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On the generation and propagation of Rossby waves in an
ocean with a zonally shoaling mixed layer

by M. S. Darbyl and A. J. Willmott I

ABSTRACT
This paper presents the theory for freely propagating and forced Rossby waves in a

continuously stratified ocean where the bouyancy frequency, N, varies with longitude and depth.
In this study zonal variations in N occur because the climatological mixed layer depth, h, varies
with longitude.

With the assumption that changes in h occur on a length scale which is large compared to a
horizontal wavelength the free modes on a ,a-plane are examined. It is found that realistic mixed
layer depth changes can cause amplitude modulations, the largest amplitudes occurring where
the mixed layer is shallowest. The requirement that h variations occur slowly is removed by
employing a numerical model to study the free modes in a continuously stratified meridional
channel. A criterion, based on the ratio of a horizontal length scale associated with the wave
packet and the internal Rossby radius, is derived for determining when a free mode may be
affected by the zonal variations in the stratification. Using climatological mixed layer depth data
at 35N in the Atlantic (taken from Lamb, 1984) the basin modes are numerically determined.
The major response is now concentrated where the mixed layer is deepest. This apparent
contradiction is explained.

A general theory is presented for calculating the forced basin mode response in terms of the
free modes. As an example, a wind stress curl is applied as a body force over the mixed layer for a
finite duration. After the forcing is removed the percentage that each basin mode contributes to
the total solution is calculated. It is found that the dominant response to wind stress curl forcing
can be significantly affected by the presence of a variable depth mixed layer.

The implication of this study for the interaction between baroclinic Rossby waves and mixed
layer dynamics is discussed.

1. Introduction

The purpose of this paper is to examine how zonal variations in the depth of the
climatological mixed layer influence the propagation of unforced and forced baroclinic
Rossby waves. Lamb (1984) presents the mixed layer climatology for the North
Atlantic and this shows that the mixed layer depth can vary zonally at 35N from 70 m
to 250 m.

It has been noted by Milller et al. (1984) and Stevenson (1983) that the depth and
temperature of the upper mixed layer can be influenced by a baroc1inic Rossby wave
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field. The authors found that if the vertical velocity associated with the Rossby wave
field at the base of the mixed layer is directed upward when the mixed layer deepens in
the autumn (due to enhanced mechanical stirring supplied by the wind stress) then
significant depth and temperature variations of the mixed layer due solely to the
presence of the wave field are obtained. However, both these studies use one-
dimensional mixed layer models and the Rossby wave is modelled by a prescribed
vertical velocity component (e.g. "a pumping mechanism") at the base of the mixed
layer. The amplitude and period of the vertical velocity components is chosen to be
representative of that in a baroc1inic Rossby wave field. Clearly this approach of
incorporating the effects of a Rossby wave field in a mixed layer model is "ad hoc."
Nevertheless, both studies indicate that a mixed layer can be "driven from below";
having detailed information about the surface forcing components (e.g. wind stress,
various components of the heat flux through the sea surface, evaporation/precipitation
data) will not be sufficient input for a prognostic mixed layer model. It is desirable to
use a two-dimensional mixed layer model for assessing the influence of a wave field in
the thermocline on the mixed layer depth, h. Before this can be done it is important to
address the fundamental question of whether baroclinic Rossby waves can "see" (i.e.
are modified by) the horizontal variations of h.

Only zonal variations in h will be considered in this study. A local analysis of the
problem, based on the assumption that changes in h occur slowly, (throughout this
manuscript a quantity is referred to as "slowly varying" if the length scale associated
with variations in the x-direction is much larger than a typical horizontal Rossby
wavelength in the x-direction) provides a framework for a more detailed numerical
study in which a continuously stratified ocean in a meridional channel is examined
numerically. Variations along the channel are suppressed by assuming harmonic
dependence in that direction (i.e. only one Fourier mode is examined). A similar
approach is adopted by Anderson and Gill (1975), Anderson and Killworth (1977) and
Willmott and Johnson (1979) when examining the spin-up of a stratified ocean on a
meridional {j-plane channel.

The plan of the paper is as follows. In Section 2 the local analysis is presented.
Section 3 develops the theory of free modes, which reduces to a two-dimensional
eigenvalue problem. Section 4 describes the method of solution and presents results of
the free modes. Section 5 develops the theory for the forced wave response and Section
6 discusses the limitations and possible extensions of the study.

2. Local analysis of tbe free mode problem
The ocean domain is located on a mid-latitude {j-plane. A local Cartesian coordinate

system is chosen, with x directed eastward, y northward and z vertically upward from
the ocean floor z =O.

For a continuously stratified Boussinesq fluid, the unforced Rossby wave equation



1990] Darby & Willmott: Rossby wave generation 289

(2.1)

for the hydrostatic pressure p(x, y, z, t) is given by (see Appendix A)

[\7~P + f2 (~z2)J+ (3px = 0,

where \7~is the two-dimensional Laplacian operator,fis the constant Coriolis parame-
ter evaluated at the latitude of the (3-plane origin, (3is the north-south gradient off and
N is the Brunt- Viiisiilii frequency (or buoyancy frequency).

In this study zonal variations of the mixed layer depth will be modelled by suitable
distributions for N = N(x, z). A similar approach is adopted in a study of internal
wave propagation in a randomly stratified fluid by Mysak and Howe (1976) where they
prescribe N(x, z). Mysak (1978) also reviews the literature on internal wave propaga-
tion through an ocean in which N has prescribed horizontal variation. In these studies
the precise mechanism that maintains the prescribed N distribution is not considered.
This approach will be adopted here.

At middle latitudes the large-scale mean flow contributes to the maintenance of the
climatological N(x, y, z). On a (3-plane the existence of non zonal mean flows implies
that an external forcing field is acting (typically the wind stress curl). Hence N(x, z)
cannot support an unforced geostrophically balanced meridional velocity field. From
the point of view of this study, an external forcing (unspecified) can be considered to
maintain the specified N (x, z). The influence of mean flows on baroclinic Rossby
waves is considered by Killworth (1979), who shows that meridional flows are less
effective than zonal flows at altering Rossby wave propagation. Indeed, Killworth
(1979) finds that barotropic meridional flows of the order of 30 cm S-I are required
before Rossby wave reflection occurs. The climatological distributions of N (x, z)
considered here cannot support geostrophic flows of this magnitude normal to the
x - z plane. At worst, meridional flows will deflect, rather than prohibit, wave
propagation. However, to analyze Rossby wave propagation in an ocean in which N =

N(y, z) will require a treatment of the zonal geostrophically balanced mean flow
supported by the stratification.

It is convenient to nondimensionalize (2.1) using the following dimensionless
variables, denoted by circumflexes:

(x,y) = L-1(x,y), Z = H-1z,

jJ = p/(p.L2f2),

t =ft,

P = (3Lf-1

where P. is a constant reference density, L is any suitable length scale and H is the
depth of the ocean. On dropping the circumflexes the dimensionless form of (2.1)
becomes

[\7~P+ q2 (~2).l+ (3px = 0,

where q = L/ H is the aspect ratio.

(2.2)
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If N is a function of Z alone then (2.2) can be separated into the vertical and
horizontal problems:

(2.3a)

and

(2.3b)

where p(x, y, z, t) = lln(z)Pn (x, y, t) and hn is a separation constant. The suffix n has
been introduced to emphasise that hn is associated with a particular mode. If we
assume that changes in mixed layer depth, h, occur on a large length scale (relative to a
horizontal wavelength in the x direction) then solutions of (2.3) are locally valid, but
now hn = hn(x) is a slowly varying function of x. Subject to suitable boundary
conditions and a specified N(x, z), solution of (2.3a) gives hn(x) which in turn is used
in the solution of (2.3b) for p.

a. Vertical problem. A realistic profile of N2 is,

Zm(x) ~ Z ~ 1

o ~ Z ~ Zm'
(2.4)

where ex and No are chosen to give a realistic buoyancy frequency and 0 = (1 - zm) =
hi H is the depth of the mixed layer. Zero vertical velocity at Z = 0, 1 is specified by
(see Ch. 3, LeBlond and Mysak, 1978)

at z = 0, 1. (2.5)

The problem specified by (2.3a), (2.4) and (2.5) has been solved by Bryan and Ripa
(1978). Here we are only interested in the variation of hn with o. Defining the
quantities,

it is found that the eigenvalue Xn satifies the equation

(2.6)

where
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dn = -Jo(XnE)/YO(XnE).

In (2.6) In and Yn denote the nIb-order Bessel functions of the first and second kind
respectively.

b. Horizontal problem. To solve (2.3b) we make use of a direct asymptotic expansion
and assume a solution exists of the form (Whitham, 1974),

jJ(x, y, t) = ei8(x,y,') L An(x)
n=O

(2.7)

where it is understood that Ox, Oy, 0, and Ao are order one quantities and differentiation
with respect to x increases the order by one as does raising the subscript of An'
Substitution of (2.7) into (2.3b) and equating first order terms to zero gives,

(2.8)

where k = Ox' I = Oy, W = -0, and l' = -{l/2w. The next order gives the required
relation between variations in k and Ao, namely,

dAo Ao dk
dx = 2(1' - k) dx'

which can be integrated to give

C
Ao = 11' _ kI1/2'

(2.9)

where C is an arbitrary constant. The interpretation of (2.9) is clear when it is
remembered that (2.8) is actually a first-order nonlinear partial differential equation
for O(x, y, t) which can be solved by integrating along the characteristics defined by

(2.10)

where s measures distance along a characteristic (time increases as s increases). Since
h is a function of x only, I and ware conserved along a characteristic. The group
velocity vector is always tangential to the rays defined by (2.10). Therefore it is clear
from (2.9) and (2.10) that large values of Ao can be expected where (k - 1') is small,
i.e. in regions where the direction of energy propagation is most closely aligned to the
meridional direction.
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Table I. Eigenvalues, Xn, and amplitudes, Ao, for a-I = 254.51 m and various values of mixed
layer depth, h, and ocean depth, H.

hem) H(m) Xn Ao Ik - 'Ylm-I

50 3000 2.70882 100 3.14 x 10-6

100 3000 2.73823 45.9 1.49 x 10-5

150 3000 2.79927 40.1 1.95 x 10-5

200 3000 2.89182 37.5 2.23 x 10-5

250 3000 3.01423 36.0 2.43 x 10-5

50 4000 2.62644 57.6 9.46 x 10-6

As an example, we determine how Ao may vary as a wave propagates from a region
where the mixed layer depth is 50 m to one where it is 250 m. For various values of h
and H, Table 1 shows Xn and Ao. The dimensional parameter values (see Willmott and
Mysak, 1980) No = 0.011045 S-I, a-I = 254.51 m and! = 1.2 x 10-4 S-1 were
chosen to be typical of the northeast Pacific at 55N. In order to compute the variations
of Ik - 'YI with h(x) a reference value must be specified. Since we find that Ik - 'YI is
smallest where h is smallest we choose, for illustration, the arbitrary value I k - 'YImin =
7r/l06 m-1 where h = 50 m (a smaller value would cause Ao to be more sensitive to
changes in h(x) where h is small). In order to compute Table 1 we did not need to
specify I. However, the results only apply to a realistic ocean if I :$Ik - 'Ylmax so that
the ray will reach regions of small h before travelling an unreasonable distance in the
meridional direction. Since Ik - 'Ylmax = 2.43 x 10-5 m-I (corresponding to a
wavelength of 258 km) this is not an unreasonable restriction on I. It is interesting to
note that a 200 m change in mixed layer depth causes more change in Ao then a 1000 m
change in ocean depth. Furthermore, the largest value of Ao occurs where h is smallest.

Table 2 contains the analogous results to Table 1 except a-I = 650 m. For this case
the mixed layer depth changes have a smaller effect on the amplitude, whereas the
topographic change of 1000 m has almost the same effect as when a-I = 254.51 m.
This emphasizes that it is the rapid exponential fall off in Brunt- Vaisala frequency
below the mixed layer which allows realistic mixed layer depth changes to cause large
amplitude changes.

Table 2. Analogous results to Table I except a-I = 650.0 m.

hem) H(m) Xn Ao Ik - 1'lm-1

50 3000 3.31221 100 3.14 X 10-6

100 3000 3.31693 73.2 5.86 X 10-6

150 3000 3.32837 64.8 7.48 X 10-6

200 3000 3.34809 60.3 8.64 X 10-6

250 3000 3.37684 57.4 9.53 X 10-6

50 4000 3.04398 62.9 7.95 X 10-6
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It is important to emphasize that for the case h = h(x, y) both k and I may vary
along a ray. The amplitude equation becomes

1 aAo 1 aAo ( I ) [ 1 ] (ak al)
Ao ax + Ao ay k - l' = 2(1' - k) ax + ay .

This must in general be solved numerically but there is now no reason to expect Ao to
have it's maximum value where h is smallest.

In summary, we expect that realistic changes in mixed layer depth may have a
profound effect on Rossby waves, in this particular case, causing the modulating
amplitude envelope of a wave packet to concentrate energy where the mixed layer
depth is smallest. This has important implications for the inclusion of Rossby wave
fields into a mixed layer model. However, it is important to note that we do not claim
this analysis to be an exhaustive study of the problem but rather an attempt to isolate,
in the simplest possible manner, what effect mixed layer depth variations may have on
Rossby waves. Although an extension of this section to include more general variations
in mixed layer depth (i.e. meridional variations) is possible we feel that a numerical
model is more valuable. Such a model is not restricted to slow (and from an
oceanographic point of view somewhat unrealistic) variations in h and can be used to
study the forced response.

3. Formulation of the problem for free-modes in a meridional channel

In this section the theory of free basin modes in a continuously stratified meridional
channel of width L and depth H is developed. With respect to the (dimensionless)
coordinate system the channel walls are at x = 0, 1.

Assume harmonic dependence in y so that

p = p(x, z, t) cos (ly),

where it is understood that p is a real function and I is a constant dimensionless
wavenumber. Then (2.2) becomes

[Pxx - 12p + CT2(~z2)J+ (3px = O.

Seek a solution of (3.1) of the form

jJ(x, z, t) = a¢ exp [i('Yx - wt)] + a*¢ exp [-i(-yx - wt)], w> 0,

(3.1)

(3.2)

where ¢ = ¢(x, z), l' = -(3j2w, a is a constant complex coefficient and the asterix is
used to denote the complex conjugate. By seeking a solution of the form (3.2) it ensures
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that p will be real. Substituting (3.2) into (3.1) gives

2 (cPz)cPxx + AcP + (J N2 z = 0,

where

(3.3a)

(3.3b)

(3.4)

A = 1'2 - 12•

Boundary conditions for (3.3a) are obtained from demanding no normal flow through
rigid boundaries and zero vertical velocity at the mean sea surface z = 1. In terms of cP
(see Ch. 3, LeBlond and Mysak, 1978) this requires

cP = 0, at x = 0, 1 }

cPz = 0, at z = 0, 1.

System (3.3) defines a 2-dimensional eigenvalue problem for eigenvalue A and eigen-
function cPo Once the eigenvalues are obtained the frequency W is determined from

where I is specified of course.
At this stage it is convenient to derive the orthogonality condition satisfied by the

free modes. In Section 5 it will be used to solve the forced wave problem. Let

rn = bncPn exp [i('Ynx - wnt)] }
r: = bncPn exp [-ib-nx - wnt)]

where bn are normalizing coefficients, Wn is the wave frequency associated with
eigenvalue An and cPn(x, z) is the corresponding non-separable eigenfunction. It is
straightforward (the details, including the value of bm are presented in Appendix B) to
show that the normalized orthogonality conditions that (3.4) satisfy are

(3.5a)

(3.5b)

and

fJ omn
)1) rmr: dx dz = l'Yml '

where 0mn is the Kronecker delta and D is the rectangular cross-sectional area of the
basin in the x - z plane.

4. Numerical determination of the eigenvalues and eigenfunctions

The significant nonzero form of N is contained within the upper 1 km of the ocean
(see Emery et al., 1984). Below 1 km the value of N is close to zero. This presents a
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problem if (3.3) is to be solved numerically using a regularly spaced vertical grid
because a large number of grid points are required to adequately resolve the upper
ocean stratification.

By introducing a stretched vertical coordinate, the number of vertical grid points
required to resolve N can be dramatically reduced. Define the stretched coordinate

z(J - b)
7'/= z-b ' b> 1. (4.1)

Then 0 :5 7/ :5 1 because 0 :5 Z :5 1. Points which are regularly spaced along the 7'/-axis
will be irregularly spaced when mapped to the z-axis using (4.1). Furthermore, the grid
along the z-axis has small step size near the ocean surface (z = 1) and progressively
larger step size towards the ocean floor (z = 0). The degree of stretching is governed
by the value of b. A regularly spaced grid in x - 7/ space is mapped onto a stretched
grid in x - z space on which (3.3) is solved. The details, including the numerical
methods used to solve the problem, are presented in Appendix C.

Within the mixed layer N is almost zero because the density is well mixed in the
vertical. To model the climatological N(x, z) the distribution

is specified. The values of a and No are chosen to give a buoyancy frequency profile
typical of that in the North Atlantic.

The free modes are calculated for:

(a) mixed layer with zonal depth variation. The depth variation is taken from the
climatology of Lamb (1984) at 35N in the Atlantic.

(b) a constant mixed layer depth, taken to be the average value from (a).

In both cases the channel is 7000 km wide, 3 km deep,J = 8.35 x 10-5 s -I and {3=

1.87 x 10-11 m -IS -1. The regular grid in x - 7/ space has dimension 20 x 40 and the
stretching parameter b = 1.2. With this value of b there are only 6 points below 1500 m
and the resolution of the upper ocean N is high enough to accurately resolve the 6th

vertical baroclinic mode. The dimensionless stratification parameters are N02=
7.83 x 10-5, a = 4.61 (see Emery et al., 1984).

When N is independent of x, the free modes satisfying (3.3) are separable in x and z.
Indeed, when N = No (constant) throughout the domain the eigenfunctions of (3.3a)
are

4>m,n = sin (m1l"x) cos (n1l"z), (4.2a)
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(4.2b)

where m = I, 2, 3, ... and n = 0, 1, 2, .... Choosing () and No to be typical of the
Atlantic at 35N (and m reasonably small) leads to eigenvalues which occur in well
separated clusters corresponding to the value of the index n. The case n = 0
corresponds to the barotropic mode; n ~ 1 corresponds to the nth baroclinic mode.
Within an eigenvalue cluster the values are relatively close, different eigenvalues
corresponding to different horizontal structure (i.e. varying m).

The gross features of this solution are still displayed when (3.3) is solved for N =

N(x, z). This means that it is still possible to classify an eigenfunction according to the
number of zero crossings in the vertical (i.e. the barotropic mode has no zero crossings;
the first baroclinic mode has one zero crossing and so on). However, the eigenfunctions
are, of course, no longer separable.

When referring to the eigenvalues and eigenfunctions associated with N(x, z) the
following terminology will be used. Let Ai,} represent the eigenvalue corresponding to
an eigenfunction cPi,j which has i half wavelengths in the x-direction and j half
wavelengths in the z-direction (e.g. A2.3 is the eigenvalue corresponding to eigenfunc-
tion cP2.] which is the third baroclinic mode with a complete wavelength across the
channel).

For the stratification (a), Figure 1(a) shows contours of cPI.I and Figure 1(b) displays
a plot of the associated pressure field at a depth of 400 m below the sea surface. The
wavenumber I is chosen to give a meridional wavelength of 500 km. Figure 2 displays
the analogous plots for the eigenfunction cP],1 and the associated pressure field. All
contours of cP are presented in x - 1/ space for clarity. The eigenfunctions are
normalized so that IcP I :s 1.0.

It is clear that a horizontally varying mixed layer depth has a significant effect on the
free Rossby wave modes when Figures 1 and 2 are compared with Figures 3 and 4.
Figures 3 and 4 are the analogous solutions shown in Figures 1 and 2 respectively, for
stratification (b). An important feature in Figures 1 and 2 is that the maximum wave
response is concentrated in the region where the mixed layer is deepest. The apparent
contradiction with the results of Section 2 (where the local analysis led to maximum
wave response where· the mixed layer is shallowest) is explained at the end of this
section.

A natural question to ask is when do the free modes "see" the horizontal variations in
stratification. Variations in horizontal stratification will be significant when

~ (cPz2) I == S » I,
cPxx N z

(4.3)
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Figure I. (a) Contours of <PI.I (x, z) for stratification (a) with L = 7000 km and H = 3 km. The
dashed line indicates the position of the mixed layer base. (b) Plot of pressure, PI.I (x), at a
depth of 400 m for stratification (a) with L = 7000 km and H = 3 km.

upon examining (3.3a). Even the most distorted eigenfunctions (see Fig. 1(a» still
exhibit the gross features of the separable solution (4.2). Hence

where N is a typical value of the dimensionless buoyancy frequency and m, n are
integers defined in (4.2). Clearly the barotropic mode (n = 0) is unaffected by
stratification. Define the quantities

2L
v = - andm m

where Vm is an estimate of the dimensional wavelength of ¢m,n' Nd = fN and rjn is the nth
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Figure 2. (a) Contours of rJ>3.1 (x, z) for stratification (a) with L = 7000 km and H =. 3 km. The
dashed line indicates the position of the mixed layer base. (b) Plot of pressure, P3.I(X), at a
depth of 400 m for stratification (a) with L = 7000 km and H = 3 km.

internal Rossby radius. Then S can be rewritten as

Therefore an eigenfunction ¢m,n can be expected to be affected by horizontal variations
in stratification if the horizontal wavelength associated with ¢m,n is much larger than
the nth internal Rossby radius. For the results shown in Figures 1 and 2, (,2 = 5.4 X 106

and N-2 = 3.9 X 10-4 (this value of N gives a good estimate of the numerically
determined eigenvalues A for the stratification (a» in which case

S"" 2131.5 (;r
When n = 1 (a first baroclinic mode-type eigenfunction) (4.3) suggests that horizontal
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Figure 3. (a) Contours of cJ>1.1 (x, z) for stratification (b) with L = 7000 km and H = 3 km. The
dashed line indicates the position of the mixed layer base. (b) Plot of pressure, PI,I(X), at a
depth of 400 m for stratification (b) with L = 7000 km and H = 3 km.

variations of the mixed layer depth will be important provided m ~ 14 (i.e. S ~ 10). In
Figures I (a) and 2(a) the eigenfunctions are severely distorted by the horizontal
stratification variations, as predicted by (4.3). To reinforce this point, (4.3) is satisfied
when m = 6 and Figure 5(a) displays contours of 4>6.1 while Figure 5(b) shows a plot of
pressure at 400 m below the surface as a function of x. Figure 6 shows the equivalent
plots of Figure 5, but with stratification (b).

Now consider a case when horizontal variations of N are unimportant for the
eigenfunction behavior. Choose a narrow channel with L = 1000 km and H = 4 km. A
regularly spaced grid in x - 71 space of 31 x 21 is used with increased stretching
(b = 1.1) in the z-direction to compensate for fewer points in that direction. Then
employing the stratification of the previous experiments,

S ~ 24.5 (;r
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Figure 4. (a) Contours of <P3.1 (x, z) for stratification (b) with L = 7000 km and H =, 3 km. The
dashed line indicates the position of the mixed layer base. (b) Plot of pressure, P3,I (x), at a
depth of 400 m for stratification (b) with L = 7000 km and H = 3 km.

Consider a first baroclinic mode-type eigenfunction (n = 1). Figure 7(a) shows
contours of cf>3.1and Figure 7(b) displays the pressure at a depth of 300 m for the
stratification (a). In this case N (x, z) produces little distortion of the eigenfunctions,
and this agrees with the value of S "" 2.7 (i.e. violating (4.3». Figure 8 shows the
equivalent plots of Figure 7, with stratification (b).

To understand the results of this Section in the light of the ray theory presented in
Section 2 we write

cf>(x, z) = A(x) sin (k",x)

where k", is the local horizontal wavenumber associated with cf>(x,z) and A(x) is the
slowly varying amplitude. Then using (3.2)

jJ(x, z, t) = 2A sin (k",x) cos ('Yx - wt) (4.4)
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depth of 400 m for stratification (a) with L = 7000 km and H = 3 km.

where, without loss of generality we have assumed that a = 1 and kr/> > O. Rewriting
(4.4) in the form

p = A{sin [(-y + kr/»x - wt] - sin [(I' - kr/»x - wt]J (4.5)

shows that there are two waves present with horizontal wavenumbers in the x-direction
given by k] a I' + kr/>and k2 a I' - kr/>' Notice that II' - kll = II' - k21 = kr/>' Using
(2.9) to estimate A, we find that (4.4) can be written as

2
P = Ik<t>ll/2 sin (k<t>x) cos ('Yx - wt).

Thus

(4.6)
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We now estimate whether the size of the change in k~ found numerically in this section
is consistent with the analytical results of Section 2. Of course the analytical theory of
Section 2 assumes h variations occur slowly but we still hope there will be order of
magnitude agreement. The results shown in Table 2 (described in Section 2) use
parameter values similar to those used to calculate Figures 1,2 and 5 so using Table 2
we expect the change in Ik - 1'1(call this Alk - I'D to be approximately 6.4 x 10-6

m -I. Even the most distorted eigenfunctions exhibit the gross features of the idealized
solution (4.2a) so we estimate the average (across the channel) value of k~(x) to be

k = m7r = m7r m-I
~ L 7 X 106

If A 1 k - 1'1 > k~ the local analysis of Section 2 implies k~ will be very small where the
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mixed layer is shallow. For this case ~Ik - 1'1 >k~ for m :5 14 (incidentally in good
agreement with the condition S » 1) and since m :5 6 for Figures 1, 2 and 5 we expect
k~ 1-+ 0 in the region where h is small. This explains why the distorted basin modes,
discussed in this section, have maximum response where k~ is maximum and the mixed
layer is deepest. Where the mixed layer is shallow k~ and hence p (see (4.6» are both
small.

5. Forced response
When an external forcing field acts for a finite time and is subsequently removed, the

resulting solution will be made up from an infinite sum of the free modes. The question
of interest is what fraction of the total solution does a particular eigenfunction
contribute? The orthogonality properties of the free modes derived in Section 3 allows
this question to be answered.
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The pressure associated with the forced wave response satisfies

[
2 2 (pz) ] .'il hP + (1 N2 z I + (3px = g,

where g(x, y, z, t) = g(x, y, z, t)/ p*f3 is a prescribed dimensionless external forcing
field. In this study g will correspond to the wind stress curl acting as a body force in the
mixed layer. Dropping the circumflex, let g(x, y, z, t) = g (x, z, t) cos (Iy). Then the
analogue of (3.1) is

[
~ 12~ 2 (PZ) ] (.I~ ~Pxx - P + (1 N2 Z I + fJpx = g. (5.1 )
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p(x, z, t) = L (anrn + a~r~),
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00

g(x, z, t) = L (gnrn + g~r:),
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(5.2a)

(5.2b)

where r no r: are normalized eigenfunctions (i.e. satisfying (3.5», an and gn are complex
functions of time only. Substitute (5.2) into (5.1) and employ (B1), (B2) to obtain

(5.3)

Multiply each side of (5.3) by r:', integrate over the domain D and employ (3.5) to give

dan Wn-- --gdt - - l'Ynl.B n' (5.4)

For a specified g, the coefficients gn are readily determined and (5.4) can be solved
subject to a suitable boundary condition. To determine gn multiply each side of (5.2b)
by r:', integrate over the region D and employ (3.5). The result is that

(5.5)

In obtaining (5.4) and (5.5) the results

(5.6a)

and

(5.6b)

have been used. The derivation of the free mode orthogonality condition is easily
modified to obtain (5.6a). Following the analysis in Appendix B it is clear that

(5.7)

By integrating (5.7) over the domain D and applying the divergence theorem, Eq.
(5.6a) follows. A similar modification to the derivation of (3.5b) leads to Eq. (5.6b)

Consider the case when the time dependence of the wind stress curl is separable, so
that g(x, z, t) = g(t)g(x, z), say. Suppose for t < 0 there is no forcing and the ocean is
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at rest. For t 2: 0 the forcing is applied. Integrating (S.4) gives

Wn (I
an(t) = -1'Ynl,8 Jo gn(t')dt'.

Using (5.5) this can be rewritten as

where

Cn = hi gJ>n exp (- i'Ynx) dxdz,

and J>nis defined in Appendix B. Define

Gn(t) = for g(t') exp (iwnt') dt',

so that finally

(5.8a)

(5.8b)

(5.10)

'"
p(x, y, z, t) = - 2,8-1 cos (ly) L wnJ>n.n!en Gn exp [ihnx - Wn t)]}, (5.9)

n=1

where .n denotes the real part. The contribution from each mode to the total solution
will be assessed by calculating the volume integral of the energy density for that mode:

- 11] l>'Y 1] [ 2 2 (]2 2 }Ej = -2 PjX + Pjy + N2Pj% dxdydz,%=0 y=o x=O

where Ay is the dimensionless wavelength 27r1-] and Pj is the pressure field associated
with thelb mode. From (5.9) it can be seen that

Pj = Qj cos (ly) J>/x, z) cos (~j)'

where

t. = ...,.x - w·t + O·(t) + 19·c,J IJ J J J'

and

Cj = Icjl exp (it9j), Gj = IGjl exp [iO/t)].

Evaluating (5.10), using (3.3b), gives

- I 211 1] [A2 A2 2 2 .!..... A2) 2Ej = 4 AyQj x=O %=0 ,pjX + ,pj(l + Aj) + N2 ,pj% cos (~) dx dz.

Equation (5.11) can be simplified to

- Aj 1 121 12
Ej = 41'Yjl Cj Gj ,

upon integrating by parts and applying (3.3), (B8) and (B9).

(5.11)

(5.12)
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As an example, of this general theory, consider the forced response generated by the
dimensionless zonal wind stress (r is nondimensionalized with 'To a typical wind stress
magnitude)

'T = {sin(~x)sin(lY)H(b - x)H(x - a),
0,

In 0 ~ t ~ T the wind stress curl is given by

O~t~T

t> T.

k.curlr = -/sin(~x) cos(ly) H(b - x) H(x - a).

Following Gill and Clarke (1974) the wind stress curl is assumed to act as a body force
over the mixed layer, in which case (see (5.1»

I -Iro
2 () sin(~x)H(T - t)H(b - x)H(x - a),

g(x, z, t) = P.! {)x HL
0,

Zm ~ Z ~ 1
otherwise,

where {)(x) is the depth of the mixed layer (i.e., {)= 1 - zm)' The objective is to
determine the values of m and n corresponding to the largest values of Em n (the
integrated energy density associated with the non-separable eigenfunction c/>m.n). The
numerical model is limited to 1 ~ m ~ 10. To investigate Em,n for larger values of man
analytical solution of (3.3) is used. If h, the mixed layer depth, is constant and No, the
buoyancy frequency below the mixed layer, is also constant then

ISin(mrrx)
c/>mn = . cos (anz)

. SIn (mrrx) cos [an(I - h)]

where an satisfies the transcendental equation

I-h~z~1

o ~ Z ~ I - h,

A typical mixed layer depth satisfies h « 1 so that to a good approximation an "" nrr and
Am,n is given by (4.2b). It is now straightforward to work out analytical approximations
to 'Yj' Mj (see Appendix B), lejl and IGjl:

V m and n,
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and

,] = m1r + Jl + 'Yj,

'3 = -m1r - Jl + 'Yj'

'2 = m1r - Jl + 'Yj,

'4 = -m1r + Jl + 'Yj'

Substituting these expressions into (5.12) gives an analytical estimation If the energy
density Ej associated with each mode. Note that the results of the pre\ ious section
indicate that for large m (and hence small S) this solution will be a good approxima-
tion even when h = h(x). The parameters which determine the form of the free modes
are chosen to be the same as case (b) except that No2 = 3.9 X 10-4 whereas N = N(z)
in case (b). Choosing this value for No gives eigenvalues which are very similar to those
found numerically for case (b). Results are presented for the first baroclinic mode and
three different wind stress curl forcing fields:

(i) a = 0.0, b = 1.0, Jl = 521r and T = 235.0 (equivalent to 30.7 days), i.e. cells of
wind stress curl across the full width of the channel.

(ii) a = 50/52, b = 51/52, Jl = 521l'and T = 235.0, i.e. a single cell of wind stress
curl close to the eastern boundary.

(iii) a = 8/10, b = 9/10, Jl = 101rand T = 235.0, i.e. as case (ii) except the cell has
a larger horizontal extent.

Figure 9 shows plots of Em 1 versus m for the three different wind stress curls. In case
(i) only modes with m s 3 contain significant energy densities. In case (ii) modes with
small m have the largest values of ~ but modes with quite large values of m still
contain important amounts of energy. Case (iii) is like case (ii) except the energy
maximum does not occur for small m but for m "'" 120. Consider now the response to
each of these wind stress curls applied to the ocean described in case (a) of Section 4.
Remember that the free modes for case (a) are distorted by h = h(x) if m s 14. The
response to (i) would be entirely distorted by the presence of the variable depth mixed
layer. Energetic modes generated by the single cell wind stress curl (ii) will be distorted
by h = h(x) but much of the energy will go into undistorted modes. Case (iii) can be
expected to generate a Rossby wave field which is unaffected by horizontal variations in
sua tifica tion.

Finally, Table 3 presents the eigenvalues and integrated energy density (5.12) for
mixed layer depth profiles (a) and (b) in Section 4 using wind stress curl (i). Once
again the notation of Section 4 is adopted (i.e., <P;,j is the nonseparable eigenfunction
which has i half wavelengths in the x-direction and j half wavelengths in the
z-direction). The values of I and Jl are assigned to give a wavelength of 500 km in the
meridional direction and 270 km in the zonal direction. Also TO = O.IN m-2, p* =

1028 kg m-3 and T = 235.0. The channel is 7000 km wide and 3 km deep (as in Figs. 3
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Figure 9. (a) Plot of energy density Em., for wind stress curl (i). (b) Plot of energy density Em.!
for wind stress curl (ii). (c) Plot of energy density Em., for wind stress curl (iii). Note that m
extends to 300 here.

and 4). In Table 3 the energy in each mode, E;,j, is expressed as a percentage of the
total amount of energy contained in all the modes resolved by the model.

From Table 3 it is clear that for both stratifications, almost all the energy is
contained in the first baroclinic-type mode with i$ 3. Therefore, the numerical results
are in good agreement with the analytical approximations which led to Figure 9(a).
However for stratifications (a) and (b) the distribution of energy between the modes
differs with respect to the index i. For a constant mixed layer depth i = 1,2 dominate
the response, whereas in the Lamb profile i = 1,3 play the major role. Experiments
using the analytical results described above indicate that the barotropic and higher
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Table 3. Eigenvalues A;.i and energy densities, B;.i for mixed layer depth profiles (a) and (b)
from Section 3. Wind stress curl (i) is used.

j A;.i A;.i E .. E ..'.J '.J
Case (a) Case (b) Case (a) Case (b)

1 0 9.8512 9.8512 2.4 x 10-4 1.1 X 10-4

2 0 39.185 39.185 1.8 x 10-4 8.3 x 10-5
3 0 87.346 87.346 1.2 x 10-3 5.8 X 10-4

4 0 153.26 153.26 4.4 x 10-3 2.0 X 10-3

5 0 235.45 235.45 3.5 x 10-3 1.6 X 10-3

6 0 332.08 332.08 1.4 x 10-2 6.6 X 10-3

1 1.907 X 104 2.037 X 104 44.1 28.9
2 1.960 x 104 2.040 X 104 7.9 55.5
3 1.993 x 104 2.045 X 104 27.2 9.8
4 2.021 x 104 2.051 X 104 11.8 2.4
5 2.041 x 104 2.060 X 104 5.2 3.1
6 2.063 x 104 2.069 X 104 3.8 0.3

I 2 8.729 X 104 9.114 X 104 1.9 X 10-4 2.7 X 10-6

2 2 8.846 X 104 9.117 X 104 4.8 X 10-4 8.8 X 10-7

3 2 8.890 X 104 9.122 X 104 1.5 X 10-4 3.8 x 10-5
4 2 8.933 X 104 9.129 X 104 1.2 X 10-4 1.5 x 10-5
5 2 9.001 X 104 9.137 X 104 1.0 X 10-3 4.4 X 10-4

6 2 9.002 X 104 9.146 X 104 4.5 X 10-4 2.4 X 10-3

I 3 2.1151 x 105 2.1643 x 105 3.0 x 10-5 4.8 X 10-9

2 3 2.1286 x 105 2.1646 x 105 4.7 x 10-5 1.1 X 10-7

3 3 2.1330 x lOs 2.1651 x lOs 1.0 X 10-4 3.2 X 10-8

4 3 2.1374 x WS 2.1657 x WS 1.2 X 10-4 4.0 X 10-7

5 3 2.1474 X 105 2.1666 x WS 1.3 X 10-4 4.3 X 10-8

6 3 2.1475 X 105 2.1675 x lOs 4.0 x 10-5 2.7 X 10-7

baroclinic modes will contain a similar amount of total energy but the modes with most
energy are associated with 4>m.n where m is very large. These large values of m often
imply unrealistically short horizontal wavelengths.

6. Discussion
In Section 2 the propagation of free Rossby waves in an unbounded continuously

stratified ocean with a mixed layer depth, h, which varies zonally is considered
analytically. The analysis is restricted to the case in which horizontal variations of h
are large compared to a typical horizontal wavelength for the Rossby wave. it is shown
that realistic changes in h can produce amplitude modulations of the waves, the largest
amplitudes occurring where h is smallest.

In Sections 3 and 4 it is shown how Rossby basin modes can be numerically
determined when the buoyancy frequency varies both zonally and with depth. Using
the orthogonality properties satisfied by the basin modes, a general theory is presented
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in Section 5 for calculating the response generated by a body force acting within the
mixed layer.

When a wind stress curl is applied for a finite duration as a body force in the mixed
layer, a first baroclinic mode-type response is obtained. Kraus and Wuebber (1982)
and Emery and Magaard (1976) have shown that the first baroclinic mode dominates
the Rossby wave field in the North Atlantic and North Pacific respectively. When N =

N(x, z) (associated with a prescribed climatological mixed layer depth profile at 35N
in the Atlantic determined by Lamb, 1984) the eigenfunctions are not separable, but
still exhibit the gross features of the separable eigenfunctions associated with N =

N(z). It is demonstrated that for certain wind stress curl forcing fields and N =

N (x, z), the amplitude of the wave response is concentrated in the region where the
mixed layer depth is greatest. The same forcing applied to a constant mixed layer depth
(taken to be the zonally averaged Lamb-profile) generates a response which is
uniformly distributed over the channel. In the particular case studied numerically here,
the two most energetic modes are ¢t,. and ¢3,! (where ¢i,j denotes the eigenfunction
with i half wavelengths in the x-direction and j half wavelengths in the z-direction)
when N = N(x, z), whereas for a constant mixed layer depth the response is
dominated by ¢.,. and ¢2,l'

In this paper only zonal variations of h in the absence of mean flows are considered.
It is the subject of work currently in progress to extend the analysis to the case of
meridional h variations. The associated meridional pressure gradient is in geostrophic
balance with a zonal mean flow.

The results discussed here have important implications for the interaction of mixed
layer dynamics and baroclinic Rossby waves. Consider the seasonal time scale response
of the mixed layer to surface forcing (e.g. the seasonal cycle of the wind stress, net heat
flux etc.). The surface forcing will also generate a baroclinic Rossby wave field. The
maximum amplitude of the wave field will be patchy; concentrated into regions of
either mixed layer depth maxima or minima depending on whether basin modes or free
modes unaffected by lateral boundaries are appropriate. Coupling of the mixed layer
dynamics and the wave field will be important in these regions. The coupling will, of
course, alter the Rossby wave field. This interaction problem is challenging.

Acknowledgments. This research was supported by the UK Natural Environment Council and
the UK Ministry of Defence via grant number GR3 6331A. The support is gratefully acknowl-
edged. The authors would also like to thank an anonymous referee for suggesting the ray theory
approach of Section 2.

APPENDIX

A. The governing pressure Eq. (2.1)

The objective of this Appendix is to demonstrate that the Rossby wave equation
(2.1) is appropriate for distributions of N = N(x, z) caused by realistic mixed layer
depth charges. Note that, unless otherwise stated, all quantities in this Appendix are
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dimensional. Darby and Willmott (1990) derived the linearized quasi-geostrophic
potential vorticity equation which allows variations of N(y, z) in the meridional
direction to occur on the internal Rossby radius length scale. An entirely analogous
procedure can be applied to derive the linearized quasi-geostrophic potential vorticity
equation which allows variations of N(x, z) in the zonal direction to occur on a length
scale of several internal Rossby radii, or less (typically tens of kilometers to a few
hundred kilometers in the ocean which is an appropriate length scale for typical mixed
layer depth changes). The reader is referred to Darby and Willmott (1990) for details
of the derivation.

The ocean domain is located on a mid-latitude ,B-plane. A local Cartesian coordinate
system is chosen with x directed eastward, y northward and z vertically upward from
the ocean floor located at z = O. The governing equations for large-scale hydrostatic
motions in an incompressible Boussinesq fluid are

where

Du 1 T(x)
- - fv + - Px = _z_ ,
Dt p* p*

pz = -pg,

Dp
-=0Dt l

D a a a a
Dt == at + u ax + v ay + W az '

(A.I)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

and u, v and w denote the velocity components in the x, y, and z directions respectively,
p denotes density, p denotes pressure, f is the Coriolis parameter, p* is a constant
reference density and T(x) and T(y) denote the body forces in the x and y directions
respectively (arising from wind stress at the sea surface, say).

We writef = fo + (3y wherefo is the value of the Coriolis parameter at the reference
latitude of the (3-plane. It is now necessary to introduce non-dimensional variables
(denoted by primes)

(x, y) = L(x', y'), z = Hz', t = (~Jt', f = for, != TO!" (A.7a)

where Land H are typical horizontal and vertical length scales respectively, Uo is a
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typical horizontal velocity and TO is a typical value of the body force. We consider
quasi-geostrophic motions for which the Rossby number, E = Uo/foL « I and define

u = Uow', v = Uo[V(x, z) + EV'l, w = (H~o) EW',

(
P.foUoL)P = PO(z) + gH [p(x, z) + Ep']

p = po(z) + (p.foUoL)[p(x, z) + Ep']

(A.7b)

where Po and Po denote the equilibrium density and hydrostatic pressure fields
respectively. Horizontal variations in the basic state density and pressure fields are
denoted by p (x, z) and p(x, z). It is important to note that we do not require p or p to
be small. Further, V denotes the basic state horizontal velocity which is in geostrophic
balance with p(x, z). Quantities u', Vi, w', P' and p' denote nondimensional perturbation
fields. Taking typical scales to be L = 100 km, Uo = 0.1 ms-I,fo = 10-4 S-I, (3 =

1.6 X 10-11 m-1s-1 gives E = 0.01 and suggests we choose

where

f' = 1 + (3'y', (A.7c)

so that (3' = 1.6 (i.e. an order one quantity).
Substituting (A.7) into (A. 1) to (A.6) gives an equivalent nondimensional set of

equations. Following Darby and Willmott (1990) all perturbation quantities (includ-
ing the body force vector) are expanded as a power series in terms of the small Rossby
number, E. Sverdrup balance exists between (3Vand the curl of the leading order body
force, T(x). Leading order Vi must include a correction to allow thermal wind balance on
a (3-plane. We must therefore choose the O(E) body force to be in Sverdrup balance
with this correction (in order to obtain an unforced Rossby wave equation). Equating
terms of order 1, E and E

2 leads to a closed system of equations which can be solved for
the leading order perturbation pressure field, p, namely

It is important to note that the body force required to balance the meridional mean
flow does not occur in (A8). This is a similar result to that discussed by Pedlosky (1979,
Section 7) for the baroclinic instability of nonzonal mean flow. In (A7), V(x, z) is in
thermal wind balance with the horizontal mean density gradients associated with
N(x, z). If we now neglect V, as discussed in Section 2, we obtain (2.1). Darby and
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Willmott (1990) solve the analogous equation to (A8) which considers a prescribed
N(y, z) and includes the associated geostrophic mean zonal flow U(y, z).

B. The free mode orthogonality condition
The analysis of this section closely follows that in Clarke (1977) for coastal trapped

wave propagation in a continuously stratified ocean. Define

rn = rf>n exp [i(-ynx - wnt)],

and define the vector fields

and

(
r'" )'" '" ",. 2 nztDn = (rnxt + (3rn), + (1 -2 k.- - N-

Once again, rf>n' denotes an eigenfunction satisfying the non-separable problem (3.3).
The Rossby wave equation (3.3) can be written as

or

.., • D'" - /2 '"v _n - rnt·

Using (Bl) and (B2) it is found that

(B1)

(B2)

(B3)

Now integrate (B3) over the rectangular cross-sectional area of the basin and employ
the divergence theorem to obtain

where .1)is the cross-sectional area of the basin, a:JJ is the boundary of .1), !!. is an
outward unit normal vector to a:JJ and ds is an element of the boundary. The left hand
side of (B4) is zero by virtue of (3.3b) and so

(BS)

After integrating by parts and applying (3.3b) again, (BS) can be rewritten as

(B6)
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which is the required result. To normalize the orthogonality condition, choose bn in
(3.4) to be given by

where

and write

Mn = hJ ¢~dxdz,

(B7)

(B8)

(B9)

Condition (3.5a) now follows immediately. The orthogonality condition (3.5a), is now
used to derive condition (3.5b). It follows from (3.5a) that

hJ ¢n(¢mx - i'Ym¢m) exp (i('Yn - 'Ym)x] dx dz = iOmm (B10)

hJ ¢m(¢nx + i'Yn¢n) exp (i('Yn - 'Ym)x] dx dz = -iomn. (B1l)

Note that

(B12)

where (3.3b) has been used. Substituting (B12) into (BlO) and adding the resulting
equation to (BII) leads to

(J ~~ [.( ) ][bn - 'Ym)('Ym - 'Yn) - 1] ()h ¢n¢mexp I 'Yn - 'Ym x _ dxdz = O. B13
n 'Yn 'Ym

Condition (3.5b) for the case n =1=m follows from (B13). The case when n = m can be
derived directly using (B8) and (B9).

C. Numerical solution for the free modes

Equation (3.3a) is solved in x - z space on an m x n grid of N points (N = mn)
which are spaced evenly in the x-direction and unevenly in the z-direction. The grid is
generated by mapping a regularly spaced m x n grid in x - TJ space to x - z space.
Substituting second-order finite difference approximations into (3.3a) leads to the
algebraic eigenvalue problem.

A4> = 4>A (el)
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where ~ is a real sparse unsymmetric N x N matrix, ~ is an N x N matrix of right
eigenvectors and ~ is a diagonal matrix of the corresponding eigenvalues AI' A2 •.• AN'
If the eigenvalues are ordered so that A) < A2 < ... < AN then, for N(x, z) and (J

typical of the Atlantic at 35N, the eigenvalues tend to occur in well separated clusters
corresponding to the barotropic mode, first baroclinic-type mode etc. Within a cluster
the eigenvalues are relatively close (see Table 3). The method of simultaneous
iteration, described by Jennings and Stewart (1975), is well suited to the solution of
such a problem.

Suppose U is an N x s matrix containing the latest eigenvector estimates. In order to
find the smallest eigenvalues the algebraic system of linear equations

AV= U (C2)

must be solved for ~ (an N x s matrix) at each major iteration of the simultaneous
iteration process. Stones's strongly implicit scheme is used to solve (C2). The method is
designed to give efficient solution of (C2) where ~ arises from the conventional finite
difference representation of a second-order elliptic partial differential equation. A clear
description of the method is given by Smith (1985).
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