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The evolution of salt fingers in inertial wave shear

by Eric Kunze'

ABSTRACT

Shadowgraph profiles collected in the thermohaline staircase east of Barbados reveal nearly-
horizontal banding—unlike the vertical banding that has been observed in other fingering-
favorable parts of the ocean. A plausible interpretation of this optical microstructure is that
vertical shear is tilting over fingers. This paper presents a model for shear-tilting of salt fingers.
The Ri = 6 inertial wave shears observed in C-SALT would tilt over and damp out square
planform (k, = k) fingers so rapidly that they could not produce significant fluxes. Vertical
sheets aligned with the shear (k, = 0) would behave like unsheared fingers if the shear was
steady but oceanic shear is predominantly near-inertial so turns with time. Therefore, an
across-sheet shear component will develop and initially-aligned sheets too will ultimately be
tilted over. This happens slowly enough that sheets can grow to produce significant fluxes.
When the growth of tilting sheets is limited by a critical inverse finger Richardson number,
(V x V)?}/N? ~ 3-16, the model produces microstructure and fluxes similar to those reported
from C-SALT. However, this constraint does not explain the density ratio dependence in
laboratory studies and numerical simulations. What constrains finger growth needs to be better
understood.

1. Introduction

This paper examines the effect of vertical shear on salt fingers to try to explain the
nearly-horizontal laminae observed with a shadowgraph profiler in the fingering-
favorable thermohaline staircase east of Barbados (Kunze et al., 1987). Gregg and
Sanford (1989) reported 10-m Richardson numbers across the staircase interfaces
of ~6.

Linden’s (1974) laboratory experiments demonstrated that, in steady shear with
Ri = 6, vertical salt sheets aligned with the shear are the preferred mode of instability.
The horizontal wavenumber of these sheets was identical to the fastest-growing
wavenumber. In light of this, Schmitt and Georgi (1982) interpreted vertical banding
in shadowgraph images from fingering-favorable layers where the instrument’s optical
path was aligned with the shear as salt sheets.

However, shadowgraph images from the thermohaline staircase east of Barbados
(C-SALT) revealed not vertical but nearly horizontal banding in the fingering-
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Figure 1. (a) Temperature and salinity profiles through a fingering-favorable interface in the
thermohaline staircase east of Barbados. The interface is 3-m thick with a temperature step
AT = 1°C and a salinity step AS = 0.15% between two relatively well-mixed layers 10-20 m
thick. The open circles on the higher-resolution STV temperature curve (thin solid curve)
indicate the locations of the shadowgraph images shown in (b). Solid dots correspond to the
Turner angle Tu which is in the fingering regime (7Tu > 45°) throughout the interface. (b)
Shadowgraph images through a fingering-favorable interface (Fig. 1a). Each image is 10 cm
in diameter and represents an average of the Laplacian of the index of refraction V24 over the
60-cm long horizontal optical path. The upper left image from just above the top of the
interface is optically quiet. Nearly-horizontal laminae with vertical wavelengths of 1 cm and
tilts of 10-20° fill the images inside the interface. At these scales, the index of refraction
should be almost entirely due to salt variance. Similar structure was found wherever gradients
were fingering-favorable, and only where they were fingering-favorable.

favorable parts of the water column. Figure 1b shows a typical sequence of images
through a fingering-favorable interface within the staircase (Fig. 1a). The interface is
3-m thick with differences AT = 1°C, AS = 0.15% across it. It is sandwiched between
two well-mixed layers 10-20 m thick. Each shadowgraph image in Figure 1b is
10 cm in diameter and represents the Laplacian of the index of refraction,
Vi = aV?T — bV'S, averaged over a 60-cm long horizontal optical path through
seawater [a = dn/dT and b = dn/aS express the dependence of the index of refraction
on temperature 7T and salinity S; this dependence is roughly the same as that for
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density]. The upper left image (Fig. 1b) is from above the interface and is optically
quiet. The next image shows banding in its lower half.

The rest of the images, from within the interface, are filled with laminae. These
nearly-horizontal striations have vertical wavelengths of 1 cm and are found not only in
this interface, but wherever conditions favor fingering in the water column. Further-
more, laminae were not observed in the diffusively-stable parts of the profiles. The
strong correlation between laminae and fingering-favorable conditions suggests that
they are in some way connected with the salt-fingering form of double-diffusive
instability. Other measurements provide evidence of plumes in the homogeneous layers
(Marmorino et al., 1987), pointing to double diffusion being an important source of
mixing. Yet, of over 400 interfaces sampled with the shadowgraph profiler (Kunze et
al., 1987), there were no instances of the vertical banding that has been identified with
salt-fingering in the laboratory (Turner, 1967, Shirtcliffe and Turner, 1970; Linden,
1973; Chen and Sandford, 1976) and in other fingering-favorable regions of the ocean
(Williams, 1975, 1981; Schmitt and Georgi, 1982).

Kunze et al. (1987) suggested that the nearly horizontal banding observed in the
staircase east of Barbados might be due either to fingers tilted over by vertical shear, or
intrusive instabilities between Linden’s (1974) salt sheets like those described by
Holyer (1984). Two-dimensional numerical simulations (Shen, personal communica-
tion, 1990) show the potential for tilting by shear. Recent laboratory dye experiments
by Nordeen Larson (personal communication, 1990) reveal that, while salt sheets
develop in a steady shear, they break up into square planform fingers when the shear is
turned off. If shear is then re-established, the fingers tilt over rather than re-forming
sheets. Therefore, fingers cannot adjust their spatial structure to changing background
shear.

Shear is dominantly near-inertial in the staircase east of Barbados (Fig. 2, Gregg
and Sanford, 1987) as elsewhere in the ocean (Sanford, 1975; D’Asaro, 1984, 1985;
Kunze et al., 1990). So even if sheets were aligned initially, the inertially-rotating
shear will produce an across-sheet component on a timescale of f~! (~8 h east of
Barbados).

In this paper, the role of shear-tilting of fingers will be explored. The resulting model
is used to try to simulate the C-SALT observations. To be convincing, it should be able
to reproduce a number of unique features from the C-SALT measuements:

¢ the nearly-horizontal banding in shadowgraph images from the fingering-
favorable parts of the profile (Kunze et al., 1987) with vertical wavelengths of
~1 ¢m and horizontal wavelengths of ~6 cm.

e dominant vertical wavelengths in temperature microstructure of ~6 cm (Gregg
and Sanford, 1987). The discrepancy in vertical scales between the shadowgraph
and profiles may be because the shadowgraph measures the Laplacian of the index
of refraction. The second derivative emphasizes the smallest scales and these are
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likely to be due to salt because of its small diffusivity; temperature microstructure
on 1-cm wavelengths would decay in only 25 s compared to 1 h for salt.

® dominant horizontal wavelengths in temperature microstructure of ~5-7 cm
(Marmorino et al., 1987; Lueck, 1987). These values are consistent with the
fastest-growing wavelength (~3 cm; Stern, 1960; Schmitt, 1979b; Kunze, 1987)
when account is taken for the random orientation of the tows with respect to sheets
or fingers.

® average /ayer turbulent dissipation rates of ~1.4 x 107'° W /kg, a factor of ~30
below those predicted by the laboratory-derived AS*? flux laws (Gregg and
Sanford, 1987; Lueck, 1987) assuming the buoyancy-flux is balanced by dissipa-
tion in the layers F, = ¢ (Businger et al., 1971; Shay and Gregg, 1986). The AS*/*
flux law has been found to hold in the laboratory (Turner, 1967; Linden, 1973;
Schmitt, 1979a; McDougall and Taylor, 1984), however, Kunze (1987) showed
that it will only apply if the interface thickness is identical to a maximum finger
length (~30 c¢m) as constrained by a critical finger Richardson or Stern number
(Vyw)?/N? = F,/N? ~ 4. Interfaces in the staircase east of Barbados were an
order of magnitude too thick for individual fingers to extend through them.

® average interface dissipation rates of ~5 x 107!° W/kg (Gregg and Sanford,
1987). These are higher than those in the layers but Gregg and Sanford caution
that they may be biased high by temperature microstructure in the high-gradient
interfaces.

® median interface Cox numbers (normalized by interface gradients) of ~10
(Lueck, 1987; Gregg and Sanford, 1987; Marmorino et al., 1987).

One of the striking features in the C-SALT CTD data set is the near-constant layer
density ratio in the staircase, R,; = aAT/BAS = 0.85 + 0.02 (Schmitt et al., 1987).
Using a one-dimensional advective-diffusive balance, Schmitt (1988) argued that the
layer density ratio should be identical to the flux ratio through the interfaces. However,
McDougall (1990) shows that these two quantities cannot be identical due to the
nonlinearity of the equation of state (see Appendix A). He finds that very weak
interfacial advection w; (with Rp = R, = 1.6) coupled with fingering/molecular
diffusion (R < 1) could account for the layer density ratio. Since the layer density
ratio does not necessarily constrain the flux ratio, it cannot be compared to the model’s
flux ratio.

2. Equations of motion

The basic assumptions of the model are sketched in Figure 2. The model is similar to
that described by Kunze (1987) except that it allows for tilted fingers. The upper panel
of Figure 2a represents a vertical slice through a zone of fingers or sheets. The fingers
consist of alternating finite-length columns of up- and downflowing fluid embedded in
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Figure 2. A schematic defining the parameters of the sheared finger model. In the upper panel
(a), a vertical cross-section through a zone of tilted fingers is shown. The thick solid lines
demark the strong gradients between adjacent fingers and at their intruding tips. The central
panel (b) displays temperature and salinity profiles along the dashed lines in (a) for up- and
downgoing fingers (left and center) and the contrasts between fingers (right). Temperature
and salinity are continuous at the inlet to a finger, vary smoothly over its length and are
discontinuous at the intruding tip. Upgoing fingers are lighter than the surrounding fluid,
downgoing fingers heavier. Gradients inside the fingers (solid lines) are weaker than in the
unperturbed fluid (dashed lines). The finger height A lengthens in time. Sinusoidal structure
for finger temperature, salinity and vertical velocity is assumed (c).

uniform background vertical gradients of temperature Tz, salinity g,, and shear U,.
The thick lines represent the strong gradients that exist between adjacent fingers and at
their intruding tips (Piacsek and Toomre, 1980).

The fingers lengthen in time due to their buoyancy-driven motions, drawing fluid in
at their inlets that has been displaced by the adjacent intruding tips. Temperature and
salinity are continuous at the inlets, have reduced gradients within the fingers and
discontinuities at the intruding tips (Fig. 2b). Because salt has such a low molecular
diffusivity, there is little diffusion of salt between fingers, and so the salinity gradient is
governed by advection. A column of water is stretched to twice its original height in a
finger, so the salinity gradient inside fingers is half that of the background (Fig. 3).
Since temperature diffuses more rapidly, the contrasts between adjacent fingers will be
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Figure 3. Cartoon illustrating the effect of a growing finite-length finger’s velocity w on a
property of low diffusivity. The left panel shows initial conditions. The central and right panels
correspond to square and sinusoidal w-structure, respectively. Water pushed aside by the
intruding tip of one finger joins the fluid in the adjoining, oppositely-flowing finger. Conserva-
tion of volume then dictates that the vertical gradient in the finger will be half that of the
background.

weaker and temperature-gradients in fingers are closer to the background value
(Kunze, 1987).

Sinusoidal finger structure is assumed (Fig. 2¢), and will be taken to be a square
planform sin (k,x) sin (k,y) in the horizontal (Stern, 1976) where k, = 0 corresponds
to salt sheets (Linden, 1974). The vertical structure within the fingering zone will be a
superposition of the reduced gradients T, (<T,) and S, (<S,), and sinusoidal finger
structure. Mathematical expressions corresponding to the above description are

T=T,+ T,z + 6T(¢) - sin (kyx + k,z) sin (k,y)

1
S =28,+ S,z +88() - sin (k. x + k,z) sin (k,p) M

where 67(¢) and 6S(¢) are the contrasts between adjacent fingers relative to the
horizontal average, the finger gradients

T 7 26T
z = 4z + h (2)

— 23S

S, =35, + n

(Fig. 2b) and the finger height

B =h,+ [ 2w d. 3)
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The equations of motion for tilted salt fingers in a uniform shear U, (with the
coordinate system oriented in the direction of the shear) are

du Uau w2 U - ap
or TVax|~ vV T VY= —5%

a ow 9
d U—||— v?w = or

21 TV 3% ~3; + gladT — B8S)

T T
_+ —

- ||~ VBT + Tow =0 (4)

%S |[ %S
—~— +|U

EY ax ksV8S + S,w =0

du dw _
ox T oz =

The terms in boxes in (4) are those not found in the equations of motion for untilted,
unsheared salt fingers (Stern, 1960). These include (i) the ¥-momentum equation, (ii)
a pressure term in the w-momentum equation, (iii) conservation of mass in its
incompressible form and (iv) advection Ud/dx of the fingers by the background flow [in
double boxes]. Note that the background properties (U, U,, T, , S,) are not constrained
to be steady; WKB theory allows them to change provided they do so on a timescale
long compared to that of the fingers. Looking for solutions proportional to
exp [i(kx + k,y + k,z)], (4) becomes

Du
ot vk*u + Uw + ik,p = 0
Dw
ot vk*w + ik,p — g(adT — 86S) =0
D§T (5)
5 kKT + Tw =0
D&S )
7+Ksk 0S+Sw=0
k.u + k,w =0,

where D/Dt = d/dt + ik, U. Letting the tilt k,/ k, = s, continuity yields

k’ A6
u=—k—xw=—sw (A6)
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and the two momentum equations can be coupled together by eliminating their
pressure terms to obtain

Dw D(sw)

DTS D

+ vk*(1 + s)w — sUw — g(ad T — B5S) = 0. @)

Stern (1960) showed that even the maximum D/Dt (= growth rate ¢,) is much less
than vk? (see also Fig. 2 of Kunze, 1987). Therefore, the time-derivatives can be
neglected in (7). The problem then reduces to a diagnostic for w and two evolution
equations for T and 4S

g(ad T — 85S)
YE Ve - 5?) — sU,
DéT
5 = —«k®T - T,w (®)
D5S )
i = —kgk?8S — S,w.

In a shear field, the finger wavevector will be continuously-deformed just as is the
wavevector of internal waves in vertical shear (Lighthill, 1978; Phillips, 1966). From
WKB theory (e.g., Frankignoul, 1970; Olbers, 1981), the horizontal wavevector is
invariant in a vertical shear but the vertical wavenumber changes continuously

dk,
7 = kU )]
which implies that the tilt s varies with time
k, '
s=k—x=so_fou,.dt, (10)

where s, is the initial tilt. The total wavenumber will behave parameterically as
k2= k21 + s1) + K2 (11)

where k2 + k2 = k} is the square horizontal wavenumber. Eq. (9) is the same
mechanism that pushes shear and buoyancy microstructure toward high wavenumber
and molecular dissipation in classical turbulence theory (Batchelor, 1959).

3. A Numerical model

Since the wavevector changes continuously, it is not possible to find an analytic
similarity solution to (8) valid for all time. The dependence of the initial growth rate on
wavenumber and tilt is presented in Appendix B. In this section, the evolution of fingers
in shear is computed numerically. Eqs. (8)—(9) were solved with a Runge-Kutta
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Table 1. Parameter values used for the figures. Values are typical of the thermohaline staircase
east of Barbados (Mazeika, 1974; Boyd and Perkins, 1987; Schmitt er al., 1987, Gregg and
Sanford, 1987).

Variable Value
v 1074 m?/s
Kr 1.4 x 107" m%/s
Ks 1.1 x 10-° m¥/s
g 9.8 m/s?
a 2 x 10-%oC"!
B8 7.5 x 107 %/,~!
L, 20 m
l; 2m
T, 0.3°C/m
5, 0.05 %o/m
N 1.5 x 10-%/s
P,=2n/N 7 min
Rp 1.6
A 3.lcm
U, 6.3 x 10%/s
f 3.5 x 107%/s
P =2z/f 2 days
Ri 6

routine (Press et al., 1986) using a time-step of 27 /(200N). Environmental parameters
were set to values typical of the interfaces in the thermohaline staircase east of
Barbados (Table 1). Specifically, salinity gradient S, = 0.05%y/m, density ratio Rp =
1.6 and vertical shear U, = 6.3 x 10‘3/s (Ri = 6). This ignores the interface
substructure described by Marmorino (1989) which could result in larger fluxes and
microstructure.

Horizontal structure corresponding to a checkerboard pattern (k, = k,) (Fig. 4a)
and sheet form (k, = 0) (Fig. 4b) will be considered. The fingers are seeded with
initial heights A, = 2w, /o, = 7 /(2ky), where k is the horizontal wavenumber (11)
and o, the growth rate (B1) at ¢ = 0. This initial condition is consistent with (3) and an
isotropic initial structure that might be caused by turbulence (Kunze, 1987). The
initial temperature and salinity anomalies are then set with (8) assuming that
D/Dt = g, (B1). As will be shown (see Fig. 12), the results are insensitive to initial
conditions.

a. In steady shear. Linden’s (1974) laboratory experiments demonstrated that the
dominant double-diffusive instability in steady shear is vertical sheets aligned with the
shear (k, = 0). He argued that instabilities with nonzero wavenumbers in the direc-
tion of the shear were stabilized by the shear. Figure 5 suggests an alternative
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a b
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Figure 4. Plan view of fingers with (a) a square planform (k, = k, = k,/J2) and (b) a sheet
form (k, = 0) initially aligned with the shear. Inertial shear turns clockwise with time as
indicated by the dotted arrow.

explanation. Plotted are the time-evolutions of the normalized finger height 4/h, and
vertical velocity w/w,, where h, and w, are initial values, for horizontal wavelengths of
2-7cm and k, = k, (Fig. 4a). The fingers do not grow. They are tilted over so rapidly
that the vertical velocity diminishes monotonically. The finger height does not change
significantly. Therefore, unless fingers form sheets aligned with the shear (k, = 0;
Fig. 4b), they are tilted over and molecularly damped too rapidly to contribute
significant fluxes.

b steady, square a
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Figure 5. The time evolution of normalized (by their initial values) finger height 4/h, (upper
panel) and vertical velocity w/w, (lower panel) for square planform fingers with horizontal
wavelengths ranging from 2-7 ¢cm in a shear of Ri = 6. The vertical velocity decays without
growing. As a consequence, the finger height does not increase significantly.
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tet,

Figure 6. Schematic illustrating the evolution of salt sheets in near-inertial shear. At their
inception ¢ = 0 (a), the sheets are assumed to be aligned with the shear. As time progresses,
the shear turns clockwise with an inertial period. This introduces a component of the shear
normal to the sheet crests which will tilt them over as they grow (b, ¢).

On the other hand, in steady shear sheet growth is the same as unsheared square-
planform fingers because the equations of motion (4) reduce to the unsheared form
when d/0x = ik, = 0.

b. In inertially-rotating shear. However, in the deep ocean, shear is not steady but
near-inertial (Sanford, 1975; D’Asaro, 1984, 1985; Kunze et al., 1990). In particular,
the shear during C-SALT had periods consistent with near-inertial (~48 h at 12N)
(see Fig. 2 of Gregg and Sanford, 1987). The shear for these waves has no node but
rotates in both depth and time. This, along with the ubiquity of near-inertial wave
motion in the ocean (Fu, 1981), implies that there should always be shear at any
location as is observed (Eriksen, 1978; Kunze et al., 1990).

It will be assumed that the fingers start growing as sheets aligned with the shear
(k. k,) = (kg, 0) (Fig. 4b; Fig. 6a) where the shear is in the y-direction at ¢t = 0. This
allows us to continue to use (4) even though it does not include a v-momentum
equation. As time progresses, the shear rotates, (U,, V,) = |V,]| (sin (f1), cos ( 1)),
introducing a slowly-growing component normal to the sheets (Fig. 6b, c).

Kunze (1987) found that unsheared fingers grew for about ten buoyancy periods
(~1 h; Table 1) before reaching a critical Stern (1969) or inverse finger Richardson
number of four. In ten buoyancy periods, a near-inertial shear of magnitude 0.4N that
is initially aligned with sheets will turn enough to produce an across-sheet shear of
0.05N (Ri = 400). This is sufficient to cause tilting ~0(20°) in ten buoyancy periods.
Therefore, it is possible that (i) sheets could grow significantly before being tilted and
damped, yet (ii) be significantly tilted before becoming unstable. The first point is
borne out by Figure 7 which displays the time-evolution of the normalized (by their
initial values) finger height //h, and vertical velocity w/w, for horizontal wavelengths
of 2-7 cm. Fingers with 3—4 cm horizontal wavelengths (fastest-growing) achieve
almost 100 times their initial height before their wavelength becomes sufficiently small
that molecular processes prevent further growth. This occurs at a wavelength of ~1 cm.

To demonstrate that shear-tilting can reproduce the observed temperature and
optical (salt?) microstructure, Figure 8 displays the normalized vertical finger gradi-
ents of temperature and salinity, 67,/|V,T,| and 4S,/|V,S,| as functions of vertical
wavelength. Recall that the vertical wavenumber increases in magnitude in time (9).
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Nt/2a

Figure 7. The time-evolution of salt sheets with wavelengths ranging from 2-7 cm in
inertially-rotating shear of Ri = 6. The normalized finger height 4/h, is shown in the upper
panel and vertical velocity w/w, in the lower panel. The sheets are initially aligned with the
shear (Fig. 6a). They tilt over and are damped more slowly than square planform fingers (Fig.
5) which feel the full effect of shear. The vertical velocities grow for ~7 buoyancy periods,
attaining magnitudes up to 35 times their initial value before decaying. The finger heights
reach up to 100 times their initial value for horizontal wavelengths similar to the unsheared
fastest-growing wavelength of 3 cm.

Thus, the vertical wavelength diminishes in time and time increases to the left in
Figure 8. As t he sheets grow, the temperature- and salinity-gradients increase until the
scale becomes small enough that molecular diffusion smooths out their structure. This
occurs at a wavelength of 3 cm for temperature and 1 cm for salt. The salt wavelength
is identical to that of the optical striations in the shadowgraph images from the
fingering-favorable parts of the profiles (Fig. 1b), supporting the hypothesis that the
observed laminae are due to salt. The temperature scale is larger than the salt scale,
though not as large as the 6-cm temperature vertical wavelength reported by Gregg

30 -
K, 8T/k 8T,
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Figure 8. Normalized (by the initial gradients) vertical temperature- (upper panel) and
salinity-gradient (lower panel) vs. vertical wavelength for horizontal wavelengths of 2-7 cm.
The vertical wavelength decreases in time (9), so time increases to the left. As fingers grow,
their vertical gradients increase until their wavelength becomes sufficiently small that
molecular diffusion eradicates the signature. This occurs at a vertical wavelength of 3 cm for
temperature and 1 cm for salt.
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and Sanford (1987). As discussed in the next section, this may be the vertical scale at
which the sheets go unstable.

4. Fluxes

Replicating the scales of the observed temperature and salinity microstructure does
not guarantee that the model is correct. If appropriate, the model should also be able to
reproduce the observed dissipation rates (e ~ 5 — 10 x 107'® W/kg in the interfaces
and ~1.4 — 3 x 107'° W/kg in the layers; Gregg and Sanford, 1987; Fleury and
Lueck, 1990) and Cox numbers (~10; Marmorino et al., 1987; Fleury and Lueck,
1990; Gregg and Sanford, 1987). In this section, the model is used to try to simulate the
C-SALT microstructure variances.

In a buoyancy-driven mixing layer, the dissipation rate must be less than or equal to
the forcing buoyancy-flux, e = F,. Convection theory (Businger et al., 1971) suggests
that e ~ F, and this has been observationally verified in the atmosphere (Caughey and
Palmer, 1979) and ocean (Shay and Gregg, 1986). Therefore, the buoyancy-flux will
be assumed equal to the layer dissipation rate. \

Fluxes are determined by combining molecular diffusion, gkaT, and gk, 8S,,
with average salt-finger fluxes, ga(wdT) and gB(wdS), from the model where
(:y=(1/t) - _/;"(-) dt. The critical time t, is set by some amplitude constraint on
finger growth. In Section 4a, it corresponds to the maximum instantaneous buoyancy-
flux. In Section 4b, it is the time when the instantaneous inverse finger Richardson
number (V x V)2/N? exceeds a specified critical value. Molecular diffusion is in-
cluded because it is always present; it will not affect the interface dissipation rates or
Cox numbers. Internal wave-generated turbulence appears to be too weak to contribute
significant interfacial fluxes (Gregg, 1989) though it will contribute to the Cox number
and dissipation variance; this view differs from that of Marmorino (1990) and Fleury
and Lueck (1990) who argue that turbulence contributes enough flux to raise the flux
ratio by a factor of ~1.1. Isopycnal mixing cannot be evaluated but would not produce
the staircase structure. As discussed by McDougall (1990) (see Appendix A), interface
migration will contribute little to the fluxes though it becomes crucial when considering
water-mass (layer property) changes.

a. Unconstrained fluxes. First we investigate the case where sheet growth is unre-
stricted except by tilting. These results will be referred to as unconstrained since no
external constraint is placed on the finger amplitude. Figure 9 shows the average flux
ratio Ry = a{ Fy) /B{Fs), dissipation rate (¢), buoyancy-flux (F,}, Cox number {(C;},
and inverse finger Richardson number Rif" contoured against horizontal wavelength
A, and initial tilt angle 6,. The averaging assumes that when the sheets start to decay
(at about 14 buoyancy periods in Fig. 7), new sheets begin to form.

The peak average model dissipation rates and buoyancy-fluxes (Fig. 9) are two
orders of magnitude larger than the C-SALT microstructure values. Thercfore, some
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unconstrained
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Figure 9. The average flux ratio R, = a{F,)/B({Fs), dissipation rate {¢}, buoyancy-flux {F,),
Cox number {C;), and inverse finger Richardson number Ri,~' contoured against horizontal
wavelength A, and initial tilt angle 8, for unconstrained fingers. The peak buoyancy-fluxes of
—80 x 10™'" W /kg and dissipations of 100 x 10~'° W /kg are two orders of magnitude larger
than the C-SALT observations.
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Figure 10. The average approximate Stern number B{Fg)/(vaT,) vs. density ratio R, from
laboratory measurements and numerical simulations. The solid curves are from the Kunze
(1987) model for various critical Rif“' (numbers along the right axis). For R, = 1.6 (dotted
vertical line), the data range from critical Ri;™' = 3-16. Taylor and Bucens (1990) suggest
that the very high values at low R, found by McDougall and Taylor (1984) may be due to their
unique initial conditions. However, similar values are found in numerical simulations (Shen,
1989; Whitfield et al., 1989).

constraint must limit the growth of sheets. For an untilted finger model, Kunze (1987)
found that halting finger growth when a Stern or inverse finger Richardson number
exceeds four approximately reproduces the observed C-SALT microstructure.

b. Constrained fluxes. What controls the magnitude of salt-fingering fluxes has been a
longstanding question in the field and is still unresolved. Stern (1969) proposed that
fingers grow until their normalized buoyancy-flux, F,/vIV 2 (henceforth referred to as
the Stern number), exceeds a critical value ~O(1) and then are disrupted by ‘large-
scale’ (collective) instability of the fingers. Holyer (1981) showed that the critical
Stern number should be !5, however, in a later paper (1984) identified a high-
wavenumber intrusive instability which arose at Stern numbers ~0(1072).

For vertical fingers, the Stern number is identical to an inverse finger Richardson
number, Rif‘l = (V x V)?/N? = (Vyw)?/N?, where the horizontally-sheared vertical
velocity has replaced the vertically-sheared horizontal velocity of the conventional
Richardson number (Kunze, 1987). Figure 10 displays laboratory (Schmitt, 1979a;
McDougall and Taylor, 1984; Taylor and Bucens, 1989) and numerical (Shen, 1989;
Whitfield e al., 1989) estimates of the average approximate Stern number §(Fg)/
(vaT,) as a function of density ratio R, along with model curves of this quantity
(Kunze, 1987) for critical Rif" = 2, 4 and 8 (assuming fastest-growing fingers).
Neither the lab nor numerical results support fingers being disrupted at Stern numbers
~0(1072) even though Whitfield et al. (1989) reported that perturbations on fingers
grew at rates consistent with Holyer’s (1984) theory. The numerical values (Shen
1989; Whitfield et al., 1989) might be questioned because their Prandtl and Lewis
numbers are much closer to one than appropriate for heat-salt fingers, but this is more
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likely to affect values at high R,. Taylor and Bucens (1989) suggest that the very high
values found for R, < 2 by McDougall and Taylor (1984) may be due to their unique
initial conditions. However, the fact that numerical simulations independently suggest
the same R -dependence for the Stern number raises doubts about the universality
of a constant Stern number constraint. For the C-SALT density ratio R, = 1.6,
(BFs)/(vaT,) is scattered between 1-5, which corresponds to critical Ri}l between
3-16 (curves in Fig. 10).

Kunze (1987) showed that for the 2-m thick interfaces in the staircase east of
Barbados, a critical inverse finger Richardson number of four implied fluxes roughly
compatible with the measured buoyancy-fluxes (Gregg and Sanford, 1987) but two
orders of magnitude smaller than predicted by the laboratory AS** law (Turner, 1967;
Kelley, 1990. This constraint also gives results consistent with heat-fluxes inferred off
the California coast (Osborn, 1988) and the salt budget of a Mediterranean lens
(Hebert, 1988). To produce fluxes consistent with the AS*? flux law, interfaces can be
no more than ~30-cm thick.

For tilted fingers, the inverse finger Richardson and Stern numbers are not identical,
but related through

3 (V x V)? _ (Vew)i(1 + 52)? _F

Rif' = N T

(1 + s?)? (12)
where both the vertical velocity w and tilt s vary in time. Because these two
hypothesized constraints differ, both Stern and inverse finger Richardson number
constraints were applied to growing sheets. However, the results did not differ
significantly, so only the Rif‘l constraint results are presented here. It will be presumed
that the fluxes are disrupted when Rif‘l exceeds a critical value and that new sheets
immediately begin to grow. Therefore, averaging is carried out from ¢ = 0 to the time 7,
when the critical inverse finger Richardson number is exceeded. This is a gross
simplification. Undoubtedly, a fingering field is made up of an ensemble of fingers at
various stages of growth and instability disrupts the finger fluxes in a complicated
interactive way. However, this scheme does at least include fingers at all stages of
growth in the average.

The first sheets to go critical for Rz'f"c = 4 do so in 5.5 buoyancy periods
(Nt,/2% = 5.5, lowermost panel in Fig. 11). They correspond initially to fastest-
growing vertical fingers (A = A\, ~ 3 cm, 8, ~ 0°). Vertical fingers grow most rapidly
because a buoyancy anomaly drives weaker (by s~!) along-sheet flows along tilted
trajectories and even weaker (by s~2) vertical motions. Though vertical sheets become
tilted in time, more rapid initial growth appears to be the most crucial factor. These
‘first-to-go-unstable’ sheets have a flux ratio R = 0.85 (stippled patch in uppermost
panel of Fig. 11), identical to the C-SALT layer density ratio, but their average
dissipations, buoyancy-fluxes and Cox numbers are smaller than the C-SALT observa-
tions. Choosing a larger critical inverse finger Richardson number will better repro-
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Figure 11, The average flux ratio R, dissipation rate (¢}, buoyancy-flux (F,) and Cox number
{C;) for a critical inverse finger Richardson number of four contoured against horizontal
wavelength and initial tilt angle. Also contoured is the time Nt /2 it takes the sheets to reach
critical value. Only sheets inside the contoured region attain Ri,"c = 4. The first sheets to go
critical (at Nt./2m = 5.5, lowermost panel) are stippled in all panels. They will disrupt the
other fingers’ growth and dominate the fluxes. Their wavelengths and initial tilts correspond to
fastest-growing fingers (A, = 3 cm, 4, = 0°). Their flux ratios are ~0.8-0.85, dissipation rates
~13 x 107" W/kg, buoyancy-fluxes ~5-6 x 10" W/kg and Cox numbers 2. The ridge of
high dissipation rate {¢) and buoyancy-flux {F,) running from A, = 3 cm, 6, = 0°to ~8 cm,
60° corresponds to sheets which initially have total wavelengths near the fastest-growing
wavelength. Thus, sheets with the fastest-growing wavelength grow more than sheets of the
same tilt with either higher or lower wavenumber.



1990] Kunze: Salt fingers in shear 489

duce the C-SALT dissipation rate, buoyancy-flux and Cox number, as well as be more
consistent with the high critical values in Figure 10, but then the flux ratio will be
smaller than the layer density ratio. This is not a concern if we believe McDougall’s
(1990) arguments (see Appendix A) that the layer density ratio does not constrain the
flux ratio so the C-SALT finger flux ratio is unknown.

The sheets go unstable at tilt angles of 15-40°, depending on seed amplitudes. But if
they go unstable before being fully tilted over, how is the optical microstructure
produced? This is easily addressed. Instability of the sheets will disrupt fluxes and lead
to smoothing of both velocity and temperature microstructure because of the higher
molecular diffusivities associated with these quantities. But passive salinity microstruc-
ture will remain on scales too small to drive vertical motions. It will continue to be tilted
by the persistent shear until it reaches the 1-cm wavelength where molecular diffusion
can eradicate it (Fig. 8). In this spirit, Figure 12 displays vertical slices of the salinity
and temperature microstructure as might be seen with a shadowgraph (neglecting
parasitic instabilities). The temperature and salinity microstructure have the same
horizontal wavelength but different vertical wavelengths because of the greater degree
of tilt for salt. The temperature contribution to the optical signal will be much weaker
than the salt because of its larger wavelengths and therefore weaker Laplacian.

Following common practice in turbulence measurements, the C-SALT microstruc-
ture investigators assumed isotropy and multiplied their measured shear variances by
15/, to obtain dissipation rates and their temperature-gradient variances by 3 to obtain
Cox numbers. For the model described here, these factors will not be correct because
the sheets are not fully isotropic. The relationships between the ‘isotropized’ and true
values for the tilted sheet model are

3
tow Cp = ——C
T =S + ) T

s (13a)
tow ¢ =

2(1.5201 + s2)2°

where the factor of (1.5)? arises because tows are not always normal to the sheet crests
so underestimate the horizontal gradients. Likewise,

profile C = (T:—S—_Z_)CT

15
20520 +59)°

(13b)

profile e =

depend on tilt s.

The sensitivity of the average model dissipation rates (true and ‘isotropized’), Cox
numbers (true and ‘isotropized’), buoyancy-flux and flux ratio to initial magnitudes A2
[normalized by =?/(4k2)] and critical Ri/™" is examined in Figure 13 assuming that
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Figure 12. Vertical cross-sections of the dominant sheet salinity and temperature microstruc-
ture assuming that, when the sheets ‘break’ at a critical Ri;' = 3-16 [, = 15° (dashed) to
40° (solid)], the sheet temperature microstructure is disrupted and smoothed by molecular
processes, while the salt structure continues to be tilted.

when fastest-growing sheets go unstable, they disrupt the fluxes associated with other
sheets and so dominate the overall fluxes (this is true for the fluxes but may
underestimate the Cox numbers by as much as a factor of two). Except for profile
dissipation rate, there is little sensitivity to the initial conditions provided that the seed
height is large enough that the sheets can become critical (right of dotted line). This
insensitivity is a consequence of nearly exponential growth.

On the other hand, there is strong dependence on the critical inverse finger
Richardson number. Values inferred from the C-SALT microstructure measurements
are stippled. The domain constrained by the buoyancy-flux (layer dissipation rate) is
stippled in all the panels. The buoyancy-flux implies smaller dissipation rates and Cox
numbers than those observed. One explanation for this discrepancy is that there is large
uncertainty in the measurements. Intercomparisons on the equator indicate factors of
2-3 uncertainty between different instruments and computational methods (Gregg,
personal communication, 1990). However, in C-SALT the discrepancy appears in
measurements from the same sensors (e.g., layer and interface dissipation rate). Gregg
and Sanford (1987) also caution that temperature microstructure may bias the
interface dissipation rates high but this would not explain the excess Cox number.
Another explanation may be that the model does not explicitly include variance due to
the instabilities that disrupt the sheets. These parasitic perturbations will enhance the
interface microstructure (dissipation rate and Cox number) relative to the buoyancy-
flux, making these fields more jumbled and chaotic as found in numerical simulations
(Shen, 1989; Whitfield et al., 1989).

5. Summary

A model for the interaction of salt fingers with oceanic shear has been described.
This work extends earlier vertical finger models (Stern, 1960; Linden, 1974, Schmitt,
1979b; Kunze, 1987) by allowing fingers to be tilted by shear and considering unsteady
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observations. The domain defined by the C-SALT buoyancy-fluxes ( =layer dissipation rate)
is stippled in all the panels as well.
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shear. Analytic solutions are no longer possible and the equations (8)—(9) must be
integrated numerically in time. Even for the relatively weak shear found in the
thermohaline staircase east of Barbados (Ri = 6), square planform (k, = k,) fingers
are tilted over so rapidly that they are damped out by molecular processes before they
can produce significant fluxes. This is consistent with the laboratory and analytic work
of Linden (1974) which demonstrated that, in a steady shear U,, the only instability
that can grow is in the form of sheets aligned with the shear (k, = 0).

In the C-SALT staircase as elsewhere in the ocean, shear is not steady but
near-inertial, turning to produce an across-sheet component of shear even for initially
aligned sheets. This occurs slowly enough that sheets have a chance to grow before
being significantly tilted. The model produces tilted sheets with temperature and
salinity microstructure consistent with the C-SALT measurements. In particular, the
1-cm limiting wavelength for salt is identical to that of the nearly-horizontal laminae in
the optical shadowgraph images (Fig. 1; Kunze et al., 1987).

In light of these results and the prevalence of near-inertial shear in the ocean, it is
difficult to explain how vertical banding has been observed elsewhere (Williams, 1975,
1981; Schmitt and Georgi, 1982). Internal wave shear was weaker (~0.4N) in, above
and below the thermohaline staircase east of Barbados than the 0.7—1.0N typically
found in the pycnocline (Garrett and Munk, 1979; Evans, 1981). Even a few kilometers
outside the staircase, shears were more typical (Gregg, personal communication,
1990). It may be that in the lower density ratios found below the Mediterranean salt
tongue and in the Tyrrhenian Sea (Williams, 1975), shear is weak enough that fingers
can grow without being significantly tilted. This would require shears less than 0.1N.

Allowing the model sheets to grow unbounded except by shear-tilting leads to
average microstructure variances two orders of magnitude larger than found by
C-SALT microstructure investigators. Halting growth when the Stern (1969) or
inverse finger Richardson number exceeds ~4 produces model fluxes of the right order
of magnitude. This constraint is also consistent with laboratory and numerical fluxes
though these contain considerable scatter at the low density ratios of oceanic interest
(Fig. 10). Sheets with horizontal wavelengths of ~3 cm and zero initial tilt, §, = 0,
(fastest-growing) are the first to go unstable. This is consistent with the ~5-6 cm
horizontal wavelengths observed with towed thermistors and conductivity sensors
(Marmorino et al., 1987; Lueck, 1987) when account is taken that towed sensors cross
sheets at random orientations which leads to an overestimate bias of ~1.5. The
nearly-horizontal 1-cm laminae observed with the shadowgraph appear to be salt
remnants that have continued to be shear-tilted long after perturbations have disrupted
the finger fluxes and temperature/velocity microstructure has been smoothed away by
molecular processes. While any mechanism that produces salt microstructure about
once an hour would lead to the nearly-horizontal optical laminae in the obscrved shear,
the strong correlation between the banding and fingering-favorable conditions strongly
suggests that the salt-fingering form of double diffusion is responsible.



1990] Kunze: Salt fingers in shear 493

6. Discussion

a. Model limitations. Stern (1969) and Kunze (1987) have suggested that finger
growth is limited by F,/(viV?) ~ O(1) or equivalently Ri;' = (V x V)*/N~ O(1).
This poorly understood constraint on finger growth is the weakest link in the model. A
constant critical Stern or finger Richardson number cannot explain the dependence on
density ratio seen in the laboratory and numerical simulations (Fig. 10). Furthermore,
laboratory measurements (Schmitt, 1979a; McDougall and Taylor, 1984; Taylor and
Bucens, 1989) and numerical simulations (Shen, 1989; Whitfield e al., 1989) contain
considerable scatter at the low density ratios prevalent in the ocean. Taylor and Bucens
suggest that fluxes may be sensitive to initial background conditions and these are very
different in the lab and ocean. More careful laboratory studies in the R, = 1-2 regime
and a better dynamical understanding of what disrupts salt-finger fluxes are needed.
We are past the point where simple dimensional or stability arguments can provide new
insights. Until these issues are resolved, the vertical finger model of Kunze (1987)
remains a more straightforward means of estimating fingering fluxes in high-resolution
CTD data (e.g., Hebert, 1988).

No single critical value of Ri.,‘l can simultaneously reproduce the C-SALT layer
dissipation rate (buoyancy-flux), interface dissipation rate and Cox number (with the
latter two quantities tending to be too low in the model). This is probably because the
model fails to include variance arising from the parasitic instabilities that grow on and
ultimately disrupt fingers. Evidence that these instabilities contribute can be seen in
the numerical simulations of Shen (1989) and Whitfield ez al. (1989). Exploring their
dynamics is outside the scope of this paper but is clearly essential for (i) understanding
the disruption of finger fluxes and (ii) quantifying ocean fluxes given measured
microstructure quantities. This limitation implies that salt-finger models cannot yet be
used to diagnose fluxes from microstructure measurements of dissipation rate and
Cox number. Therefore, the nondimensionalized ratio of these quantities,
T = «k;N*(Cy)/(e), proposed by Oakey (1988) as a diagnostic for the relative
contributions to microstructure from turbulence and salt-fingers can only be thought of
as qualitative. This ratio is a measure of mixing efficiency (<0.2 for turbulence). Oakey
found it significantly greater than one in regions favorable to double diffusion. The
model described here finds values of T'; = 0.4 (excluding a contribution from parasitic
instabilities) independent of critical Rif" for a Cox number based on interface
gradients and ~10 based on smoothed gradients, T' = (L, + 4, /1;)% Ocean I depend
sensitively on both the finestructure and the parasitic microstructure, neither of which
are described by the model. As a possibly related aside, Fleury and Leuck (1990) found
that the Cox number depended linearly on the interface thickness unlike this model.
This variation may be related to changes in shear with interface thickness which were
not measured or reflect a contribution from parasitic perturbations. Alternatively,
double diffusion may be affected by internal wave straining 8{/dz of the interface in
ways not considered here.
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b. Other implications. Fingers are thought to go unstable due to perturbations with
k, # 0. Stern (1969) initially conceived finger instability as collective with groups of
fingers losing their energy to motions of large vertical wavelength. Holyer (1981)
quantified the Stern number for large wavelength perturbations, obtaining a value of
/5. Butin a later paper (1984) she argued on the basis of Floquet theory that interfinger
intrusions with vertical wavelengths comparable to the fastest-growing wavelength
would grow at Stern numbers ~O(1072). Structure with consistent growth rates is
observed in numerical simulations (Whitfield et al., 1989), but apparently not affecting
the fluxes since the average deduced Stern numbers (Fig. 10) are greater than 1072,
This may be explicable in terms of the same physics considered here. A simple stability
analysis like Floquet theory is not appropriate in a field containing shear. Generalizing
the shear interaction described in this paper, a high-wavenumber perturbation between
fingers will experience finger-induced shear, Vyw ~ O(V), and be rapidly forced to
high horizontal wavenumbers, kg = —k,fVw - di, where it will be eliminated by
molecular diffusion. This tilting can be seen in the Hele-Shaw experiments of Taylor
and Veronis (1986). It is possible that the high-wavenumber intrusive instability of
Holyer (1984) is damped out before it can inhibit the salt-finger fluxes. Instabilities of
larger wavelength can grow relatively unaffected by the shear to ultimately disrupt the
fingers.

Unexplained is why laboratory measurements (Fig. 10) suggest critical Stern
numbers of 3—16 in conflict with Holyer’s (1981) value of '/ for low vertical wavenum-
ber instability. One explanation might be that the parasitic instabilities must grow to
finite amplitude before they will disrupt the fluxes. With growth rates comparable to
fingers, this would allow significant finger growth between the inception of the
perturbations and their disruption of the fluxes.

¢. Parameterization. Gross diffusivities can be determined by normalizing the average
fluxes by gradients smoothed over the staircase structure (Fig. 14). For a critical
Rif“’ = 5-11 (assuming that buoyancy-flux constrains the model fluxes), the model
eddy diffusivity for buoyancy is ~—7 x 107% m?/s. The finger momentum-flux
viscosity ({u'w') JU)((L, + 1)/1) ~ 10~° m?/s, where U, = 0.4N (Table 1), L, is the
layer thickness and /; is the interface thickness. This is not significantly different from
that due to molecular viscosity in agreement with recent laboratory measurements
(Ruddick ez al., 1989). Since their effect on both momentum and buoyancy (density) is
small, salt fingers probably play little role in ocean dynamics.

This is not to say that fingers are unimportant. In the western tropical Altantic east
of Barbados, salt-fingering must be maintaining the staircase finestructure; turbulence
would smooth steppiness because of its flux ratio greater than one and dewngradient
buoyancy-flux (Kelley, 1988). While for turbulent mixing the ‘eddy’ diffusivity
K = e - ¢/N? with mixing efficiency e < 0.2, for salt-fingering K = (R, - 1)/
(1 — Rp)] - ¢/N?* with a ‘mixing efficiency’ [(R, — 1)/(1 — Rp)] of 1-3 (Schmitt,
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Figure 14. ‘Eddy’ diffusivities of heat, salt, buoyancy and momentum from fingers and
molecular diffusion as a function of initial and critical conditions (see Fig. 13). The stippling
corresponds to the domain defined by the C-SALT buoyancy-flux (=layer dissipation rate).

1988; Hamilton et al., 1989). Therefore, for the same dissipation rate, fingers mix an
order of magnitude more efficiently than turbulence. Mack (1989) finds conductivity
microstructure occupying 7% of the Sargasso Sea pycnocline, and identifies 75% of this
as turbulence and 25% as fingers. The above argument then implies that fingers may be
responsible for 3—4 times as much mixing as turbulence. With other sources of mixing
weak in the pycnocline (Gregg, 1987; Moum and Osborn, 1986), fingers may be the
principal agent for water-mass modification on decadal timescales.

The model’s eddy diffusivity for heat ~4-6 x 10~® m?/s, is a factor of five greater
than molecular diffusion (Fig. 14). The salt diffusivity, ~10~° m?/s, is smaller than the
value deduced by Schmitt (1988) using the upper bound of the Cox number estimates
(~30; Gregg and Sanford, 1987), but still a factor of three larger than the eddy
diffusivity inferred from turbulent dissipation in a diffusively-stable (no fingering)
regime with a GM level internal wave field (5 x 10~ m?/s, Gregg and Sanford, 1988).

Predicting the staircase layer and interface thicknesses is well beyond the scope of
this model. However, with its greater eddy diffusivity of salt than heat, the staircase
might be thought of as being in the ‘diffusive-instability’ regime. If we adopt the Kelley



Figure 15. Dependence of the average model flux ratio R, dissipation rate (e), Cox number
{C;), buoyancy-flux {F,) and salt eddy diffusivity K on density ratio R, and ‘inertial’ Froude
number for the tilted sheet model. Below and to the left of the thick dotted line, the sheets are
constrained by a critical Ri' of eight. To the right and above the thick dotted line, the sheets’
Rij" never exceeds eight and the average instead extends to the time of maximum buoyancy-
flux. Values may be underestimated at low R, due to the choice of critical Rif”'. Cox numbers
and diffusivities are relative to local (unsmoothed) gradients. For typical ocean shears ~0.7N,
the destabilizing (negative) buoyancy-flux needed to establish and maintain a staircase
requires density ratios less than 1.7.
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(1984) empirical scaling for the layer thickness applicable for diffusive instability,

Ks [0.25 x 10°R,(R, — 1) A
L0+ I,"——' -_s‘ p( z ) 5
N K

applying values typical of the staircase east of Barbados, layer thicknesses of 7-8 m are
obtained as compared to the observed 20-30 m layer thicknesses (Boyd and Perkins,
1987). Intriguingly, a value of K appropriate for a AS*? law (which can be thought of
as maximal) produces very close agreement between the observed and Kelley layer
thickness. This may be because a mixed layer reflects its history, that is, need not be
actively mixing. The layer thickness may be a relic of past or sporadic occurrences of
high (AS*3) fluxes associated with thin interfaces. Fleury and Lueck {1990) show that
at least one interface is occasionally 0.2-m thick.

Finally, at the request of reviewers, we have determined the dependence of the model
on the density ratio and shear (Fig. 15). We emphasize that this is premature without a
better dynamical understanding of what bounds finger fluxes. Over the timescales that
fingers grow, the important shear parameter is its rate of change which depends
linearly on f for near-inertial shear. Thus, the vertical axis is a modified Froude
number, ( f/f12)(V,/N). Below and to the left of the thick dotted line, the fingers are
limited by a constant critical inverse finger Richardson number of 8. Because this
constraint does not appear to be universal (Fig. 10), Figure 15 likely underestimates
microstructure variances at low density ratio. In addition, the dissipation rates and Cox
numbers will be underestimated because the model does not include variance due to
parasitic instabilities. Above and to the right of the thick dotted line, sheets never
exceed Rif" = § so averaging runs to the maximum buoyancy-flux. This constraint
produces an upper bound for the heat- and salt-fluxes. It is rather arbitrary and results
in discontinuities at the boundary, roughly defined by (f/f;)(V./N) = (R, — 1),
between where the critical Ri;' and maximum buoyancy-flux bounds are applied. For
(f1fix)(V./N) S (R, — 1), dependence on shear and density ratio is confined within
factors of 2-3: the Cox number varies between 2 and 5, the eddy diffusivity of salt
between 1-3 x 107% m?/s, and the dissipation rate between 1-6 x 107'% W/kg.
Probably the most important conclusion that might be drawn from Figure 15 is that for
typical oceanic shears of 0.7N, only density ratios less than 1.7 have significant
destabilizing (negative) fluxes. This may explain why persistent, well-ordered stair-
cases are only found in regions of low density ratio and weak shear.
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APPENDIX A

The layer density ratio R, and the flux ratio Rg

Summarized here is McDougall’s (1990) argument that the layer density ratio does
not constrain the flux ratio because of the nonlinearity of the equation of state. The
steadystate equations describing layer property changes in a layer coordinate system
are

a(V . 9V.)0 + wald, = —aF,, (A1)
B(V ¢ vL)S + wiBSz = _HFSz (AZ)

where V, is the along-layer gradient and w; is the interface migration (or entrainment)
velocity. Defining the layer density ratio

a(V . V’_)o
R, = B(V_V[_—)S; = 0.85 (A3)
and the flux divergence ratio
aFdz
Rg, = , Ad
F BFSz ( )
(A1) can be expressed
Ry -BWV-V)S+R,-wBS, = —Rp, - BFs,. (A5)

Eliminating the lateral advective term between (A2) and (AS), one arrives at a ratio of
the interface migration to the flux divergence for salt

W,-Sz _ _(RFZ - RpL)

= (A6
Fs, R, - R, )

Thus, the flux divergence ratio and layer density ratio are not identical as assumed by
Schmitt (1988) unless there is no interface migration (w; = 0). Schmitt further
assumed that the flux ratio R = aFy/BFg and the flux divergence ratio were
identical, but this is not the case because of the nonlinearity of the equation of state
(ap = /30 #0). Provided that the flux ratio is invariant with depth

a(aFB)/az aF,

3(BFs)/az ~ BFs ~ (A7)

The coefficient « is not constant but varies significantly with 8 (McDougall, 1987); the
variability of 8 is not significant. Therefore, (A7) can be re-expressed

a(aFa)/aZ ang + aaong
d(BFs)/dz BFs

ag\( Fs
= Rp, + Rf « B,(a)(psz). (A8)
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Figure Al. The ratio of the interface migration (entrainment) to finger velocities, R, = w;/w,
as a function of flux ratio. The band of stippling covers the range of &/« and uncertainty in the
sign and magnitude of the ratio of the salt-flux divergence to the salt-flux in the staircase east
of Barbados. The interface migration velocity is at least two orders of magnitude smaller than
the finger velocity.

(A7) and (A8) imply that the flux divergence ratio is related to the flux ratio as

ag\( Fs
Rp, = Rp[l - oz(a)(Fsz)]' (A9)
Substituting the flux divergence ratio (A9) into (A6), one obtains
w;S, R, — RF)(FSz) Ry (ao)
- —=| + =————|—]8.. (A10)
Fs (R,—Rp[_ Fs Rp—RpL a

McDougall (1990) argued that turbulence, vertical variation of the flux ratio, isopyc-
nal mixing and double-diffusive intrusions contributed little or no fluxes. Marmorino
(1990) and Fleury and Lueck (1990) have recently shown that turbulence is strong
enough to raise the flux ratio from the 0.65 for fastest-growing fingers to 0.85. This
implies a ratio of turbulent-to-finger salt-flux of ~0.1, supporting McDougall’s claim.
Thus, the salt-flux F is mostly due to fingering

Fs=wpsS (A11)

where 65 is given by AS.,/4 and h is the finger height (Kunze, 1987). Assuming the flux
divergence occurs over the scale of the staircase (Fg, ~ +Fg/(10 - L,) where L, is the
layer thickness), the ratio of interface to finger velocity is given by

ﬁ RDL - RF h Rp _% ﬁ)
.Rw ] wf— + (Rp p RDL)(SOLO + RP _ RPL o 4 0:- (A12)

For the staircase east of Barbados R, = 1.6, L, = 20 m, the interface gradient
0, = AT/l; = 0.3°C/m (Table 1), R, = 0.85 (Schmitt et al., 1987), ay/ax =
0.06-0.09 (McDougall, 1987) and & ~ 0.3 m (Kunze, 1987). The only free parameters
in (A12) are the velocity ratio R,, and the finger flux ratio Ry. Figure Al displays the
dependence of the vertical velocity ratio R, on the flux ratio R, within the allowable
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range of o,/ and flux divergence. Small interface migration velocities have a large
impact on the layer properties because they affect the layer properties directly rather
than through divergences as is the case for fluxes (A1, A2). A typical finger velocity is
~0.1 mm/s (Kunze, 1987). Thus, a characteristic interface velocity might be
w; ~ 4 cm/day = 16 m/yr. This is close to the interfacial velocity inferred from an
inversion of the C-SALT CTD data (Lee and Veronis, 1990), however, this same
inversion found eddy diffusivities an order of magnitude larger than those inferred
from C-SALT microstructure measurements.

APPENDIX B
Initial growth

It is not possible to find a similarity solution to (8) valid for all time, since the
wavevector deforms continuously (9). However, one can determine the initial growth
rate for small perturbations. If it is assumed that D/Dt = /9t + ik U =: g, is the
growthrate, 87 = —T,67h/2,6S = —S,0h/2 and w =(1/2)Dh/Dt = a,h/2 (Where 6
and g are the relative temperature and salinity contrasts) following Kunze (1987),
then there is a single positive growth rate o, as a function of wavenumber & and tilt s

N2
vk (1 + s?) — sU,|

‘/ 4[gBS,(kr — Ryxg)k? — k(1 + s?) — sU,Jkrxsk®]
' k(1 + s?) — sU}kpk? + N2/Wk2(1 + s2) — sULJ2

! 2
O'O=ZKTk —+

1] (B1)

where the background buoyancy frequency squared N2 = gBS,(Rp — 1) and the
background density ratio Rp = aT,/B8S,. While at first glance (B1) appears much
more complicated than the unsheared growth rate [see (8) in Kunze, 1987], there are
really only two differences. First, because the fingers are tilted, the total wavenumber
squared k? is coupled with the molecular viscosities and diffusivities rather than just
the horizontal wavenumber squared kj = k2 + k2 Second, {vk*(1 + s*) — sU}
replaces vk%. If sU, is negligible, this implies that the effective viscous damping will
increase markedly as a finger is tilted both because k? increases (11) and because of
(1 + s%) suppression in the momentum balance (8). The (1 + s?) suppression arises
because the component of gravitational acceleration along a tilted finger is reduced.

Note that (B1) hinges on the approximation w = (}2)Dh/Dt = ¢ ,h/2. This is valid
for exponential growth with constant growth rate ¢, as in the unsheared case, but
because s (10) and hence k (11) continuously change in shear, this assumption breaks
down. Nevertheless, the dependences of the growth rate (B1) on wavenumber k and tilt
s yield some insight so a brief discussion follows.

The growth rate o, is contoured vs. total wavelength A = 2w /k and tilt angle
6 = Arctan (s) in Fig. Bl for (a) Ri = 6 and (b) Ri = 0.25. Positive values of #
correspond to fingers tilting into the shear, negative values to fingers tilting with the
shear. For Ri = 6, corresponding to conditions found in the staircase east of Barbados,
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Figure Bi. Contours of the real part of the initial growth rate o, (solid curves) as a function of
total wavelength A = 2r/k and tilt angle # = Arctan (s) for square planform (k, = k)
fingers. Positive 8 corresponds to tilting into the shear, negative to tilting with the shear.
Growth rates are shown for (a) a Richardson number Ri = 6 and (b) Ri = 0.25. Stippling
indicates negative growth rates (decay). For Ri = 6, corresponding to conditions found in the
staircase east of Barbados, the maximum initial growth rate occurs for vertical fingers (f = 0)
with 3-cm wavelengths. For Ri = 0.25, the maximum growth occurs for fingers tilted 30° into
the shear. Inside the dotted curve in the upper half of (b), the growth rate has a nonzero
imaginary component (implying growing oscillations). The dashed lines describe trajectories
of total wavelength A(f) (11) and tilt angle 8(¢) (10) for initially vertical fingers; corresponding
times are indicated by the numbers along the right axis. Fingers grow more slowly as they
become more tilted.

maximum initial growth corresponds to vertical fingers (s = k, = 0). For Ri = 0.25,
sU, is important. Growth rates are faster for moderate tilts into the shear because
energy for instability can be extracted from the vertical shear as well as the unstable
S,. Note that these instabilities are not classical double-diffusive intrusions because
there are no horizontal gradients of temperature and salinity, and not Mclntyre’s
(1971) instability because the shear is not geostrophic.

Also plotted in Figure B1 are trajectories (dashed lines) describing the evolution of A
(11) and @ (10) in time for initially vertical (§ = k, = 0) fingers. The fingers’
wavelengths shrink as they tilt progressively with the shear. Therefore, a finger that
initially has maximal growth rate does not remain fastest-growing. As it is pushed
toward higher wavenumber, its growth rate decreases and ultimately goes negative
(decay).
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