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Streamfunctions for the lateral velocity vector in a
compressible ocean
by Trevor J. McDougali1

ABSTRACT
Streamfunctions are known in (i) geopotential surfaces, (ii) isobaric surfaces, (iii) surfaces of

constant in siw density, p, and (iv) surfaces of constant steric anomaly, D.lt is desirable to map a
streamfunction in a surface in which most of the mixing and movement of water-masses occurs
so that the streamlines obtained in two dimensions will approximate the flow paths of the full
three-dimensional flow field. These surfaces are believed to be neutral surfaces, but while a
streamfunction exists in a neutral surface, we do not as yet have a closed expression for it in
terms of a vertical integral of hydrographic quantities, and quite possibly we never will. An error
analysis performed on the use of the Montgomery function (acceleration potential) in a neutral
surface shows that the typical error at a depth of 1000 m is about 2 mm/s. To reduce the velocity
error below 0.5 mm/s at 1000 m, one would need to map the Montgomery function in a surface
that differed in slope from a steric anomaly surface by less than 5 x 10-6• An error analysis is
also performed on the approximate Bernoulli function that is found by integrating gziJpo/iJz in
the vertical, showing that errors in this Bernoulli function over a depth range of 1000 mare
equivalent to a lateral velocity error of 3 mm/s. These examples demonstrate that great care
must be taken in calculating a streamfunction in any surface in which an exact expression is
unknown. Expressions for the relative slopes of several surfaces (surfaces of constant pressure,
steric anomaly surfaces and neutral surfaces) are also derived.

1. Introduction

The geostrophic balance is expressed in terms of the horizontal pressure gradient
evaluated at constant z, i.e. evaluated along a geopotential surface. That is

and -fv = -~ ap I.
pax z

(1)

A streamfunction, 1/;, is a function of x and y in a particular surface and is constant
along streamlines of flow in this surface. The streamfunction that we require obeys

afu = _ a1/; I
ay su'l

and -afv= _a1/; I 'ax su,1
(2)

I. CSIRO, Division of Oceanography, GPO Box 1538, Hobart, Tasmania 7001, Australia.
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where the subscript surf denotes that the derivative is evaluated by taking changes of if;
in the surface and a[x, y] is an arbitrary function of x and y.

Let the lateral velocity vector, u to the east, v to the north, be written as, V., i.e.,

V. = ui + vj. (3)

If the height of a general surface is 2[x, y], then the lateral gradient operator in this
surface is defined in terms of the corresponding gradient in a geopotential surface by

where

a I . a I .'ilsurf = - I + - J,ax surf ay surf
(4)

a I a I a- =- +2-ax surf ax z x az and (5)

A stream function exists for a particular surface if and only if the lateral divergence of
afV. vanishes in that surface, that is, if

'ilsurf' [afV.] = O. (6)

To date, stream functions have been found useful only when a is either constant or is
equal to p. Appendix A contains a condensed proof (from McDougall, 1988) that a
streamfunction exists for the geostrophic flow in a neutral surface. Following Haynes
and McIntyre (1987), the form of potential vorticity conservation, (6), can be extended
to include the relative vorticity, t, so that 'il•. [(f + nV.] = o.

It can be shown (see McDougall, 1988) that when a is a constant, the divergence,
(6), is zero for any surface that contains the line 'ilp x 'ilp (see Fig. 1). That is, the
normal to the surface in question must be perpendicular to 'ilp x 'ilp. This condition is
satisfied by an isobaric surface, a surface of constant in situ density, p, and by a neutral
surface (McDougall, 1988), since the normal to the neutral surface is simply p-''ilp -
'Y\lp, where 'Y is the adiabatic and isentropic compressibility of seawater. Also, the
normal to a surface of constant steric anomaly, 0 = p-I - (p[35, 0, p])-I, is a linear
combination of 'ilp and 'ilp, and so a streamfunction also exists in the steric anomaly
surface. That is, we know that

'ilp' [fV.J = 0,

'il•. [fV.J = 0

'ilp • [fV nJ = 0,

and 'ila . [fV.J = o. (7)

However, the same is not true of a potential density surface; rather, the corresponding
lateral divergence is

(8)
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Figure 1. A three-dimensional perspective of the intersection of six surfaces (an isobaric
surface, a surface of constant in situ density, a surface of constant potential temperature, an
isohaline surface, a potential density surface, and a neutral surface). The geopotential surface
is not shown but is close to the isobaric surface, although the line 'ilp x 'ilp does not quite lie in
a geopotential surface. The surface of constant steric anomaly, 0, is not shown, but it does
include the line 'ilp x 'ilp, as does the surface of constant pi p.Note that 'ilp x 'ilp does not lie in
a potential density surface.

Here 'ilnp and 'ilnO are the gradients of pressure and potential temperature in a neutral
surface, Ci is the thermal expansion coefficient of sea-water (and ~ is the saline
contraction coefficient), and Rp and J.L are defined by

and
c[Rp - 1]

J.L = [R
p

- c) ,
where c = a(p)j(3(p) .

a(Pr) j ~(Pr)
(9)

Further details may be found in McDougall (1988). The point here is that since the
right-hand side of (8) is nonzero, the streamfunction for the lateral velocity field in a
potential density surface may not be simple to interpret. That is, one would need to
know both a[x, y] and'" [x, y] to evaluate u and v. If one defines a potential vorticity
variable as f divided by the height between successive potential density surfaces, the
right-hand side of (8) contributes a term of magnitude ~flv (here (3 = dfldy) to the
potential vorticity equation, where the error in the northward velocity, flv, can be as
large as 2 mm S-I (McDougall, 1988). This is an indication of the nonconservation of
this form of potential vorticity following a mean streamline in a potential density
surface.

The next two sections present the known streamfunctions in an isobaric surface and
in a steric anomaly surface. Section 4 deals with the streamfunction in an in situ
density surface, while Section 5 is an error analysis of using known streamfunction
expressions (appropriate to other surfaces) in a neutral surface. The error resulting
from using a Bernoulli function based on the vertical gradient of potential density is
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CD= gP = -f d~

and dynamic height = - f 8dp

__ 1__
P = P2

Figure 2. Cross-section through two isobaric surfaces. Streamfunctions are the geopotential,
g'P [x, y], and the dynamic height, - J {)dp.

p surface

addressed in Section 6, while Section 7 derives simple expressions relating the slopes of
the various surfaces.

2. Dynamic height in an isobaric surface
The geopotential, <I>= gz = - f p-1dp, is an exact streamfunction for the

geostrophic flow in an isobaric surface (Gill, 1982). If P [x, y] is the height of an
isobaric surface, the geostrophic equations (I) become (using Eq. 5 and the hydrostatic
balance,pz = -gp).

(11)

(10)fu = -~ ap I = ~ P ap = _ gP = _ a<I>I
p ay. p Y az Y ay p

-fv = -~ ap I = ~ Px ap = -gPx = _ a<I>I
pax. p az ax P

The absolute value of the geopotential on any isobaric surface is not known, but the
geopotential at one pressure is expressed relative to its value at another pressure. If P2 is
the deep reference level, the difference in <I>between the two pressure surfaces, PI and
P2 is (see Fig. 2)

JPII JP2 I<I>(pd - <I>(P2)= - - dp = - dp.
P2 P PI P

(12)

To avoid problems with numerical accuracy in computations, the integrand in (12) is
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Figure 3. Cross-section through an isobaric reference surface, P = Po, and two surfaces of
constant steric anomaly, ~. The streamfunction for the steric anomaly surface is the
Montgomery function, or acceleration potential, 7r = p~ + .kPo ~ dp.

usually replaced by the specific volume anomaly, or steric anomaly, 0, defined by

0= 1
p(S, T,p)

1 -- --p(35,O,p) - p p. (13)

Since the extra term

JP2 ] d JP2] d
- PI p(35, 0, p) p = - PI ~ P (14)

is a function only of the constant pressures PI and P2' it is therefore· independent of x
and y and so the lateral gradient of the integral in (12) is unchanged when 0 is used in
place of p-I. We conclude that the dynamic height, - J 0 dp. is an exact streamfunc-
tion for the geostrophic flow in an isobaric surface.

3. Acceleration potential in a steric anomaly surface

Montgomery (1937) first suggested using the "acceleration potential" function
(which is now also called the Montgomery streamfunction), 7f, defined by (see Fig. 3)

[
PO - [8 d

7f = po + 0 dp = Pooo + P 0,
P ~

(15)

in a surface of constant steric anomaly, O.The vertical integral is evaluated from an
isobaric surface, P = Po, (along which 00varies), to the pressure, p, on the 0 surface of
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concern. The second part of this equation is a geometrical identity, obtained by
integrating by parts.

Differentiating 7r with respect to x along a 0 surface of height .A [x,y], we find

a7r (1 1) ap I (a.A a'Po) 1 ap I
ax = p - ~ ax 6 + g ax - ax + ~ax 6

= ~ ap I _ g a'Po
pax z ax

=fv - fvo,

(16)

so that 7r expresses the difference between the lateral velocity field in the 0 surface and
that in the isobaric surface, p = Po. Similarly,

(17)

and so 7r is the exact streamfunction for the geostrophic flow in the steric anomaly
surface. It is interesting to note that if P -I were used in (15) in place of 0, an error of
magnitude (g2(e2) .A .Ax would occur and that this is equivalent to an error in the
northward velocity, v, of 45 mm/s (see the discussion of Eqs. 21-24 below).

4. Streamfunction for an in situ density, P, surface

Let us take the difference of l{), defined by

(18)

between two surfaces of constant in situ density, P = PI and P = P2, finding (see
Fig. 4)

(19)

(20)

Here 1) [x, y] is the height of a surface of constant in situ density. Taking the
x-derivative of (19) gives

a(l{)1 - l{)2)= ~ apl I + g (1), _ ~ ap21 _ g (1)2
ax PI ax PI ax P2ax P2 ax

_ ~ api I ~ ap21
PI ax z P2 ax z

=fv, = fV2,

as is required of a streamfunction. We conclude that cp, defined by (18), is the exact
streamfunction for the geostrophic flow in a surface of constant in situ density, p. It is
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z = 'D [x,y]

~ ,n= ~ _fdP and
'Y p p'
B = P + pgz

z = 'D 2 [x,y]

Figure 4. Cross-section through two surfaces of constant in situ density, p, showing two of the
streamfunctions that exist in p surfaces.

apparent that the Bernoulli function, B = P + pgz = pcp, is also an exact streamfunc-
tion for the geostrophic flow in a p surface. Instead of using p -I in (18), one could use
[p -I _ 0.00 I] m3 kg-I to avoid numerical errors involved in integrating p -I. This new
variable can readily be shown to also be an exact stream function for the geostrophic
flow in a surface of constant in situ density.

5. Errors in using existing streamfunctions in a neutral surface

Neutral surfaces are defined so that a fluid parcel can be moved small distances in
this surface without experiencing buoyant restoring forces and so without having to do
work against gravity. The lateral gradients of potential temperature and salinity in a
neutral surface are related by the thermal expansion and haline contraction coeffi-
cients, ex and {3; that is ex'ilnO = (3'ilnS. Since lateral motion and mixing are believed to
occur along neutral surfaces, it is natural to seek a stream function in these surfaces.
However, while it has been proved that such a streamfunction exists, it is not yet known
how to write a closed form for it as a vertical integral of some kind, and it is most
unlikely that such a closed form exists. One may imagine using either the acceleration
potential, 7r, of (15), or the expression (18) for cp, but neither expression is an exact
streamfunction for the geostrophic flow in a neutral surface. The errors resulting from
using these two options are investigated here.

Consider first the function cp defined similarly to (18), but now evaluated on a
neutral surface of height N [x, y]. To avoid confusion, the rather clumsy notation, cpn,

will be adopted, so that

cpn = p(N) _ JP(,Nl ~ dp.
p(N) Po p

(21 )
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Taking the x-derivative gives

(22)

(23)

so that the lateral gradient of the difference of cpnbetween two neutral surfaces is

a(cp~ - cp~)= [fv. _ fv2l _ P~ ap I + P~ ap I
ax P I ax nl P2 ax n2

Along a neutral surface the variations of in situ density and pressure are related
through the compressibility, "Y, so that the extra (error) terms in (23) are

_ PI dp I + P2 dp I ~ _ PIl'I ap I + P2 I' ap I
P~ax nl P~ax n2 PI ax nl P2 2 ax n2

2 a.N, 2 a.N2
= -g PI"Y•.N, ax + g P2"Y2.N2 ax (24)

g2 a.N 1 g2 .N 2
=-2.NI-a-+2.N2-a·ci x C2 X

The last line of this equation has used the thermodynamic identity, P"Y = c-2, where c is
the speed of sound in seawater. This substitution has been made simply because c is
more readily found in tables of the properties of seawater than is "Y. For a neutral
surface slope, .Nx, of 10-\ a height, .N, of say, -1000 m, and with c = 1465 m S"I,

g2c-2 .N .N x is of order 4.5 x 10-6 m S-2. Takingf = 10-4 s-1, the error terms in (24) for
each of the two surfaces is equivalent to a northward velocity error, .::lv, of about 45 mm
S-I. Since Nx may take opposite signs of the two surfaces, this error estimate will be
typical of the error in the difference between the two terms in (23). Such an error is, of
course, totally unacceptable. This demonstrates that, while (18) may be the exact
stream function for the geostrophic flow in a P surface, it cannot be used as the
streamfunction in a neutral surface.

Hogg (1987) performed an inverse study of tracer data in the North Atlantic, using
a streamfunction evaluated on two potential density surfaces, each referenced to
1000 db. Since the pressure on each surface in Hogg's study was, on average, within
250 db of the reference pressure, his 0") surfaces closely approximated neutral surfaces.
In his paper, Hogg describes his stream function as in (21) above; that is, a streamfunc-
tion based on p-I, but evaluated in a 0"1surface. However, in fact he replaced p-I with
the steric anomaly (Hogg, 1987; private communication) and so avoided errors of order
45 mm S-I! The next paragraph considers the streamfunction that Hogg actually
used.

Next consider the Montgomery function defined similarly to (15), but now
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evaluated on a neutral surface. Proceeding as above, we find

7rn = p(.N) o(.N) +1Po 0 dp,
p(N)

and

(25)

(26)

The results of Appendix B have been used to replace aplap with (c) -2, and since the
difference between p and p is typically only 3% of the difference between the sound
speeds, this variation has been ignored in obtaining the final line of (26). At a depth of
1000 m and a temperature of 8°C, c = 1498.8 mis, while at the same pressure and at
O°C, c = 1465.5 m/s. With the slope of the neutral surface to geopotentials of \0-4, the
extra term in (26),.N .N Jg21c2 - g2fc2], is 2 X \0-7 m S-2. In mid latitudes wherefis
about \0-4 S-I, this error term corresponds to an error in the northward velocity of
2 mm S-I. The values above have been chosen as typical of the surfaces used by Hogg
(1987). This error of 2 mm S-l is surprisingly large - about twice the mean flow
obtained by Hogg - which indicates that caution must be used in deciding on
appropriate stream functions in various surfaces.

6. Error analysis of the Bernoulli function, g J zapsi az dz
An interesting new method for inverting hydrographic data has been developed by

Killworth (1986). This method uses the ideal fluid result that the Bernoulli function,
B = P + pgz, is constant along mean streamlines in an incompressible fluid, as is the
density, p, and the potential vorticity, q. By drawing p-q diagrams for several casts,
Killworth notes that at the many points where these curves intersect, the Bernoulli
function must be the same on both casts. This requirement is used in a least-squares
scheme to determine the lateral map of the Bernoulli function and hence the lateral
flow field. If the ocean were incompressible (like the data of Cox and Bryan, 1984, that
were used in part of Killworth's study) this method would be exact (subject to the
restrictions of linear dynamics, as with most inverse models). In an effort to
accommodate the compressible nature of seawater, Killworth used isopycnal potential
vorticity, - j(JPof az, evaluated on potential density surfaces, as the potential vorticity
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variable, and an approximate Bernoulli function defined by the vertical integral,

- 11/ apsB = B + g z-dz,
Zo az (27)

which was evaluated on a potential density surface of height R[x,y] where Zo is a
constant reference height. In Section 1 of this paper, it was pointed out that isopycnal
potential vorticity is not conserved in a potential density surface along the direction of
the mean lateral velocity vector. In this section a completely different matter is
addressed; namely, the amount by which B. as defined by (27), is not conserved
following the mean flow in a potential density surface.

Adding and subtracting ZPz to the integrand in (27) leads to

- 11/ 11/(ape ap)B - B = [p + gzp]z dz + g z - - - dz.
Zo Zo az az

The second integral is now integrated by parts, giving

B - Ii = [p + gzps]Z~ - g 171(Ps - p)dz.
Zo

Taking the lateral derivative in the x-direction, the integral term becomes

a (171
(Ps - P)dZ) 11/

Zo =(p -p)R + a(Pe-P)dz
ax s x Zo ax '

(28)

(29)

(30)

and so the lateral gradient of B is

aBI_aB=apl +gpR
x
+gl1/a(p-ps)dz_apl _gZOap~l. (31)

ax PS ax ax PS Zo ax ax Zo ax Zo

The last two terms here are evaluated at z = 20 and are functions of x and y, but not of
z. These terms do not affect Killworth's method since they can be absorbed into the
depth-independent term, Bx. The first two terms on the right-hand side of (31) are
equal to pfv, and the integral in (31) represents the inherent error in using (27) as a
streamfunction. Note that if one wanted B to be approximately pfv - Po/vo, then the
origin of z must be at 20' so that the last term in (31) is zero.

To evaluate the offending integral in (31), an expression is needed for (p - Ps).
Consider the isentropic and adiabatic compression of a water parcel at salinity, S, and
potential temperature, 0, from the reference pressure of the potential density variable,
p" to the in situ pressure, p. During this compression process, the variation of p is
related to the pressure change by dp = P'Ydp, so that

Jp d' Jp I d'p - Ps = P'Y P = [ (S 0 ')] 2 p,
Pr Pr C , , p

(32)
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where p' is the dummy variable of integration. The integration variable may be
changed from dp' to (-gp)dz', using the hydrostatic equation, and the x-derivative of
(32) becomes

a(p - Po) I =1z2~p ac I aOI dz',
ax z z(p,J C ao s.P ax z

(33)

where the following three excellent approximations have been made: (i) the lateral
gradient of z(p,) has been ignored, (ii) the relative variations of p have been neglected
in comparison to those of c, and (iii) the variations of c with Sand p have been ignored
in comparison with the dependence of c on potential temperature. Taking ao/ax Iz to be
3 x 10-6 K m -I as typical of the upper ocean (e.g., a slope of potential isotherms to the
horizontalof3 x 1O-4andOz= 1O-2Km-I),andwithac/aOequalt03.3ms-IK-1,the
integrand in (33) is 6 x 10-11 kg m-5• The error term in the lateral gradient of Bin (31)
is then

lYi a(p - Po) 2 2
g a dz = gx6xI0-11[0.5Jf - 0.5Zo - (Jf - Zo)z(p,)].

Zo x
(34)

At a depth, Jf of -1000 m, and with Zo and z(p,) both zero, (31) is 3 X 10-4 kg m-2

s-\ which is equal to pf Llv, with a northward velocity error, Llv, of about 3 mm S-I.

This error analysis shows that the Bernoulli function as used by Killworth (1986) is
prone to errors because of the compressible nature of seawater. While he has called the
method the "Bernoulli method," it would work with any streamfunction being used in
place of the Bernoulli function. For example, if surfaces of constant steric anomaly
were used instead of potential density surfaces, there would be two immediate
advantages. First, the potential vorticity variable,jOo/ az. or f/ h6 (where h6 is the height
between successive steric anomaly surfaces), is conserved following the mean flow,
assuming that the total velocity vector lies in the steric anomaly surface. Second, an
exact stream function is known for the geostrophic flow in these surfaces; namely the
Montgomery function.

7. Geometry of the various surfaces

The reason for seeking a streamfunction in a particular surface is to capture the
spreading and mixing of water masses in this surface. By choosing the correct
"density" surface one hopes that the streamlines will not only represent the direction of
the lateral components of the the three-dimensional velocity field, but that the total
velocity vector will lie close to one's surface, thus making the two-dimensional
streamlines in this surface an approximation to the flow directions of the full
three-dimensional flow. Apart from the very small dianeutral advection velocities
caused by vertical mixing processes, the surfaces in which the lateral movement and
mixing of water parcels occur are neutral surfaces (McDougall, 1987a). Potential
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density surfaces and surfaces of constant steric anomaly approximate neutral surfaces
to varying degrees.

In this section the slopes of the surfaces considered above are investigated to discover
the degree to which these surfaces approximate neutral surfaces. Beginning with the
surface of constant in situ density, and regarding the in situ density to be a function of
salinity, potential temperature and pressure (rather than of S. T and p), the
two-dimensional spatial gradient of p in a p surface can be expressed as

(35)

The lateral gradient operator in the neutral surface can be related to that in the p
surface by (from (5»

(36)

(37)

Re-expressing the lateral gradients in (35) in terms of the epineutral gradients, and
using the fact that Oi'iliJ = {3'ilnS, we find that

['iln.N - 'ilp2J]x [:2 - I'P.] = - I''ilnP.

(38)

This relationship between the tangent of the angles between (i) a neutral surface and
an isobaric surface, and (ii) an in situ density surface and an isobaric surface, is
illustrated in Figure 5. In the upper ocean where N2 is larger than g2/ c2

"" (4.3 x 10-5

S-2), the slope of the neutral surface is similar to that of the p surface, but in the deep
ocean where N2 is only 1% of g2/ c2, the slope of the neutral surface will be 100 times
that of an in situ density surface. At a depth of 1000 m, where N2 is about 10-5 S-2, an
in situ density surface has only one fifth of the slope of the neutral surface. It is
apparent that a p surface is a very poor approximation to a neutral surface. It is
interesting to note that a totally incompressible float (this is an approximation to a
SOF AR float) moves around the ocean on a surface of constant in situ density.

Next, the slope of a surface of constant steric anomaly is examined by taking the
lateral derivative of steric anomaly in a {j surface,

(39)

and the first lateral gradient is expressed in terms of the epineutral gradient of p, while
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(a)

(b)

8 = constant

neutral surface

p = constant

p = constant

10\9 alo09VS, V9

Po = constant

neutral surface

8= constant
(Vn1l[-VsS)'dt

S = constant ~_

Figure 5. (a) Cross-section showing the relative slopes of four surfaces that all intersect along
the line 'Vp x 'Vp. This vector points directly into the page. The two-dimensional vector, dl, is
the horizontal line element, dxi + dyj + Ok.The relative slopes are drawn appropriate to a
pressure of about 1000 db; this is, the slopes (with respect to the isobaric surface) of the p and Ii
surfaces are 25% and 125%, respectively, of the slope of the neutral surface with respect to the
isobaric surface. (b) Cross-section showing the relative slopes of a potential density surface, a
neutral surface, a potential isotherm, and an isohaline surface.
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the second gradient is expressed in terms of the isobaric gradient of p using (from 5)

and

This procedure leads to

d
"iJp = "iJ6 + ["iJp1> - "iJ6.A] x dz

x,y

(40)

[
llc2 g21c2]

["iJn.N - "iJp 1>] = ["iJ6.A - "iJp 1>]x 1 + N2 - 7' (41)

Taking N2 to be 10-5 S-2, the sound speed, c, of 1498.8 mls appropriate to a
temperature of 8°C and a pressure of 1000 db, while at O°C, cis 1465.5 mis, the square
bracket in (41) is 0.8, implying that the steric anomaly surface has a steeper slope with
respect to isobars than does the neutral surface by 25%, Deeper in the water column,
the situation becomes worse. (Note that the large square bracket in (41) is equal to
pgN-2iJoliJz,)

The relative slopes of these surfaces are sketched in Figure 5(a). All meet along the
line in three-dimensional space, "iJp x "iJp. Not shown in this figure are the gcopotential
surface, z = constant, and a potential density surface, because neither of these surfaces
includes the line "iJp x "iJp. For many purposes, the geopotential and isobaric surfaces
may be considered coincident, while the potential density surface intersects the neutral
surface along the line "iJS x "iJ8 (see Fig. 1). A potential density surface that is
referenced to a pressure more than 1000 db different to the in situ pressure, will often
slope quite differently to that of the neutral surface (McDougall, 1987b).

To compare these slopes with those of other relevant surfaces, Figure 5(b) shows a
section in three-dimensional space normal to "iJS x "iJ8 along which potential density
surfaces, neutral surfaces, isohaline surfaces, and surfaces of constant potential
temperature intersect. The slopes of these surfaces are related by (see McDougall,
1988 for the derivation of these equations),

(42)

where 'T[x, y] and ~[x, y] are the heights of the surfaces of constant potential
temperature and salinity, respectively. Rp and JL are defined in Eq. (9). Taking a value
for JL of 1.5 at a pressure, (p-p,), of 1000 db, and a slope between the neutral surface
and the potential isotherm of 10-4, gives a slope between the potential density surface
and the neutral surface of 0.5 x 10-4

•
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Table 1. Stream functions in various surfaces.

Surface

Geopotential surface,
z = constant

Isobaric surface,
p = constant

Steric anomaly surface,
{)= (lip) - (liP) =

constant

In situ density surface,
p = constant.

Surface of constant pi p

Neutral surface,
IIp 'V.P = "f'V.P

Potential density surface,
PB (or 0',) = constant

Lateral divergence

'V2 • (pIV.) = 0, but
'V2 • ([V.) * o.
'Vp' ([V.) = 0

'Vp • ([V.) = 'Vp • (pfV.) = 0

'V•• ([V.) = 0

'V•• ([V.) * 0

Known streamfunctions

Pressure p is the streamfunc-
tion for pIV •.

(i) Dynamic height,-f {)dp,
(ii) Geopotential,

gP[x,y] = - f dplp·

Montgomery function = ac-
celeration potential = 7r
=po - f odp.

(i) Streamfunction for fV. is
<P =J1lp - f dplp ==
_j plp2 dp.

(ii) Streamfunction for piV.
is B = P + pgz = p -
p f dplp·

Streamfunction exists, but as
yet, an expression for it is
not known.

Streamfunction exists, but as
yet, an expression for it is
not known.

No useful streamfunction ex-
ists.

8. Discussion
The principal message of this paper is that one must be very careful when selecting a

stream function for the lateral velocity in a compressible fluid. Table I lists all the
known stream functions in several different surfaces. Note that in two cases there are
more than one known streamfunction. Although a streamfunction is known to exist in a
neutral surface, we do not have a closed expression for it. By contrast, a potential
density surface does not possess a useful stream function (i.e. one from which the lateral
velocity components can be readily calculated).

As oceanographers, we are grappling with the first-order dynamical balances of the
ocean circulation, and tend to think that the subtle nonlinearities of the equation of
state are not of prime importance. However, for the evaluation of streamfunctions,
these rather esoteric nonlinear terms are surprisingly important. For example, in
Sec~ion 5 it was shown that using the Montgomery function in a neutral surface often
causes a velocity error of 2 mm S-I, despite the fact that the slope of this neutral surface
is within 25% of that of the surface of constant steric anomaly in which the



282 Journal of Marine Research [47,2

Montgomery function is an exact streamfunction for the geostrophic flow. To use the
Montgomery function while keeping the velocity error below 0.5 mmls, one would
need to use a surface that differed in slope from a steric anomaly surface by less than
5 x \0-6. Similarly, the approximate expression for a Bernoulli function based on a
vertical integral of z times the gradient of potential density was shown to lead to errors
of about 3 mm S-1 in the horizontal velocity. These velocity errors are as large as the
mean flow in quiet regions of the ocean at depths of about 1000 m. Inverse methods can
sometimes determine the mean flow with rms uncertainities of about this magnitude,
although much work remains to understand the reasons for the much larger errors that
often occur in energetic flow regimes. For example, Killworth and Bigg's inversions of
Cox's eddy-resolved general circulation model data gave mean velocities with an rms
uncertainty of 2 mm S-I in the relatively quiet Eastern Atlantic, but with uncertainties
of about 13 mm S-I in the more active regions such as the Gulf Stream extension and
the homogenized mid-gyre regions (see their Figures 3, 8 and 13).

Of the surfaces discussed in this paper, the steric anomaly surface has much to
recommend it. Linear potential vorticity (based on the height between steric anomaly
surfaces, i.e. based onfaolaz. not onfN2) is conserved in this surface, the Montgomery
function is an exact stream function for the geostrophic flow, and this surface is as close
to a neutral surface as any other in common usage. This closeness can easily be further
improved by forming a steric anomaly variable based on constant values of salinity and
temperature that are the area-averaged values, Sand T, for the surface under
consideration. The new "local" steric anomaly would be defined by

o = 1
p(S,T.p)

1
p(S. T,p)"

(43)

The Montgomery streamfunction, (15), is exact in the 0 surface, no matter what
constant values are taken for Sand T in the definition of the steric anomaly variable.
So long as these values are fixed during each individual vertical integration from the
reference pressure, Po, different values could be used for the different surfaces in which
stream functions are evaluated. If the temperature changed by, say 1°C in the region of
interest on such a surface, the estimate for the difference in slopes between this surface
and a neutral surface is an eighth of that given following Eq. (41); that is, at a depth of
1000 m, one would expect these surfaces to differ in slope by only 3%. This suggests
that a careful and flexible definition of steric anomaly may prove to be a workable
solution to some of the annoying problems caused by the nonlinear nature of the
equation of state.
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APPENDIX A

A streamfunction exists in a neutral surface

In a steady state, the vertical velocity past geopotentials, w, and the dianeutral
velocity, e, are related by

where Vn is the two-dimensional lateral velocity vector (see (3» and .N[x,y] is the
height of a neutral surface. Vertically differentiating (A I) and using the thermal wind
equation, we find that

(A2)

where h is the height between closely-spaced neutral surfaces. The continuity equation
is

Vn• V7n[ln(h)J + V7n • vn + ez = o.

Combining the linear vorticity equation, {j/fv = w" with (A2) and (A3) gives

so that a streamfunction exists in a neutral surface.

APPENDIX 8

(A3)

(A4)

Evaluation of ap/ ap
The adiabatic and isentropic compressibility of seawater, 'Y,is defined by a pressure

derivative at constant salinity and potential temperature, 8, and is related to the in situ
density and the sound speed by

(81)
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(B2)

From the calculus of variations we find that "( is related to the derivative at constant
salinity and in situ temperature, T. by (see McDougall, 1987a, Eq. 11)

1 ap I 1 ap I a 0 I
"(=;ap s.o=;ap S.T +cxap S.T<

Now 'P = p (35, T = 0, p) is a function of pressure alone and its derivative is equal to
ap/apIS.T at S = 35 psu and T = O°C, so that

1 a'P 1 ap 1 ap ao
----- -cx(35,O,p)-
'Pap pap S-35,T-O pap S,o ap S-35,T-O

ao
= "(35, O,p) - cx(35, O,p) a

p S-35,T-O

(B3)

Here () is the potential temperature (with a reference pressure of 0 db) of the fluid
parcel at S = 35 psu, T = O°C, and at the in situ pressure, p. At this temperature, a '"
0.8 X 10-4 K-1 and ao/ap ~ -5 x 10-5 K (db)-l = 5 X 10-9 K (pa)-I (Gill, 1982
Appendix 3), so that 1/'P a'P/ap differs from the compressibility of the p fluid parcel by
just 4 X 10-13 (Pa)-', This is about 0.1 % of "(35,0, p) and so can be ignored for our
purposes, (By way of comparison, aloe change causes the compressibility of seawater
to change by about 0.6%.) We conclude that ap/ap is very well approximated by (l')-2,
where l' is the sound speed at S = 35 psu, T = O°C, and at the in situ pressure, p.
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