and that they arrive at a stagnation point, along or near the western
boundary, with prescribed energy and potential vorticity. In the neighborhood of
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interior- or boundary stagnation points different water masses come into contact. The
object of the analysis here is to elucidate the local dynamics of their interaction.

a. BasicEquations. Scaled equations of motion and continuity for steady flow in a 1-112
model are:

au au ah
u-+v--v=--ax ay ax

av av ah
u-+v-+u=--ax ay ay

a(uh) a(vh)
~+ay=O.

(1)

Of interest here is flow in the neighborhood of a stagnation point where the active layer
depth is H. The depth elsewhere, h, is expressed as a fraction of H. Velocities in Eqs.
(1) are fractions of the internal wave speed C = ..jEgH, where E = (Po - p) / Po is the
proportionate density defect of the active layer. The Coriolis parameter lis taken to be
constant in the limited neighborhood of a stagnation point where the flow will be
investigated. The scale for horizontal distances x, y in Eqs. (1) is the radius of
deformation, R = Cff

Eqs. (I) may be rewritten in the form:

aB
v(1 + n =-ax

aB
u(1 + n = -- ay

where r is vorticity:

and B is Bernoulli function:

The continuity equation is satisfied by introducing a transport stream function 1/;:

(2)

a1/;
uh=- ay

at/;
vh = - ax' (3)

By cross-differentiating Eqs. (2) it is now readily shown that the quantity P =

(I + nih, potential vorticity, is a function of the streamfunction alone, P = P(1/;).
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Expressing the vorticity by substituting the streamfunction in its definition, one arrives
at the equation:

a (1 iN') a (1 aif;)r = - ax Ii ax - ay Ii ay = P(if;)h - 1

which may also be written as:

1
\72if; - Ii \7h . \7if; = -h[P(if;)h - 1].

(4)

(5)

This is a differential equation for if;(x. y), with the depth being implicitly determined
by previous equations. One may imagine solving it by prescribing if; and P(if;) on the
boundary of the region of interest, and then proceeding into the interior. It is, however,
necessary to express the layer depth first as a function of if;.

b. Subcriticalflow. From Eqs. (2) it follows that:

dB
- = - P(if;)dif; (6)

so that B(if;) is also prescribed on each streamline as P(if;) is specified at the boundary.
The layer depth h can now be determined from the definitions of Band if;:

(7)

where

so that T is the magnitude of the transport. With Band T given, Eq. (7) is cubic in h.
containing positive definite quantities only. Real roots can only exist if T2/2 is not
larger than Bh2 - h3, an expression having a maximum value of 4B3/27:

8B3
T2<-- 27 . (8)

An analytical solution for Eq. (7) may be found by the standard method of solving
cubic equations, quoted e.g. by Hartree (1958, p. 220), sketched in Appendix 1.One of
the three roots for h is negative, one ranges from zero to 2B/3, as 'f2 varies from 0 to
8B3/27, another one from B to 2B/3. The physical significance of the limit 2B/3 is that
at this depth the velocity magnitude q = .JU2 + v2 equals the local internal wave
speed, q = /h. When the velocity is greater, the depth is less, and the flow is
"supercritical." As in compressible flow (see e.g. Cabannes, 1960), or in channel flow
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Figure 1. "Natural" coordinates defined by the direction of the velocity vector of magnitude q: s
is along the trajectory or streamline, n normal to it, positive n a quarter turn in the direction of
positive rotation angle 8.

(Stoker, 1957), a discontinuous transition is possible from supercritical to subcritical
flow, (but not vice versa), a "shock" or "internal hydraulic jump." Nof (1986) has
recently discussed shocks in a rotating fluid. One certainly cannot exclude the
possibility of such shocks in the complex flow region of the NBC. However, in
analyzing conditions near a stagnation point it is not necessary to entertain the
possibility of supercritical flow, so that only the subcritical root of Eq. (7) will be
accepted as realistic:

2B
B<:=h<:=)

h = ~ {I + 2 cos [~COS-l(I _ 2;;.2)]}. (9)

Substitution of this result into Eq. (5) yields a very complex equation for the
streamfunction: 'iJh contains second derivatives of if;, which are then multiplied by first
derivatives. The mathematical character of the problem is therefore not clear, and the
integration envisaged from boundaries into the interior cannot a priori be justified.

c. Equations in the (if;, s) plane. The character of the shallow water equations is
clarified by a transformation to natural coordinates sand n, curvilinear coordinates
parallel and perpendicular to the velocity vector, see Figure 1 for definitions, the same
as in Cl. In the present problem an .f-plane version of the equations is used, scaled as
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above. The velocity vector is specified by its magnitude and direction:

q2 = u2 + v2

0= tan-I (v/u).

The flow field is fully described by the three dependent variables q. (J and h.
Alternatively, one may use T = hq in place of q. The definitions of 1/;,Band T.
introduced before imply:

a1/;
- = hq = Tan

a1/; aB
--0--as - - as

so that 1/;= 1/;(n) only. The normal coordinate n can then be replaced by 1/;.The
vorticity in natural coordinates is:

ao aqr = q as - an' (10)

Here ao/as is streamline curvature, q(a%s) "curvature vorticity." The equations of
motion and continuity may be put into the following form:

1 ah2 an
--- 1 q-2 iJV; - - - as

ah aq
as = - q as

ao a(l) laT
a1/;= as T = - T2 as .

(11)

The first of these expresses cross-stream momentum balance, the second conservation
of energy, the third continuity. The first of Eqs. (11) shows that constant depth
contours coincide with streamlines only in flow with constant curvature vorticity, i.e.
when streamlines are straight or circular. This cannot be the case around a stagnation
point.

The above equations fully describe the flow field in the 1/;,s plane. The depth h is
known as a function of T and 1/;from Eq. (9), with P(1/;)and hence B(1/;)prescribed; q
follows from the definition of B. From Eq. (7) the 1/;-derivativeof the depth may be
expressed as a function of T:

ah 1 ( TaT)
a1/; = - 3 - 2B / h P + h2 iJV; .

Substitution into Eq. (11) leads to:

an 1 aT h Ph2jT
as = 3 - 2Bjh a1/;- T + 3 - 2Bjh .

(12)

(13)
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The angle 0 may now be eliminated from Eqs. (11) and (13) by cross-differentiation,
resulting in a second-order equation for T. In view of Eq. (12) the form of that equation
is:

(14)

so that the equation is quasi-linear and elliptic, provided that the flow is everywhere
subcritical. The solution of this equation in the (f, s)-plane may therefore proceed on
conventional lines, through iteration, or integration from prescribed boundary values.
The solution yields T. and therefore also hand q. The angle ()is then found by another
integration, from Eq. (11) or (13). Streamlines in the x. y plane may be recovered by
integrating Eqs. (3).

3. Stagnation point flow model

The question is now, what boundary conditions (if any) to impose on Eq. (5) or (14)
in order to produce an interior or boundary stagnation point. Or, from a physical point
of view, what is the character of rotational flow in the neighborhood of a stagnation
point? Given that the velocity components vanish at a stagnation point, one may try to
approach this question by expanding the velocity in a power series, beginning with
linear terms in x and y. Goldsbrough (1930) explored this approach, and pointed out
that the shallow water equations with rotation possess some exact solutions with the
velocities linear, the depth and streamfunction quadratic in the coordinates. These
describe motions in a paraboloid, i.e. in a closed basin. Similar exact solutions may be
found for an unbounded active layer near a point where the velocity vanishes. They
portray streamlines near critical points and lines, and are valuable guides to the
interpretation of complex flow patterns. However, they have little relevance to stagna-
tion point flow, as may be seen from a brief review in Appendix 2. The stagnation point
type of flow pattern is described by Perry and Chong (1987) as a "saddle." The
Goldsbrough expansion for this type of critical point only yields a solution asymptoti-
cally valid as x. y ~ 0 and is of little value, see again Appendix 2. In order to find a
solution with a wider range of validity, it is necessary to discuss how to prescribe the
streamfunction in the inflow and outflow to and from a stagnation point.

a. Geometry of stagnation point flow. An internal stagnation point will be supposed to
exist at the confluence of flows from low- and high-potential vorticity regions, where
two f = 0 streamlines cross, see Figure 2 for a schematic illustration. Of the four
sectors defined by these streamlines two (1A and IB) contain high potential vorticity
("southern") fluid, the other two northern fluid. Some sectors may be thought to be
parts of large separated eddies, others shoreward extensions of mid-ocean gyres.
Taking one half of the diagram away, a boundary stagnation point model is left. In
either interpretation, far from the stagnation point the inflow or outflow will be
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Figure 2. Schematic picture of streamlines around an internal stagnation point, showing
alternate anticyclonic (lA and B) and cyclonic (2A and B) regions.

supposed to be geostrophic. In between the inflow and outflow branches, and far from
the stagnation point, the potential vorticity will be taken to be constant at P = PI or
P = P2, the total inflowor outflow transport finite at 1/11 and 1/12 respectively, the same in
opposing sectors. The flow pattern is thus assumed to be symmetric about the 1/1 = 0
streamlines, a possible overidealization of an interior stagnation point. The streamlines
in the far field are straight (where the flow is geostrophic). It is plausible to prescribe a
straight continuation of the 1/1 = 0 streamlines through the stagnation point matching
the near-field solution. It remains to be demonstrated, of course, that a flowpattern of
the postulated characteristics can be reconciled with the equations of motion.

If the potential vorticity is supposed constant in each of the separate sectors, the
velocity gradient at the separation streamlines becomes discontinuous. In a frictionless
model this often has to be accepted. Alternatively, one may make use of the observed
fact that gradients of potential vorticity become smoothed ("homogenized") by lateral
mixing across potential vorticity fronts. This could be modeled by:

(15)

As 1/Ic tends to zero, the error function approaches the Heaviside function 'H(1/I),
reverting to the discontinuous distribution of potential vorticity. In the following
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Figure 3. Mapping of the four regions of the previous figure onto an (s.1/1) plane. Quarter planes
map onto finite-width strips in the 1/1 direction, two to a Riemann surface. A branch cut along
positive s connects region 1A to 2B, 2A to 1B.

calculations the potential vorticity will generally be taken constant sector by sector.
One may think of this as the limiting case of narrow transition zones between sectors.

In the .f-plane approach adopted here, with the scaling as specified earlier, the
southern fluid is characterized by PI < 1, hI> 1 and 1/1. < 0, the northern fluid by P2 >
I, h2 < 1, and 1/12> O. It is interesting to see how the pattern of Figure 2 maps onto the
1/1, s plane, Figure 3. The upstream half of sector 1A is in contact with the upstream half
of sector 2A. However, the downstream halves of these sectors are bounded by sectors
2B and IB respectively. Moreover, each sector maps onto a bounded strip of a
half-plane in 1/1, s coordinates. Two Riemann surfaces are therefore necessary in those
coordinates, with a cut along the positive s-axis. The stagnation point s = 0,1/1= 0 has
the character of an essential singularity.

b. The inflow-outflow jets. Far from the stagnation point region, s = :t 00, the
streamlines are supposed to straighten out, () to become constant. Eqs. (11) imply the
following asymptotic relationships as ()= constant:

aT
-=0as (16)

(17)

where ho is the depth on the separation streamline, 1/1 = O. On the same streamline the
value of the Bernoulli constant is unity, on account of the scaling chosen (the
nondimensional depth at the stagnation point was taken to be one). With the aid of Eqs.
(6) and (17) one may now express the transport as a function of 1/1:

T = ~2(h~ - 21/1)(1 - P1/1) - 2(h~ - 21/1)3/2. (18)
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This equation supplies boundary conditions at infinity on the transport in the (1/;, s)
plane: Eq. (17) shows that, as the depth tends to its asymptotic value hi or h2, the
streamfunction becomes a maximum or minimum:

1/;2 = (h5 - hD/2. (19)

On the same limiting streamlines the integrated form of Eq. (6) yields, noting that the
velocity magnitude q tends to zero as the depth tends to h, and h2:

The last two equations imply:

(20)

h, - h2 = 1/;2 - 1/;.
hi + h2 = 2.

(21)

(22)

The second of Eqs. (21) may be somewhat surprising: in dimensional terms it shows
that the scaling depth, chosen to be the depth at the stagnation point, is the arithmetic

mean of the asymptotic depths. This follows from geostrophy and constant potential
vorticity sector by sector. The asymptotic depths indeed determine all bulk parameters
of the flow. Putting r = h,/h2 (>1 by previous choice of notation) it can readily be
shown that:

hi = 2r/(r + 1)

h2 = 2/(r + 1)

1/;, = - 2r/(r - l)/(r + 1)2

1/;2 = 2(r - l)/(r + 1)2.

It may be noted here also that 11/;,IN2 = r. The depth on the 1/; = 0 streamline, at large
distances lsi from the stagnation point, is:

h~ = 4r/(r + If (23)

For subcritical flow ho must be greater than 213 because B = 1 on the separation
streamline. This places a limit on r, r ~ 6.854. The bulk relationships deduced here
circumscribe the solution T(1/;, s) to a considerable extent. As 1/; :::> 1/;1 and 1/;2' T
vanishes; as s:::> ± 00, Eq. (18) holds. On the 1/; = 0 streamline, T must be continuous
going from one sector to the neighboring one.

c. Momentum integral. An important feature of the large-scale flow pattern envisaged
is the deflection of the inflow into the direction of the outflow. Do the asymptotic depths
determine also the angle of this deflection? To answer this question consider the control
volume shown in Figure 4, between one of the 1/; = 0 branches (which will now be taken
to be the x-axis), perpendicular sections 1 and 2, and a parallel section 3, all except the
x-th axis far enough away from the stagnation point. The approaching flow is directed
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Figure 4. Control volume for the calculation of momentum integrals. All three plane sections
(broken lines) are far enough from the stagnation point to be in the geostrophic inflow-outflow.
The x-axis is now the separation streamline between regions IA and 2B, or IBand 2A.

inward (say) along the axis, out through section 3. Of interest is the integrated
momentum balance of the fluid within the control volume, in the x-direction.

Multiplying the first of Eqs. (1) by the depth h, noting the definition of 1/; and using
the equation of continuity, the area-integral of that equation reduces to the following
line-integral along the boundary:

f [u2h dy + uvh dx + 1/; dy + (h2/2) dyJ = O. (24)·

As noted in a similar analysis by Nof and Olson (1983) and Whitehead (1985), in
geostrophic flow the last two terms in the bracket cancel each other out. The first term
is nonzero along sections 1 and 2, the second term along 3. Let the integrals along 1 and
2 be written:

{'" 2
Ii = Jo u h dy

where i is the number of the section. In virtue of the symmetry of inflow and outflow,
the integral along section 3 is readily seen to be, taking account of signs:

13 = - (I, + 12) cos ex

with ex being the deflection angle. Eq. (24) therefore becomes:

I. - 12
cos ex =-1 I'

1 + 2

(25)

(26)

The calculation of the integrals I, and 12 may be carried out noting that lui = q, and
using Eqs. (16) and (17). The calculation results in:

~( 1)2( 1 )II = 6 ho - Pi 2ho + PI

where the index istill denotes the section in Figure 4.

(27)
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(28)

Returning now to the coordinate system used in Figure 2, in which the coordinates
bisect the space between the Vt = 0 lines, the slope of the x-axis is m = tan (01./2):

1 - cos a
m = tan (a/2) = 1 + cos a = ~IdII

where Eq. (26) has been substituted. Using Eqs. (22), (23) and (27), one finds the
momentum flux ratio:

1 (2..f + 1)
IdII = r:. r:.

"r 2"r + r
(29)

a simple enough result characterizing the overall geometry of the stagnation point flow
in terms of the depth ratio r alone.

4. Streamline pattern

The net result of the foregoing discussion is that once the depth ratio r is known, the
boundary conditions on the inflow are fully specified (assuming of course that the
scaling parameters are also known). The task is then to solve Eq. (5) and or (14)
subject to these boundary conditions. Unfortunately, neither equation is simple enough
to offer any hope of finding an explicit analytical solution. In order to gain an idea of
the streamline pattern nevertheless, and also to lay the foundations for a numerical
approach, it is plausible to analyze a linearized version of the problem.

a. Quasigeostrophic approximation. Deleting the quadratic term on the left-hand side
of Eq. (5), putting P = l/hl for the anticyclonic sector, and supposing that depth
variations tlh = h - hI are small compared to the rest depth hi' the right-hand side is
seen to equal -tlh. Small depth changes imply small velocities, so that tlh ;;;tlB. From
Eq. (6) it follows then that:

(30)

Substitution into Eq. (5) yields the quasigeostrophic potential vorticity equation:

(31)

for sector 1, and the same equation with Vt2, P2 in place of Vtl' PI for sector 2. For a
boundary current the approximations involved are rather crude. The asymptotic
relationships of the previous section show that depth variations are small only if the rest
depth ratio r is close to unity, the angle a not too different from 90°. Nevertheless, the
solutions of Eq. (31) satisfying appropriate boundary conditions should portray the
streamline pattern qualitatively correctly.

The postulated geometry of the flow implies that the streamfunction vanishes along
piecewise straight boundaries, enclosing wedges of cyclonically or anticyclonically
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turning fluid. In the middle of the wedges, far from the stagnation point, the
streamfunction has to remain finite, and tend to 1/;1or 1/;2'according to sector. These
boundary conditions define a unique solution of Eq. (31), sector by sector. However,
the physically correct boundary conditions along the separation streamlines are
continuity of pressure (and streamfunction), not the specific shape of the boundary
surmised on the basis of far-field behavior. In the case of an internal stagnation point
both separation streamlines are free streamlines, in the case of a boundary stagnation
point, one branch of the separation streamline. Before embarking on the calculation of
the solution, it is therefore advisable to investigate whether or how quasigeostrophic
solutions for the cyclonic and anticyclonic wedges can be fitted together, to satisfy the
pressure continuity condition at their boundary.

The approximation in Eq. (30) implies that the depth on the separation streamlines,
1/;= 0, is constant. This is of course inaccurate, violating conservation of the Bernoulli
function, but the error is of order q2 and has to be accepted as the price of linearization.
On the other hand, continuity of pressure between sectors may be ensured, by
prescribing on these streamlines:

(32)

In spite of the inaccuracy of depth on the separation streamlines, the total transport
can be kept the same as required by the exact relationships in section 3:

(33)

The last two equations imply the results written down in Eqs. (21) and (22), although
with the different separation streamline depth of ho = (hi + h2)j2 = 1. The split of
the total transport between the two sectors also remains in accord with the exact
relationships. In other words, quasigeostrophic solutions for wedges, with the stream-
function tending to 1/1.or 1/12far from the boundary, satisfy pressure continuity within
their limits of accuracy.

b. Construction of a solution. Eq. (31) may be simplified by absorbing the constant PI
in the length scale, and 1/;.in the streamline scale. Writing:

X* = ..[PIX, y* = {PlY' 1/;*= 1/;/1/;1

and then dropping the stars on the rescaled variables, Eq. (31) becomes:

(34)

The same equation applies to sector 2, except that the scaling of distances involves P2,

of the streamfunction 1/;2'The obvious particular solution of this equation is 1/;= 1. The
required solution of the homogeneous equation, 1/;h' has to cancel this on the "boundary"
(separation streamline),1/;h(b) = -1, and has to tend to zero at large distances from
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Figure 5. Definition sketch for quantities used in the calculation of the streamfunction at
interior points.

that streamline. The "fundamental solution" of the homogeneous equation (Courant
and Hilbert, 1962, p. 244) is Ko(r), where Ko is modified Bessel function, r distance
from a "source" (in diffusion, point charge in potential theory). The solution of the
homogeneous equation satisfying the boundary conditions can be expressed as the field
of a row of doublets arranged along the boundary:

11"" arVth = - g(O') -a K.(r) dO'
11" -"" n

(35)

where n is normal distance from the boundary, 0' is distance along the boundary, g(cr) is
doublet strength distribution, and:

with (x. y) the coordinates of the interior point A where Vth is calculated, and (~, 17)
those of boundary points C, see Figure 5. The integration must take in the entire
boundary, with point C moving first toward the origin, and then away from it on two
lines enclosing the angle a for the cyclonic sector, 1I"-a for the anticyclonic sector. The
zero of the cr-coordinate is conveniently taken to be the origin O. and the integration
split into two segments, along the two straight pieces of the boundary. The derivative of
the radius, ar/ an. equals n/ r along one segment, m/ r on the other (Fig. 5).

The doublet strength distribution must be such as to satisfy the boundary condition,
Vth = - 1, along the separation streamline. It is clear from the symmetry of the
streamlines about the bisector that g(cr) is an even function. Applying Eq. (35) to
boundary points the length of one normal vanishes, so that the integrand along one
branch of the boundary is zero except where r vanishes, and Kl(r) is singular. The
integral for this branch of the boundary equals the value across the singularity, rrg(cr),
so that the integral along the entire boundary is:

110 ng(cr) + - g(O") - K](r) dO" = - 1.
rr -"" r

(36)
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(37)

This is an integral equation to be satisfied by the doublet distribution g(u). It is easily
solved through an iteration procedure, starting with g(u') = -1. The doublet strength
at the origin can be found analytically and is, for the anticyclonic sector:

1
g(O) = - 1 + a/7r .

In the anticyclonic sector, the fourth iteration on Eq. (36) differs little from the third,
and is within the accuracy of the integration indistinguishable from an exponential-
decay approach to the asymptotic value of g(oo) = -1:

a/7r
g(u) = -1 + 1 / exp (-u).+a7r

(38)

It should be possible to verify this result analytically, but it is not clear how. In the
cyclonic sector the same approximation does not hold. As written down, Eq. (37) is
valid for the anticyclonic sector: in the cyclonic sector a must be replaced by 7r - a.
Otherwise the doublet distribution on the boundaries of the cyclonic sector is calcu-
lated from Eq. (36), as in the anticyclonic sector.

At large distances from the origin one expects the influence of the doublets on the far
branch of the boundary to become negligible. Thus if point A in Figure 5 moves parallel
to the boundary toward u = -00, the value of the streamfunction should become a
function only of the distance from the boundary, n. Eq. (34) has such a solution, tf =
const. exp( -n). The doublet strength distribution tends here to g(u) = -1, so that the
integral in Eq. (35) should tend to exp( -n).

The evaluation of this integral is facilitated by a transformation of the integration
variable to (), the angle included between nand r in Figure 5. The relationship between
u and ()is:

u = n{tan(O) - tan(q, - 7r/2)} (39)

where 1> = tan -l(y /x), polar angle. The limits of the integration, u = 0 to 00, change to
()= 1> - 7r/2 to 7r/2. On the other branch of the boundary, where the normal has a
length of m, u is calculated from (36) with n replaced by m, 1> - 7r/2 by 1> + ex - 7r.Eq.
(35) then transforms into:

If n (n) If m (m)-- u --K -- d()+- u --K -- d()
tfh - 7r g() cos«()) 1 cos«()) 7r g() cos«()) I cos«()) (40)

with limits as specified above. This integration may be carried out with great economy
of computer time. At large u, where g(u) tends to its asymptotic value, the integration
yields tfh = -exp( -n), within the accuracy of the computations. This agrees with the
analytical solution which should asymptotically be valid, but again it is not clear how to
reduce the integral to this form.

The calculated streamline field in the neighborhood of a boundary stagnation point is
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Figure 6. Streamlines in a half plane near a boundary stagnation point, given by the quasigeo-
strophic solution, for depth ratio r = 3. Wiggles near the edges and along the free separation
streamline are contouring artifacts. Contour interval is 0.05, and the values of the normalized
streamfunction at infinity are 0.25 in the cyclonic sector (left), -0.75 in the anticyclonic one.

shown in Figure 6, for a depth ratio r = 3, in Figure 7 for r = 5. The wiggles are
courtesy of the contouring program. The distances are marked in the original scaling,
as multiples of the radius of deformation. The figures illustrate that a relatively feeble
cyclonically turning current can block a massive anticyc10nically turning flow.

The inaccuracy of the quasigeostrophic solution is greatest along the separation
streamlines, at relatively large distances from the stagnation point. Here the normal
gradient of the streamfunction (the transport) is discontinuous, on account of the
approximation that depth equals Bernoulli function. Given the benign mathematical
character of the problem, one expects a relaxation solution to correct this error. With a
numerical approach in mind it is worth pointing out that the linearized equation (34)
possesses another solution satisfying the boundary condition 1/1 = 0 on the separation
streamlines, tending, however, to infinity far from the stagnation point. This solution is
written down in Appendix III.

5. Critical point analysis of the North Brazil Current
How can simple analytical models such as discussed above, or in Appendix 2 below,

help interpret observations on the complexities of boundary current behavior? The
essence of the method to be used, one version of "critical point analysis," is that the
potential vorticity of the separate fluid masses present is estimated using the center
depth of cyclonic or anticyclonic eddies or gyres, and then constraints on flow around
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Figure 7. As previous figure. for depth ratio r = 5. The change in deflection angle is a direct
result of higher inflow momentum flux from the right. The values of the normalized
streamfunction at infinity are now 0.2222 to -1.1111.

stagnation points are invoked, to estimate how much of each different water mass is
transported past the stagnation points. This method will be applied to the separation
region of the NBC. One must state in advance, that given the idealizations of the
models applied, the results must not be regarded as absolute truth, only tentative
conclusions subject to direct empirical verification. Prior to the application of the
method, the observational evidence has to be described first.

a. NBC retroflection and leakage. As mentioned in the introduction, and as discussed
in some detail in C I, the NBC separates from the coast around 6-8N. reverses course
to the eastward, and its waters join the NECC, in boreal summer and fall. In the
remainder of the year, the NBC continues along the coast, becomes the Guiana
Current, which eventually joins the North Equatorial Current (NEC) on the westward
course of the latter along the north coast of South America. It is usually taken for
granted that the seasonal retroflection of the NBC temporarily stops all "leakage" of
its waters into the Guiana Current-NEC system. Thus Muller-Karger et al. (1988)
conclude from an analysis of satellite color images and satellite tracked float data of
Richardson and Reverdin (1987), that the NBC seasonally alternates between full
deflection into the NECC, and full continuation along the coast to become the Guiana
Current. However, the satellite image and float evidence is also consistent with the
presence of some leakage in summer, and some eastward flow in winter.

In satellite images taken in boreal summer and fall, dark blue waters of the NBC
extend along the shelf-edge to about 7N, the "armpit" of the retroflection. Figure 8
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Figure 8. Pigment plume of the Amazon river in boreal summer-fall, traced from satellite image
of Muller-Karger et al. (1988). The area shaded with horizontal lines is rich in Amazon-
derived surface pigment, that with dots devoid of it. The clear area in between is intermediate,
containing some river water.

here is a tracing from the composite image of Muller- Karger et al .. outlining regions of
dark blue ocean waters from the South (- -), orange-green coastal water (+ +), and
light blue mixed water (clear). The coastal waters are carried offshore on the cyclonic
flank of the separating current, to continue eastward in the NECC. North of the
NECC one sees blue deep ocean \vaters again, but coming from farther North, with the
westward drift in a seasonally appearing basin-wide cyclonic gyre between the NECC
and the NEC, and in the NEC itself. Southward intrusions of this northern water mass
are suggested by the image both to the east and west of the retroflection, in the east
showing the long planetary waves of the NECC. It is clear, however that mixed waters
are also present west of the retroflection, as far as the Antillean are, at least to 62W.

The picture for the early months of the year (Fig. 9 here, coded as Fig. 8) is less
clear, on account of clouds over the equatorial belt, where the Trade Convergence is
located at this time of the year. Nevertheless, a tongue of coastal water clearly reaches
northward at about 54W, separate blobs of coastal water are scattered along 9N, while
mixed waters extend broadly eastward as well as westward. Muller-Karger et al.
interpret the eastward extension as a residue from the previous season, when the
NECC would have carried coastal water offshore. It is difficult to believe, however, that
color is maintained for months, and that marked waters move back into the exact same
region where they came from.

b. The pressure field. Two remarkable AXBT surveys of Bruce and Kerling (I984)
yielded an approximate synoptic picture of the surface pressure field surrounding the
NBC retroflection region in boreal summer and winter. Depth contours of the 20°
isotherm, drawn by Bruce and Kerling for boreal winter and summer are reproduced
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Figure 9. As Figure 8, in boreal winter, coding the same.

here in Figures 10 and 11. As Bruce et al. (1985) emphasize, there is considerable
general similarity in the summer and winter flow patterns, especially in regard to the
eddy field. Furthermore, alongshore hydrographic sections from ships of opportunity
(Bruce, 1987) and the few extant area-wide hydrographic studies show that these
patterns recur year after year with only minor variations. A large anticyclonic eddy

'0'
N

S'

O'

Figure 10. Thermocline depth (m) off the Amazon shelf in boreal summer, determined by
AXBT survey. From Bruce and Kerling (1984).
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Figure 11. As previous figure, for boreal winter, also from Bruce and Kerling (1984).

over the Demerara Rise, centered at about 8N, 52W, is a permanent feature, except for
changes in exact location and in intensity. An "Amazon anticyclone" at about 4 or 5N
is also mostly present, although it is weak in winter and looks more like a long offshore
ridge than an eddy. There is apparent leakage on the shore side of the Demerara
anticyclone into the Guiana Current, past a coastal cyclone in summer, a coastal
trough in winter, located near 55W.

A surprising feature of the winter pattern is something like a residual NECC,
eastward flow between 7 and 8N. The streamlines bend slightly northward, however,
near 45W, and we know from other work that there is no eastward current farther east.
The low centered at ION, 47W is therefore the center of a large cyclonic eddy. Another
large cyclonic eddy is present south of the Amazon anticyclone, the latter in this season
looking like a long ridge. The survey missed the nearshore portion of the flow pattern
between the two anticyclones at about 6N, but a reasonable reconstruction is that the
deeper of the NBC streamlines separate from the coast, much as in summer, to
recirculate around the Amazon anticyclone.

Returning for a moment to the satellite color images, it is at once clear that the
eastward extension of the coastal waters in winter is most likely due to the entrainment
of NBC water into the eddies, and the "residual" NECC, rather than to the return of
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water carried eastward by the NECC in the previous summer. The complex eddy field
in this region is certainly able to distribute the Amazon water over a wide area, a fact
noted many years ago by Ryther et al. (1967).

c. Inferences from critical point models. Suppose now that summer conditions in the
region of the Amazon and Demerara anticyclones are realistically modeled by water
masses of different potential vorticity in contact, resulting in boundary and internal
stagnation points with properties as discussed above. On the shore side of the apparent
stagnation point near 6N one must postulate a cyclonic bulge in the NBC, perhaps even
a cyclonic eddy, with a center depth comparable to the center depth of the basin-wide
cyclonic gyre, about 70 m. The two anticyclones have comparable center depths, about
220 m. These may be taken to be the rest depths hi and h2 of the water masses in
contact.

According to the model results, the stagnation point depth should be 145 m. This is
consistent with observed depths. With a Coriolis parameter off = 1.5 x 10-5 S-1 and a
surface layer buoyancy of Eg = 2.5 X 10-2 m S-2 one calculates 1/;1 = -27.5 sv, 1/;2 =

8.75 sv (sv = sverdrup = 106 m3s-1). If the cyclonic turn on the shore side is just a
bulge of the NBC, then 1/;2 is leakage transport into the Guiana Current. Whether
bulge or cyclonic eddy, the high potential vorticity of this fluid mass must be attributed
to mixing with coastal waters. The southward transport in the nearshore leg of the
basin-wide cyclonic gyre should be also some 9 sv. This is much less than the northward
transport in the interior of this gyre calculated from the wind stress: about 17 sv
according to Hellerman and Rosenstein (1983). Boyd (1986) has found a similarly
weak southward flow in what is effectively the Western Boundary Current of the
basin-wide cyclonic gyre. Mass balance then requires that the NECC feed the
northward interior flow. Float tracks indeed confirm the existence of a direct pathway
from the NBC to the NECC, then northward, and back westward in the NEC
(Richardson and Reverdin, 1987).

Figure 12 summarizes the inferences from the stagnation point model in a mass
balance scheme representing summer conditions. Of the 36 sv entering along the coast
from the south with the NBC, 19sv recirculate, 9 svcontinue along the coast as leakage
(or Guiana Current), and 8 sv reach the NEC via the interior circulation of the
cyclonic gyre. The recirculation takes place fairly close to the western boundary, as
part of the Amazon anticyclone. The NECC then transports a total of 17 sv eastward,
in accordance with direct estimates from hydrographic sections, and as required by the
mass balance of the cyclonic gyre. The Demerara anticyclone recirculates the massive
quantity of 28 sv.

West of the Demerara anticyclone the Guiana Current separates from the coast, as
another coastal cyclone blocks its way. A model calculation for the apparent boundary
stagnation point at 7N, 54W yields similar but somewhat smaller transports than
found at the interior stagnation point at 6N, 1/;1 = - 21.4 sv, 1/;2 = 7.8 sv. Change ofthe
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Figure 12. Circulation scheme around stagnation points off the Brazilian coast derived from
critical point analysis.

Coriolis parameter is mainly responsible for the difference in the estimates, exposing
the limitations of the simple models used.

Winter conditions at the stagnation point near 6N are modeled by h, = 170 m, h2 =
90 m, H = 130 m and lead to transports of 1/1, = -11.3 sv, 1/12 = 6 sv. The latter is
again leakage into the Guiana Current, the former recirculation around the Amazon
anticyclone. There is no reason to suppose a second pathway to the NEC in this season.

The quantitative transport estimates are of course fairly "soft." However, it is
interesting to point out that the 36 sv inflow from the South should reach critical speed
at about 3°30'N, just where the streamlines of the Amazon anticyclone begin to
separate from the coast. This suggests that the role of the Amazon anticyclone is to
operate as a hydraulic control section, restricting the escape rate of warm water from
the equatorial pool to what can be transported away by subcritical flow.

The question, how much water escapes northward from that pool, and how much
recirculates, is important for the mass balance of equatorially formed warm water. In a
study of this mass balance (Csanady, 1987), I have used an ad-hoc parameterization
scheme for the escape rate, setting it proportional to the square of the thermocline
depth at the western boundary, and to the reciprocal of the Coriolis parameter at a
supposed northern limit of the westward equatorial surface drift. A hydraulic control
section, restricting transport to the critical limit, at a fixed latitude, yields the same
functional relationship of escape transport Te to depth:

(41)

Here, however, the depth h is the center depth of the Amazon anticyclone, not western
boundary depth, and the Coriolis parameter fis near 10-5 s-', corresponding to the low
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latitude of the control section, rather than to the latitude of a supposed boundary of an
arbitrary equatorial basin.
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APPENDIX 1
Eq. (5) is a cubic for h:

where K = T2/2. Putting:

B
h = - (1 + 2y)3

Eq. (AI) transforms into:

27K
4y3 - 3y + -3 - 1 = 0

2B

Let now:

y=cosu

then using:

4 cos 3 U = 3 cos u + cos 3u

Eq. (A3) becomes:

(AI)

(A2)

(A3)

(A4)

(AS)

the three roots of which are:

cos3u=I
27K
2B3

(A6)

1 ( 27K) 2mru = "3 COS-I 1- 2B3 + -3- (A7)

with n = 0, 1, or 2, n = 1 yielding negative h. n = 2 supercritical flow. The remaining
root is:

B [1 ( 27K)]h = 3' (1 + 2 cos 3 COS-I I - 2B3 • (A8)
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APPENDIX 2
Given that both velocity components vanish at a stagnation point, an obvious

approach is to expand them in power series. Let the starting terms of such series be:

u = ax + by

v = cx + dy
(A9)

the stagnation point being at the origin. Following Goldsbrough's (1930) approach one
may try to satisfy the equations of motion exactly by this limited expansion. Substitut-
ing Eq. (A9) into the equations of motion (Eq. I of the main text), one finds linear
functions of x and y on the left, derivatives of h on the right. A quadratic form for h is
thus indicated:

jx2 ky2
h = I -T -T - Ixy. (AIO)

Substitution into the continuity equation reveals that the following reladons between
the constants must be satisfied:

a+d=O
aj + cl = 0

bl + dk = 0
bj + ck = O.

The first of these relationships implies that the flow is along depth contours:

u.'iJh=O

(All)

(A12)

(A13)

which constitutes a severe limitation on the possible flow patterns. Direct integration of
the equations of motion now yields the constants j, k, and I in terms of the originally
introduced a, b, and c (noting that d = -a):

j = a2 + be - e

k = a2 + be + b
1= a.

Suppose now that a = O. The conditions written down in Eq. (All) can then be
satisfied if either bc = 0, or b + c = O. In the former case let b = 0; then only the v
component of the velocity remains, and with it a simple "ridge or trough" pressure
field:

v = cx

ex2

h=l+- 2
(AI4)
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with e positive or negative. If, on the other hand, b + e = 0, one finds the thermocline
topography shaped as a "bowl" or a "mound":

u = by v = -bx

b - b2

h = 1 - -2-(x2 + y2).
(AI5)

If now a * 0, the conditions in Eq. (All) require that a2 = -be. which eventually
leads again to the ridge and trough solution, the ridge or trough line oriented at a slope
of -a/b. Perry and Chong (1987) term the corresponding solution without Coriolis
force "pure shear," the equivalent of a bowl or a mound "solid body rotation."

Although the Goldsbrough expansions lead only to a limited class of steady flow
patterns, those patterns are undoubtedly realistic, indeed familiar from weather maps,
as ridge or trough lines, and centers of a cyclone or anticyclone. It is illuminating to
follow up how the streamfunction, the potential vorticity and the Bernoulli function
behave in them. The ridge and trough case is the simpler example:

e + 1
p=--

ex2

1+-2-
(AI6)

(AI?)

The streamfunction and the potential vorticity are both seen to be more complex
functions than velocity or depth. All three, 1/1, P, and B, are even functions of the
coordinates, if the velocity components are odd functions, as one can readily see from
the definitions.

None of the above exact solutions resembles the saddle pattern required to model
flow around a stagnation point. One might try to find such a pattern by looking for a
solution asymptotically valid as x, y -+ O. The example of the exact solutions above
suggests that the streamfunction should be quadratic in the coordinates: the stream-
lines are then hyperbolae. The corresponding power series expansion of the streamfunc-
tion may be written:

by2 ex2
1/1 = ""2 - 7: + 0(x4, y4)

with be > O. This is closely analogous to the ridge and trough solution. In view of Eqs.
(4) and (6a) the potential vorticity and Bernoulli function have the expansions:

P = Po + 1'1/1 + 0(1/12)
B = 1 - Po1/1- "(1/12/2 + 0(1/13)

(AI8)
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with l' = const. If second order terms in x and y only are retained in Eq. (AI7), the
velocity, depth and vorticity are calculated to be:

u = by Ih v = cx Ih
h = 1 - (Po + b)by2/2 + (Po - c)cx2/2

s = c - b.

(A19)

The terms neglected in u and v are of the third order in x, y, in depth of the fourth
order, but in vorticity of the second order. The expansions written down here are valid
if they satisfy conservation of potential vorticity:

(A20)

With sknown only to zeroth order, this equation can only be satisfied to the same order,
by setting:

Po = 1 - b + c. (A21)

Calculations have shown a fourth order solution to be little better than the second order
one, as to its range of validity, both only good to order 0.3 in nondimensional distance
from the origin. Comparing Eq. (A2l) with Eq. (15) it is clear that this asymptoticalIy
valid saddle solution describes the flow in a smalI neighborhood of the origin where the
potential vorticity is homogenized to Po = (PI + P2) 12. The x, y axes are the bisectors
and the inclination of the separation streamlines against one of the axes is al2, so that
clb = tan (a/2). With the aid of relationships developed in section 3 the value of c and
b may be found for any prescribed r:

(r - 1)2
c-b=---

4r
(A22)

Thus the homogenized region streamlines can also be determined from the ratio of
potential vorticities. Figure Al shows the streamlines and depth contours calculated
for constants c = -0.221 and b = -0.554, corresponding to a depth ratio of r = 3.

The figure illustrates that in the saddle model the depth contours do not coincide
with the streamlines. Instead, h + if; is constant in concentric circles, forming a mound
if represented by a surface. The mound part of the pressure field is much the same as
found around a stagnation point without earth rotation. Its function is to decelerate the
flow approaching the stagnation point, accelerate it upon leaving. To second order in
distance the pressure field is thus a simple superposition of a cyclostrophic and a
no-rotation field. As Figure A I shows, the effect of the superposition is to expand the
depth contours of the anticyclonic sectors beyond the separation streamlines, compress
those of the cyclonic ones.
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Figure AI. Streamlines (full) and constant depth contours (broken) around saddle stagnation
point. Constants have been determined for a depth ratio r = 3, scaled potential vorticity P =
1.33, and are b = -0.554, c = -0.221.

APPENDIX 3

The homogeneous Eq. (34) is satisfied by:

t/; = f(r) cos (net» n = 0, 1,2,3, ... (A23)

provided that:

Here r, cP are polar coordinates. The boundary condition t/; = - 1 on the walls of a
wedge of included angle a may be satisfied by a series of Bessel functions In' using a
result listed by Abramowitz and Stegun (1964), p. 376. One finds:

cos (2cP) cos (4cP) cos (6cP)
-t/; = lo(r) - 2/2(r) () + 2/4(r) (2) - 2/6(r) (3) +cos a cos a cos a

(A24)

Along the bisector, cP = 0, this tends to infinity at large r.
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