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Resonance of internal waves in fjords:
A finite-difference model

by Benoit Cushman-Roisin,' Vigdis Tverberg’ and Edgar G. Pavia'

ABSTRACT

After the time periodicity is removed from the problem, the spatial distribution of internal
waves in a stratified fluid is governed by a hyperbolic equation. With boundary conditions
specified all along the perimeter of the domain, information is transmitted in both directions
(forward and backward) along every characteristic, and, unlike the typical temporal hyperbolic
equation, the internal-wave equation is not amenable to a simple forward integration. The
problem is tackled here with a finite-difference, relaxation technique by constructing a
time-dependent, dissipative problem, the final steady state of which yields the solution of the
original problem.

Attempts at solving the problem for arbitrary topography then reveal multiple resonances,
each resonance being caused by a ray path closing onto itself after multiple reflections. The
finite-difference formulation is found to be a convenient vehicle to discuss resonances and to
conclude that their existence renders the problem not only singular but also extremely sensitive
to the details of the topography. The problem is easily overcome by the introduction of friction.

The finite-difference representation of the problem is instrumental in serving as a guide for
the investigation of the resonance problem. Indeed, it keeps the essence of the continuous
problem and yet simplifies the analysis enormously. Although straightforward, robust and
successful at providing a numerical solution to a first few examples, the relaxation component of
the integration technique suffers from lack of efficiency. This is due to the particular nature of
the hyperbolic problem, but it remains that numerical analysts could improve or replace the
present scheme with a faster algorithm.

1. Introduction

A typical hyperbolic problem, with time as one of the independent variables, is
constrained by a sufficient number of initial conditions (as many as the order of the
problem) but is not subjected to any condition about subsequent states except along the
boundaries. This property permits an analytical integration by the method of charac-
teristics or a natural, forward-in-time numerical integration. But, there exist hyper-
bolic problems where none of the independent variables is time, and for which
boundary conditions are imposed all around the domain. An important case is that of
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internal gravity waves in a stratified fluid, where the wave amplitude, , obeys a
second-order hyperbolic equation in the space variables (Baines, 1971, 1982; Craig,
1987):
2 2

% ~c ::T‘f =0. n
In this equation, Y has time-dependence exp (—iwt), x is a horizontal coordinate, z the
vertical coordinate, and ¢ = w/N where w is the wave frequency (typically a tidal
period) and N is the Brunt-Viisali frequency. In general, N can be a function of depth,
but wave refraction is not the topic of the present paper, and, therefore, N will be taken
here as a constant. The reader will find in Appendix A a derivation of Eq. (1) as well as
a critical review of its most common generalization.

Eq. (1) is obviously hyperbolic, with characteristic slopes equal to ¢ everywhere.
As these sloping characteristics intersect the surface, the bottom topography, and the
lateral boundaries, the wave-amplitude pattern consists of a multitude of reflections
with constructive and destructive interferences. This is precisely the situation in
Norwegian fjords (Cushman-Roisin and Svendsen, 1983, and references therein)
where a typical ray slope of internal tides is comparable to the depth-to-length aspect
ratio of the fjord and hence also to its bottom slope.

The no-flow condition through the surface and (arbitrary) bottom topography and
the in/out-flow condition of the lateral boundaries provide one and only one boundary
condition at any point on the perimeter of the domain. No direct integration along
characteristics can be started from any side, for such procedure would require at least
two boundary conditions along the starting edge.

The above internal-gravity-wave problem is an old and important one (Baines,
1982), but is far from being solved. In particular, it is still not known under which
conditions the problem is ill posed (see Section 4 for an elementary example), and
existing numerical procedures to this day are much too restrictive. For example, the
method of Sandstrom (1976) not only requires considerable preliminary work in
constructing a transfer function from the topography function before numerical
inversion of a matrix can proceed but also restricts application to subcritical slopes
(i.e., bottom slopes everywhere less than the characteristic slope). Although it can
handie supercritical slopes, the recent method of Craig (1987) is limited to monotonic
topography (the depth can only decrease from one end to the other), and furthermore
it, too, requires substantial preliminary work in constructing a set of algebraic
equations from characteristics criss-crossing the domain. In both methods, the
preliminary task is a cumbersome one and must be redone when the wave frequency
(w) or the stratification parameter (N ) are modified. Moreover, both methods suffer
another major drawback.

Thin, energetic beams and shocks are expected in solutions of hyperbolic problems.
In the case of internal gravity waves, high-energy beams typically originate from
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critical and almost critical bottom slopes. Fine resolution is required. However, the
work necessitated by the methods of Sandstrom and Craig becomes prohibitively
arduous when ten to twenty degrees of freedom are selected in the vertical and, also,
the matrices to be inverted become ill posed as adjacent rows become increasingly alike
with increasing resolution.

Finally, as this work reveals, multiple resonance is the rule rather than the
exception. Friction is necessary to remove the singularities, and thus a pure character-
istic method becomes impractical.

Chuang and Wang (1981) must be credited with the first finite-difference numer-
ical method for the solution of internal-wave generation by irregular bottom topogra-
phy. Their technique relies on a change of coordinates that transforms the domain into
a rectangle, which is subsequently divided arbitrarily by evenly spaced grid points. Two
arguments can be raised as limitations to this procedure. First, the transformation of
coordinate involves the second derivative of the bottom profile and hence limits the
applications to smooth profiles or to those with analytical expressions. Second, the
aspect ratio of the computational cells is unrelated to the ray slope, and the resulting
inter- and extrapolations lead to a certain amount of smoothing and/or noise. For these
reasons or perhaps also because their emphasis was on the effect of lateral and vertical
inhomogeneities in the stratification, Chuang and Wang (1981) limited their applica-
tions to gentle, monotonic and subcritical bottom slopes, thereby eliminating the
existence of concentrated beams and of eventual resonances.

All these arguments demonstrate that the classic problem of internal-wave genera-
tion by irregular topography has not yet received satisfactory solution and, therefore,
calls for the development of a generic numerical method of integration. What is
missing is a numerical method of integration with ease of implementation, wide
applicability, and a potential for future improvements. Toward fulfillment of this goal,
a double transformation of the problem is hereby proposed: first, the original problem
is recast as a dissipative problem; then, a classic finite-difference discretization is
applied to the continuous system. At the conclusion of the work, it will appear that the
finite-difference approach considerably simplifies the problem by providing a helpful
framework for the discussion of resonance, but that the relaxation technique for solving
the analogous, dissipative problem could be improved.

2. Transformation of the problem

Numerical relaxation techniques, such as successive over-relaxation, have proven to
be extremely helpful in solving elliptic equations (O’Brien, 1986). The chief reason for
this success lies in the fact that the solution of an elliptic equation can be interpreted as
the final, steady-state solution of a time-dependent, dissipative problem; the latter
being usually straightforward to integrate. A similar transformation of the hyperbolic
problem at hand into a parabolic problem would thus be promising, and is carried out
here.



550 Journal of Marine Research [47,3

Instead of using the streamfunction y as in (1), it has been found more convenient in
the analysis that follows to return to the original velocity components u = --dy/dz and
w = dy /dx. Moreover, as the variables can be scaled (w by ¢, x by 1/c), the problem
can be formulated as (see Appendix A)

du a_w 3 du ow

- - — 4 — = 2
axta: "% %t ex (22, 0)
The characteristic slopes are now +1. Boundary conditions include one condition on a
combination of # and w on all sides of the domain, for example w = 0 (u = 0) on
horizontal (vertical) sections of the bottom topography.

Because our present goal is to recast (2a, b) into a diffusive problem, we apply the
Laplacian operator to u and w and find V2 u = —28°w/dxdz, V'w = —23"u/dxdz, and
formulate the new problem

du *w ow
— = K|V? 2— —
a1 ( “r axaz)’ at

2 du
= (V w4 zaxaz) ) (3a, b)
where K is an arbitrary positive constant and ¢ a time-like variable. Aside from the
coupling terms, the above two equations are obviously dissipative. It now remains to
prove that Eqgs. (3a, b) with the coupling terms still form a dissipative system, and that
their steady-state solution, with the appropriate boundary conditions, is the solution to
Egs. (2a, b).

In order to demonstrate the first assertion, we decompose the solution in modes of
the form exp (of + imx + inz). For arbitrary real values of m and n, Egs. (3a, b)
provide the values of ¢

o= —K(m x n)?, 4)

which are real and nonpositive. Neither growth nor oscillations can exist, and the
solution progresses toward a steady state. Note, however, that o is zero for m/n = 1,
and no dissipation occurs in the direction of the characteristics.

To demonstrate the equivalence between the steady state of Eqs. (3a, b) and the
solution of Eqgs. (2a, b), and in anticipation of the numerical implementation, two
accessory functions are defined

u dw 6_1{ ow

X=ot o b=t o (52, b)
which are used to rewrite Eqs. (3a, b) with first-order derivatives only
du dx I\ ow dax 9¢
a1 ‘K(ax * az)’ ar K(az * ax)' (5. d)

The set of equations (52a) to (5d) forms a 4 x 4 system for the functions u, w, x and ¢. It
is of fourth order and requires two boundary conditions all around the perimeter of the
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domain. The one boundary condition on u and w of the original problem (2a, b) is
retained, and a second condition on x and ¢ is now added. Since Eqgs. (5a, b) indicate
that x and ¢ should be zero to recover Egs. (2a, b), the second boundary condition is
taken as homogeneous, but it needs not be written down explicitly at this time.

With arbitrary (guess) initial values for u, w, x and ¢, the diffusive system (5a—d)
equilibrates to a steady state, at which time the temporal derivatives have vanished.
From Egs. (5c, d), it remains dx/0x + d¢/dz = 0 and dx/dz + d$/dx = 0 and,
because of the homogeneous nature of the boundary conditions of x and ¢, the unique
solution to this hyperbolic problem is x = ¢ = 0. Eqs. (2a, b) are thus recovered, and
the steady-state solution of the dissipative problem is indeed the solution to the original
problem.

There is, however, a notable exception to the preceeding argument. Indeed, in the
eventuality of the existence of one or more closed ray paths, a nonzero solution to the
x-¢ problem may exist. This resonance phenomenon will be investigated in the context
of the numerical procedure, where the finite-difference technique adds clarity to the
problem.

3. Relaxation technique

The derivatives in Egs. (Sa—d) make it ideal to use a staggered grid as displayed in
Figure 1. Let A be the grid interval. One numerical array A(i, j ) suffices, with the
u(w) values occupying the even-even (odd-odd) positions and the 2Ax (2A¢) values
occupying the odd-even (even-odd) positions. (The factor 2A is introduced for
convenience.) All derivatives in Eqs. (Sa—d) can then be evaluated as centered
differences with second-order accuracy. Both diagnostic equations (5a, b) take the
same form:

A j)=A>G+ 1,j)+ AG,j+ 1) - AG-1,j) - A@G - 1), (6)

with i or j even and the other odd. The prognostic equations (5c, d) can be marched by
a forward time step (with again one form for both equations)

KAt

A ) = AG, f KAt
new A(i, j) (t_])+4Az

[4G + 1,j)

+ AW+ 1) - Al - 1,j) —AGj - D], (7)

with { and j both even or odd. The inaccuracy in the forward time stepping is
inconsequential, for only the final, steady state matters.

The numerical stability of this relaxation scheme can be evaluted by the traditional
method. For « = mA and 8 = nA, m and n being the wavenumbers in the x and z
directions, the amplification factor at every time step is

G=1- % (sin & + sin 8)2 8)



552 Journal of Marine Research (47,3

j=4 _ax &E aX +u
i=3 J'\w @ s ®
j=2 X iE X lu
A
j=1 AW @ AW ¢
F4
A
i=1 i=2 i=3 i=4
X

Figure 1. The staggered grid that takes advantage of the form of Eqs. (5a—d). All first-order
derivatives can be evaluated by centered differences. Note that because the grid interval is the
same in both directions the u and w gridpoints form straight lines of slopes + 1; i.e., parallel to
the characteristics of the problem.

Note the analogy with (4). As (sin & + sin 3)? varies between 0 and 4, the minimum
and maximum values of G are 1 — 4KAt/A?and 1, and the requirement that both be
less than or equal to one in amplitude brings the condition on the time step
KTAzt = % . (9)
It now remains to discuss the placing of the grid in the computational domain and
the implementing of the boundary conditions. The rectangular gridding of the domain
forces us to represent the bottom topography as a series of steps, each of two
grid-spacing units (24). Figure 2 provides an example. Horizontal segments of the
topography are chosen to pass through w-gridpoints where w is set to zero and,
similarly, vertical segments intercept wu-gridpoints where u is set to zero. The
intermediate gridpoints along the bottom are naturally ¢-gridpoints (see Fig. 2), and ¢
is then set to zero at these boundary points. The grid ends at the surface with a
horizontal row of w and ¢ points. There, w is set to zero (if the forcing is a set of internal
modes incoming from a side) or to a constant, say unity (if the forcing is the external
tide, see Craig, 1987); ¢ is set to zero along the surface. The lateral extremities of the
system can be either closed (topography rising to the surface) or open, with at least one
side open to let the tidal signal come in. The closed extremity, if there is one, is treated
as a vertical extent of the bottom topography, while the open extremities are
boundaries where the physics dictate a condition on w, either incoming external tide
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Figure 2. Anexample of a discretized system. Note that, with the exception of the entrance (left
side of figure), all boundary points are chosen such as the w (1) points fall on horizontal
(vertical) boundary segments. Naturally, all intermediate boundary gridpoints are ¢ points.
Along the entrance, w and x points take the place of the u and ¢ points. One equation of type
(5a, b) can be written for every complete interior diamond, and one equation of type (5¢, d)
can be written for every interior node.

with reflection of the internal modes (w given decreasing from the surface value
linearly to zero at the bottom) or a radiation boundary condition. Since our present
objective is to develop a generic technique of integration and to analyze the problem of
resonance in the interior of the domain, we choose for the open-boundary condition to
set the vertical velocity equal to that of the external tide and to let the internal modes
be reflected. The implementation of the more appropriate radiation condition is
postponed to a future article. As the x-gridpoints are located vertically between the
gridpoints, every other gridpoint along the entrance is a x-gridpoint, and x is set to zero
there.

So implemented in the domain, the grid forms a network of diamonds with the « and
w unknowns at the corners (Fig. 2). For every complete interior diamond, an equation
of type (2) can be written, and a necessary condition for a well-posed problem is that
there be equal numbers of such diamonds (equations) and of interior points
(unknowns). Appendix B demonstrates, for arbitrary geometry, that this is indeed the
case.

Initial conditions are required to start the iterative integration, but these can be
arbitrary. One choice is 4 = w = x = ¢ = 0 everywhere in the interior.

Finally, since ¢ and x should tend to zero as the steady state is approached, their
maximum value is an indication of the progress toward the solution. We therefore
define the dimensionless residual

. rr;ix|A(i,j)|2 (10)

.
N2 4GP
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where the search for the maximum in the numerator covers the (even, odd) and (odd,
even) pairs of indices, the sum in the denominator covers the (even, even) and (odd,
odd) pairs of indices, and /V is the number of unknowns in the problem (u and w values
only).

4. Resonance—an example

As was indicated earlier in the text, resonances can be anticipated. For example, if
we trace the ray paths (diagonal lines) of Figure 2, continuing the path by a 90°-turn at
every reflection, we find that three independent paths are needed to cover all grid
points: one starts and ends at the open boundary (on the upper left), while the other two
are closed onto themselves. Numerical experiments strictly following the procedure
outlined above showed convergence to a steady state solution, but that solution had
nonzero values for ¢ and x. Remarkably enough, the same nonzero x and ¢ values were
recurring—two distinct values and their sum—indicating that perhaps each value had
a relation to a closed ray path.

To elucidate the question further, a very simple example is now constructed.
Displayed in Figure 3, the small grid contains only six unknowns (four u-values and
two w-values), but two ray paths exist. First, to demonstrate that resonance is not a
spurious phenomenon brought on by the transformation of the problem into a
dissipative system, we ignore for the moment the ¢ and x notation, and write the
discretized versions of (2a, b) for each interior diamond:

l+uy=u +0, 1l +uy=u, +w,1 +0=1u; +w,
Uy + Wy =W, + U, W + Uy=0+0,w, +0=u, +0.

Inspection of this 6 x 6 linear problem shows that the third, fourth and fifth equations
add up to 1 = 0, i.e., the determinant is zero, and no finite solution exists. Now,
introducing the x and ¢ variables and writing Eqs. (6) and (7), we find that the steady
state has the following properties: the three x values outside of the closed ray path are
zero while the two x values and the ¢ value inside the closed ray are equal to 4. The
values of u, and u, are determined (7/3 and 4/3, respectively), while the values of u,,
uy, w, and wy, i.e., the unknowns along the closed ray path, are left undetermined (one
of the four can be chosen arbitrarily). What these values would be as the result of a
computer iteration is dependent on the initial guess values.

With nonzero values of x and ¢, the preceeding solution does not satisfy the
equations (2a, b) of the original problem, and cannot be accepted. However, we are
now convinced that the singularity of the problem is intimately related to the existence
of the closed ray path, and we intuitively anticipate that problems with greater
dimensions will likely exhibit similar singularities; namely, due to resonant (closed) ray
paths.

The greater the dimensions of the problem (i.e., the finer the numerical resolution),
the greater the chance that closed paths exist. Therefore, resonance is most likely the
rule rather than the exception, and the problem is aggravated in the theoretical limit to
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Figure 3. A simple example illustrating resonance. Note the two independent ray paths: one
(dashed line) starts and ends at the open boundary (left side), while the other (solid line)
closes on itself.

the continuum. This, in turn, suggests that the nature of resonance is not caused by the
present finite-difference scheme but is rather an intrinsic characteristic of the physical
problem at hand. Quite the contrary, the finite-difference scheme is a simplifying
factor.

Finally, adding or subtracting small topographic features may thoroughly change
the number and/or configuration of the resonant ray paths, indicating that the
internal-wave distribution is greatly sensitive to small topographic features. As an
example, the subtraction of the diamond centered at (i = 7, j = 6) in Figure 2 by the
addition of a bottom kink raises the number of independent rays from three to four.

For all the above reasons, it is imperative that the resonance problem be overcome,
and it is clear that a physical, not a numerical, remedy should be applied. A logical
antidote, which will couple the information across the closed ray paths, and which will
at the same time lessen the critical sensitivity of the solution on the details of the
topography, is the introduction of dissipation.

It is worth noting here that a necessary condition for the existence of a resonant ray
path is the existence of at least two facing supercritical slopes (so that a forward ray
can be reflected first backward and then forward again), and that all previous models
carefully avoided such a situation. Wunsch (1968), Baines (1974, 1982) and Craig
(1987) all restricted their analyses to monotonic slopes, while Baines (1971) investi-
gated the problem of a topographic bump; i.e., that of two oppositely facing slopes, and
Sandstrom (1976) considered only subcritical slopes.

In closing, it should be pointed out that, although existence of closed rays and
ill-posedness go hand in hand for the discretized problem, a general rule to determine
under which conditions the continuous problem is ill posed has yet to be formulated.

5. Overcoming resonance

The previous section demonstrated the likelihood of resonance in any problem of
sizeable dimension and illustrated the resulting mathematical singularity. It was
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suggested that the physical nature of the problem calls for the addition of a physical
process, namely dissipation. This process is to be distinguished from the dissipative-like
behavior introduced in Section 2. There, no additional physical mechanism was
injected in the equations, and dissipation strictly referred to spreading of information
during the unfolding of the numerical, time-like variable. The task of including vertical
viscosity is now undertaken.

With a temporal dependence of the type exp (~iwt?) where w is the tidal frequency
and with the inclusion of vertical viscosity, the primitive equations are:

—iwu = —p, + vu, (11a)
O=—p,+b (11b)
—iwb + N*w =0 (11c¢)
U, +w, =0, (11d)

where all symbols are as previously defined (see Appendix A), with the addition of v,
the vertical viscosity. Although one could conceive of including diffusion of buoyancy
as an additional dissipative mechanism, it is not necessary, since the diffusive time
scale for density is much greater than that for momentum. It is also inadvisable since
the entire linear theory of internal waves is based on the existence of a background
vertical stratification that is neither eroding in time nor supported by a constant
vertical buoyancy fiux.

Estimates of the eddy viscosity (Knauss, 1978) range from 10~*to 10~* m?s~". With
a frequency corresponding to the semi-diurnal tide (w ~ 2 107°s™') and the fjord
depth of one to several hundred meters, wH? is on the order of 1 m?s~', and one thus
notes the strong inequality

v < wH?, (12)

which implies that the effect of friction will be negligible except in those areas where it
plays a crucial role in removing resonance.

Eq. (11c) yields b = —iN*w/w, while the cross-differentiation of (11a) and (11b)
eliminates the pressure. The resulting equation is:

C2u2 + W, = ixuzzza (13)

where ¢ = w/N and where A = vw/N 2 is a small, real, positive constant coefficient.
Inequality (12) implies that A be much smaller than ¢*H2.

Eq. (13) combined with the continuity equation (11d) forms again a two-by-two
system for # and w. Scaling the variables w by ¢, x by 1/c, as performed in Section 2,
and A by ¢, we obtain the following system of equations, which now supersedes
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(2a, b):

du ow u Iw &’u
—_—=—=0 — 4+ — =A== 14a, b
ax 9z ez tax e (142, b)
with the proviso A « H2.
In analogy with the relaxation method introduced in Section 2, the problem is then
transformed into the following system of equations

ou ow
bl 1

X x Oz (15a)

du ow Qu
du dx JdP
k(XL 1
Y (ax * 62) (13¢)

Iw Ix 9P Fx

57&[((;,’;-*-&4—1)\@), (15d)

where ¢ is a numerical time of integration. For a solution of the type
exp (ot + imx + inz), the constant ¢ is found to be

c=—-K

—
m* 4+ n? 7 2mnll — —;| |, (16)
4m
and it is not difficult to show that its real part is always negative for nonzero A. The
system (15a-d) is dissipative, and its solution must evolve toward a steady state.
Maximum damping without oscillations occurs for those wavenumbers with n5A%/4m?
= 1, and, for the smallest scale (m = n = 2x/2A), we obtain A =~ A?/5. Numerical
experiments with the grid displayed on Figure 2 showed that this value was too small to
remove resonance from the problem, while the value A = A%/3 and larger values did
lead to convergence toward an acceptable final state (x = ¢ = 0). Note that any value
of A on the order of A2 meets the criterion A « H? for A is much less than H in a typical
grid.

An analysis of the vertical scales of the system (15a—d) reveals the existence of
boundary layers of thickness A'/2. These may occur at the bottom, the surface and
perhaps also in the interior at the edge of high-energy beams (otherwise discontinuities
in the inviscid problem). With X chosen as small as possible, i.c., on the order of A?
these boundary layers have a thickness comparable to the grid size and are thus poorly
resolved. However, a detailed analysis (not reported here) shows that, not unlike classic
Ekman layers, the role of these boundary layers is to generate, for the interior, an
additional vertical velocity compenent. The magnitude of this velocity is proportional
to A'?, and the numerical representation of the boundary layer with only one grid mesh
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solely affects the coefficient or proportionality. Since » is not precisely known, X is
undetermined within an order of magnitude, and the accurate numerical resolution of
the boundary layer is not necessary.

The new system of equations is of eighth order in the vertical, and four boundary
conditions are required on the bottom and at the surface. Inadditiontow = 1 and ¢ =0
along the surface, we can impose a no-stress condition u, = 0 and, to preserve some
symmetry in the problem, x, = 0. On the horizontal sections of the bottom, in addition
tow = 0 and ¢ = 0, we can impose a no-slip condition u = 0, and, by analogy, x = 0.
The boundary conditions on ¢ and x are clearly irrelevant, for ¢ and x will vanish
everywhere when the steady-state solution is reached. At most, they can affect the rate
of relaxation.

The additional boundary conditions are easily implemented by creating two
additional, fictitious rows of u and x gridpoints, one above the surface and one below
every horizontal stretch of the bottom. The u and x values on the former row are set
equal to those values on the row just below the surface, while the » and x values on the
latter row segments are set equal and opposite to those values immediately above the
bottom.

6. Numerical experiments

Three computational experiments were performed in order to test the finite-
difference technique. The first one is a relatively simple problem without resonance
and for which an analytical solution is available. Figure 4 displays the analytical
solution, its streamfunction contours and the numerical solution obtained with a
purposefully coarse resolution of the topography. The excellent agreement supports the
present method of solution. Notwithstanding the authors® efforts, no other nontrivial
analytical solution has been found, and therefore further testing was not possible.

The second experiment corresponds to the example displayed in Figure 2. The
forcing is the external tide (w = 1 along the surface gridpoints), the bottom slope varies
in sign and amplitude, and the number of interior points (i.e., number of unknowns) is
131. For this example, the methods of Sandstrom (1976) and Craig (1987) are not
applicable, for on one hand, some segments of the bottom topography, those with slopes
2 to 1, are supercritical, and, on the other hand, the bottom topography is not
monotonic.

On the contrary, the present method is applicable to the chosen, irregular topogra-
phy, and the coding of the latter to determine the range of the do-loops in the algorithm
is straightforward. The numerical computations start with an initial value of R, as
defined by (10), of 435.53. As the iterations are performed, the residual R drops
monotonically and, after a certain number of iterations, decays according to an
exponential function, presumably that of the slowest decaying mode. Calculations
reveal that the x values during the relaxation process are not distributed evenly about a
zero mean, and, as a result, the errors on mass continuity add up from cell to cell to a
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Figure 4. Comparison between analytical and numerical solutions. Top panel: the analytical
solution; middie panel: streamfunction contours from analytical solution; bottom panel:
streamfunction contours from numerical solution.

sizeable mass imbalance in the intermediate flow fields. To ensure that in the final flow
field the cumulated mass imbalance (calculated as the sum of the errors on Eq. (14a)
over all cells) be less than one percent, 27,139 iterations are required by which time the
residual R has dropped to 3.75 107 The streamfunction field of the solution, Re[y
exp (—iwt)], is presented on Figure 5.
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Figure 5. Streamfunction for the solution of the problem presented in Figure 2 (first half of the
tidal cycle).
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The remark that the x values tend to be distributed about a nonzero mean is
reminiscent of the elementary problem exposed in Section 4, and a heuristic argument
can be developed to show that this is a general property. The inviscid problem leads to a
steady-state solution which, if it contains a closed ray, has nonzero values of x and ¢
along that ray. The closed ray is made of branches sloping in both the +1 and —1
directions, with x + ¢ constant along one set of branches and x — ¢ constant along the
other. Let us now assume that one branch has x + ¢ = a, where a is a constant. Since
the boundary conditions on ¢ are ¢ = 0, it follows that all other branches of the closed
ray are characterized either by x — ¢ = aor x + ¢ = 4, depending on their slope. Now,
these branches of the closed ray are traversed by characteristics not belonging to closed
rays and thus for which x + ¢ = 0 and x — ¢ = 0 (see example treated in Section 4),
and it immediately follows that such intersection points have x = a/2 and ¢ = +a/2.
Where the closed ray intersects itself, x = a and ¢ = 0. If there exists a second closed
ray, characterized by the value b, x can now take the values b, b/2 and (a + b)/2,
while the ¢ values are +b, +b/2, +(a + b)/2. Hence, unlike ¢, x assumes a restricted
number of values, and it is no wonder that they tend to be scattered around a nonzero
mean. With the inclusion of friction, such a situation is not allowed to persist, and all
values of x must ultimately decay below any given threshold. But, by virtue of the
smallness of the viscosity coefficient, an adjustment toward the inviscid solution first
takes place, and then a slow decay proceeds. This explains why the x values tend to be
clustered around a nonzero-mean during most of the calculations.

A third numerical experiment was designed to test the relaxation technique under
finer resolution. The new grid, resembling the depth profile of a Norwegian fjord
(Cushman-Roisin and Svendsen, 1983) with a tidal period of 12.42 hours and a
Brunt-Viisild frequency of 9.4 1072 s™'(c = 0.015), has Az = 5 m, Ax = Az/c =
333 m, and 805 unknown values of # and w. In anticipation of a large number of
iterations, the relaxation is accelerated by taking X initially equal to A? and decreasing
it progressively to A>/3. After 180,333 iterations, the flow field has a cumulated mass
imbalance of one percent, and the residual R has dropped from an initial value of 834.
to 1.52 107",

The streamfunction field of the solution, Re[y exp (—iwt)], displayed on Figure 6,
shows a splitting of the internal-wave field in two branches, both originating at the sill,
one pointing upward to be reflected by the surface, and the other pointing downward to
be reflected by the bottom. Such feature, including a relatively quiescent zone at sill
depth slightly in-fjord of the sill, is precisely what the data (Cushman-Roisin and
Svendsen, 1983) revealed. However, a close comparison of the model with the data is
premature until the entrance boundary condition allows for outward radiation of
internal waves.

7. Conclusions

The problem of internal gravity waves in a stratified fluid leads to a second-order
hyperbolic equation accompanied by one and only one boundary condition all around
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Figure 6. Streamfunction of the second, higher-resolution numerical experiment (first half of
the tidal cycle). The topography is not monotonic and contains subcritical as well as
supercritical segments.

the perimeter of the domain. This unusual hyperbolic problem cannot be solved by a
one-sweep numerical integration following the characteristics. Because the existing
methods (Sandstrom, 1976; Craig, 1987), which rely on a one-time matrix inversion,
not only present great difficulties in preparing the problem for the computer but also
suffer from restricted applicability to special cases from which resonance is excluded,
an alternative, simple-minded procedure is devised. The idea lies in discretizing the
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domain by means of a staggered grid and in constructing a time-dependent, dissipative
problem, the final steady state of which corresponds to the solution of the original
problem. This task is accomplished by doubling the order of the problem and adding
time derivatives at judicious places in the new equations. Although the order of the
problem is raised, the modifications facilitate the formulation of a numerical
algorithm, and, not least of all, permit the investigation of the resonance problem in a
simplified context.

This numerical procedure exemplifies the problem of resonance, whereby ray paths
close onto themselves after multiple reflections. It is argued that resonant ray paths
become the rule rather than the exception as resolution increases and the discretized
system approaches the continuum. Consequently, a small amount of friction is
introduced and this is done at little cost to the numerical procedure. However, it is
worth noting that the slightest amount of friction precludes the application of the
method of characteristics, on which previous attempts were based.

Two numerical integrations with nonmonotonic bottom slopes and a variety of
subcritical and supercritical slopes illustrate the implementation of the relaxation
technique. The number of iterations required to reach a global accuracy equal to one
percent (see text for definition) is large in comparison with elliptic problems of similar
size. The reason lies in the fact that dissipation is weak, and thus convergence is slow
along the characteristic directions. In contrast, elliptic problems solved by relaxation
techniques lead to fast relaxation rates in all directions. It is hoped that the
clarification of the resonance problem by means of the present finite-difference method
will serve as a guide in the development by numerical analysts of other, more efficient
techniques of solution.

The present method is directly applicable to the study of internal tides in fjords.
Contrary to existing methods, no restriction is placed on the nature of the topography,
and, like the existing methods, a variation of the tidal frequency and/or the
stratification parameter requires a re-coding of the problem. However, in the present
case, this task merely amounts to re-discretizing the topography on a grid with a
different aspect ratio, and this task could be automated if desired.

The open-boundary condition used in the present article reflects the baroclinic
modes and should be amended into a radiation condition that permits leakage of
internal-wave energy outward. This was not done here to emphasize the finite-
difference approach and the problem caused by resonance. Extension to nonuniform
vertical stratification (V and ¢ functions of depth) can be handled by the use of a grid
with variable spacing in the vertical, such that, everywhere, diagonals of the grid mesh
are parallel to the local characteristics. Both generalizations are now in the works and
will be reported in subsequent articles. Finally, extension to include Coriolis effects can
also proceed, but, as pointed out in Appendix A, this should include the insertion of a
Coriolis term in the vertical balance of forces, and the existing models are not
satisfactory in this respect.
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APPENDIX A
Derivation of the basic equation and discussion of its generalizations

With the temporal dependence of the problem eliminated by the introduction of the
tidal frequency w, the linearized primitive equations are:

—lwu = —p, (A1)
O=—-p,+b (A2)
—iwb + N'w =0 (A3)
u, +w, =0, (A4)

where u and w are the horizontal and vertical velocity components in the x and z
directions, respectively, p is the dynamical pressure, and b is the buoyancy departure
from a basic vertical stratification characterized by the buoyancy gradient N2 In
addition to the assumption of small wave amplitudes (to justify linearization), it has
also been assumed that there is no variation in the other horizontal direction, no
friction, no diffusion, and no Coriolis acceleration.

Eq. (A4) permits the definition of a streamfunction y such that u = -y, and w =
+¢,. Then, elimination of p and b immediately yields Eq. (1) of the text, with ¢* =
/N2

Two sequential generalizations have been proposed. First, it was recognized that the
vertical acceleration must be retained if the oscillation frequency, w, approaches the
Brunt-Viisili frequency, N. Adding the term —iww on the left-hand side of (A2)
yields a new equation, identical to (1) but now with ¢ defined as ¢* = w*/(N? — &?).
This result shows, as a scaling argument would have also revealed, that the relative
importance of the vertical acceleration to the gravitational force is w?/N? For wand N
on the order of 107 s~' and 107? s™', respectively, this is generally a very small
correction. However, in the presence of mixed layers, N may locally drop substantially,
and the correction may become crucial. In fact, internal waves are not permitted in
regions where V < w, and internal reflection occurs at the level where N = w.

The next and classic generalization is that of Baines (1971) whereby the Coriolis
force is retained. In doing so, the horizontal velocity component, v, in the direction
normal to x and z is introduced. Eq. (A1) is replaced by

—iou — fv=—p, (AS)
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and the balance of forces in the other horizontal direction is stated:
—iwv + fu = 0. (A6)

The result is still an equation identical to (1), but with ¢ defined by ¢* = (o* — f?)/
(N? — w?). The novelty is that w is now constrained from below as well as from above
(f<w< N).

There is, however, a serious problem with both generalizations. Indeed, the rotation
of the earth (of angular frequency Q) leads to a rotation vector that, in mid latitudes,
has both vertical and horizontal (northward) components. The vertical component
yields the Coriolis terms retained above (with /= 2Q sin 6, where @ is the latitude),
while the northward component yields another Coriolis acceleration term, to be placed
on the left-hand side of (A2) and equal to —f'(« cos @ + v sin ) with f’ = 28 cos 8
and « equal to the angle between the northward and x directions. This is a vertical
acceleration, and its relative importance to the gravitational force is f'/N, or about
f/N. Consequently, discarding this term while retaining the vertical acceleration term
is valid only if f/N « w?/N? < 1. But, for internal tides, f'is slightly less than w, and
both these frequencies are much less than N. Hence, the inequalities are rather
w?/N? < f/N « 1. Both acceleration terms can be neglected vis-a-vis the gravitational
force, or, if one wishes to keep the greater of the two, the Coriolis acceleration takes
precedence over the vertical acceleration, and not the opposite as Baines (1971, 1982)
and his followers (Sandstrom, 1976; Craig, 1987) have done.

APPENDIX B
Well-posedness of the finite-difference problem

The purpose of this Appendix is to demonstrate that the present numerical problem

contains equal numbers of equations and unknowns, for arbitrary topography. As
discussed in the text, the numerical grid is formed by staggered u and w points, with

horizontal (vertical) segments of the boundary intercept w(u) gridpoints, except for a
vertical stretch along the entrance which must fall on w-gridpoints. See Figure 2 for an
illustration. In the interior, adjacent u and w gridpoints form square diamonds. Since
at the center of each complete diamond an equation of type (2a) or (2b) can be written,
the number of equations is equal to that of diamonds. On the other hand, the number of
unknowns is obviously that of interior ¥ and w gridpoints. Well-posedness of the
problem thus requires that the number of diamonds (equations) be equal to the number
of interior nodes (unknowns). This proposition is demonstrated in a recursive manner.

We first consider the reduced case for which the lateral extent of the domain is that
of the original domain but for which the bottom is raised as close to the surface as
possible, leaving only one horizontal row of interior u-gridpoints (see Fig. 7a). By
inspection, we note without difficulty that the number of complete diamonds is equal to
that of interior nodes.
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Figure 7. lllustration of the iterative process by which the desired discretization of the
topography can be constructed. This demonstrates that the number of equations will always be
equal to that of unknowns, regardless of the topography configuration.

We then dig the bottom, unit by unit, until the desired discretization of the
topography is obtained. In the digging process, only three moves can occur. The first
possible move is to dig a new, one-unit hole in the bottom, as illustrated by passing from
Figure 7a to Figure 7b. In the process, one new diamond and one new interior (w) node
are created. The second possible move is to enlarge laterally, by one unit, an existing
hole, as llustrated by passing from Figure 7b to Figure 7c. In the process two new
diamonds and two new interior (1 and w) gridpoints are created. The third possible
move is to extend laterally an existing hole by half a unit to deepen the entrance, as
illustrated by passing from Figure 7c to Figure 7d. In the process, one new diamond
and one new (u) node are created.

We then note that, with any move, equal numbers of diamonds and interior points
are added. Since the numbers of diamonds and interior points were equal in the initial
stage, so they stay throughout the process until the desired discretization of the
topography is realized. This proves the stated proposition.
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