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Critical control of zonal jets by bottom topography
by Larry J. Pratt I

ABSTRACT
The nonlinear influence of isolated topography on an equivalent barotropic, quasigeostrophic

jet is considered. The flowdepends on several dimensional parameters including the mass flux Q,
the mean layer thickness H, the planetary potential vorticity gradient fJ, the inertial boundary
layer thickness (UO/fJ)1/2 and a parameter a - c measuring the north-south potential vorticity
difference across the jet. Eastward jets can achieve one of two steady forms, the first
supercritical and the second subcritical with respect to upstream propagation of a long potential
vorticity wave. An isolated topographic feature such as a ridge can cause the jet to undergo
transition from subcritical to supercritical flow and thereby achieve a steady state analogous to
hydraulically controlled open channel flow. In a critically-controlled state the values of Q, a-c,
H, and (uo/{J)1/2 cannot be specified independently of the topographic parameters and the
topography thereby exerts an 'upstream influence' which is felt by the general circulation of the
ocean as a whole. Critically-controlled states also experience topographic form drag, whereas
noncontrolled states experience none. The form drag is determined by the upstream potential
vorticity distribution of the flowand the critical jet width, suggesting that this type of drag might
be estimated in practice by a combination of hydrographic data and satellite imagery. The
Antarctic Circumpolar Current is discussed as a possible example.

1. Introduction
The surface of the earth and ocean bottom are marked by numerous mountain

ranges, ridges, and seamount chains which exercise various degrees of influence on the
atmospheric and oceanic circulation. A fundamental question is whether this influence
is purely local in nature, involving disturbances which are confined to the immediate
vicinity of the topographic feature, or whether the influence can be felt throughout the
general circulation as a whole. This paper discusses one mechanism, namely critical
control or 'upstream influence' by which a global influence can be exercised. The
mechanism involves potential vorticity wave dynamics and applies over horizontal
scales much larger than those associated with the familiar critically-controlled,
gravitationally-driven flows of classical hydraulics.

The calculations presented herein are motivated by the work of Armi (1974,
1989a, b) showing that an eastward jet, separated from the (motionless) far field by
shear layers, can possess two forms or 'conjugate states' for a given flow rate and total
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energy. When the parameter Uj{3a2
= 1 the conjugate states are identical. (U is the

maximum velocity, a is the jet half-width, and (3 is the planetary potential vorticity
gradient.) The flow is thereby analogous to open channel flow where two conjugate
states, one subcritical and the other supercritical with respect to long gravity waves,
arise for a given flow rate and Bernoulli function. When the Froude number of the flow
is unity, the conjugate states are identical and the flow is critical, as at a point of
hydraulic control. Armi (1989a) is able to establish a critically-controlled jet by
circulating fluid through a rotating laboratory annulus and observing that Uj{3a2 = 1
near the point of withdrawal and <l upstream.

These findings suggest that oceanic and atmospheric jets might be subject to critical
control by topographic features such as ridges and mountain ranges. The purpose here
is to place this idea on firmer ground by presenting a deductive model describing the
nonlinear influence of bottom topography on an idealized, quasigeostrophic jet. The
calculations herein differ from those of Armi (1974, 1989a, b) in the following
respects: First, topography is explicitly included, allowing computation of the along-
stream structure of the jet as it flows over ridges or seamounts. Second, it is shown by
direct calculation that long waves are stationary (the flow is critical) at the point of
merger of conjugate states. Finally, potential vorticity is conserved along all stream
lines, whereas this is not necessarily true in Armi's calculations.

The solution technique employed is similar to that used by Fofonoff (1954) in his
discussion of free inertial modes in closed basins and Charney (1955) in his inertial
model of the Gulf Stream. Specifically, the geostrophic potential vorticity equation for
a constant density layer is integrated by specifying potential vorticity along stream
lines in accordance with an assumed upstream distribution. The functional relationship
used by these authors is enriched here by introducing potential vorticity fronts,
allowing a jet-like velocity distribution. Section 2 describes the jet-like flow that forms
when two potential vorticity fronts separated by a distance AL are present. In Section 3
a critical condition for the jet is established by calculating the value of AL at which
long waves become stationary. The next section details a specific calculation describing
the interaction of the jet with a ridge and the corresponding conjugate states. It is
shown that critically-controlled states can occur, with subcritical flow upstream and
supercritical flow downstream of the ridge, provided that certain necessary conditions
are met. Among these are, first, the mass flux between the fronts must be eastward;
second, the ridge elevation must equal or exceed a certain minimum value at the
crossing point of the jet; and third, the ridge elevation must vary in the longitudinal (or
cross stream) direction. The form drag exerted against the critically-controlled flow by
the ridge is calculated. Finally, Section 5 discusses the Antarctic Circumpolar Current
(ACC) as a possible example of a critically-controlled, jet-like flow. Specifically, I
point out that the geometry of the dynamic height contours near topographic feature
such as the Kerguelen Plateau, Macquarie Ridge and possibly the Drake Passage
resemble the streamline patterns characteristic of a critically-controlled flow. In
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addition, estimates of an appropriately defined Froude number at and upstream of
Drake Passage give the magnitudes required for critical control.

At this point it is instructive to review the reasoning behind the expectation that
critically-controlled states will arise in nature. Consider the effect of suddenly
removing a barrier at x = 0 which dams a reservoir of resting, nonrotating fluid
occupying x < O. Under the influence of gravity the fluid will accelerate and spill
outward to fill the void. This acceleration ceases, however, when the flow reaches the
critical speed at some location, in this case x = O. At this point in time, signals from
downstream can no longer propagate back into the reservoir and the fluid there lacks
information that would trigger further time-dependent adjustment. (The solution to
this problem is described in Stoker, 1957.) In summary, the signal propagation which
triggers time-dependent adjustment favors the establishment of a flowwith supercriti-
cal flow downstream and subcritical flow upstream of some 'control point'. Parallel
processes act in many other types of fluid systems, providing a strong precedent for
larger scale geophysical flows. In fact, Gill and Schuman (1979), Hughes (1985,1986,
1987), and Luyten and Stommel (1985) have suggested that oceanic boundary
currents such as the Gulf Stream and Agulhas can be critically-controlled. Hughes
(1979, 1981) has also identified multiple conjugate states in models of the equatorial
undercurrent.

Finally, it should be noted that many previous analytical studies of nonlinear flow
over isolated, mesoscale topography [e.g. Pierrehumbert (1985), Pierrehumbert and
Wyman (1985), Merkine (1975), Jacobs (1964), and Robinson (1960)] assume
uniform potential vorticity. Upstream effects due to the topography can be transmitted
by internal gravity waves, but the spatial extent of these effects tends to be limited by
rotation (Pierrehumbert and Wyman, 1985). Topographically forced flows with finite
potential vorticity gradients have also been treated [e.g. Porter and Rattray (1964),
McIntyre (1986), Clark and Fofonoff (1969), McCartney (1976), and Davey (1980)].
In all cases the flow is assumed to be initially uniform or uniform far upstream of the
topographic feature and topographic effects are confined to the immediate vicinity or
the lee of this feature. Only in cases of periodic upstream and downstream boundary
conditions are permanent disturbances observed upstream of the topography. The
novelty of the present model rests in the jet-like velocity distribution imposed upstream
of the topography. Jets give rise to wave modes not present in uniform flows and it is
well known, for example, that symmetric jets allow symmetric (or varicose) modes.
These modes are associated with widening and narrowing (rather than meandering) of
the jet and are solely responsible for upstream influence in the present problem.

2. The model
The starting point of the investigation is the steady quasigeostrophic potential

vorticity equation for a single layer (or equivalent barotropic, two layer) ocean or
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atmosphere. Following the notation of fedlosky (1987, Eq. 3.13.4) this equation can be
written

where

\121/; - F1/; + 'l'/B + fJy = G(1/;) (2.1)

a2 a2
\12=_ +_

ax2 ayl

1/; = '1'/* /fFH (the dimensionless stream function)

'l'/B = 'I'/:/fH (the dimensionless bottom elevation)

fJ = {3*L2/U (the dimensionless planetary potential vorticity gradient)

(X ) = (x* *)L (the ~imensionless eastward and northward cartesian
, y , Y coordmates)

(u, v) = (u*, v*)U (the dimensionless eastward and northward velocities)

and G(1/;) represents the dimensionless potential vorticity. The dimensional scales U, L,
and H represent typical horizonal velocity, horizontal length, and layer depth, and g
and f are the gravitational acceleration and Coriolis parameter. The dimensional
variable '1'/* represents the free surface elevation or, in the case of an equivalent
barotropic lower layer, the interfacial elevation. The Rossby number f = U/fL is «1 in
the quasigeostrophic approximation whereas F = f2 L2 / gH will remain arbitrary.

The bottom elevation is assumed to have the separable form

'l'/B = .N(x)S(y)

with .N(x) - 0 as Ixl- 00, as for an isolated bump or ridge. With this choice (2.1)
becomes

\121/; + .N(x)S(y) + fJy = G(1/;) + F1/;. (2.2)

I also assume that the potential vorticity G(1/;) is determined by processes occurring
far upstream of the topography which are not explicit in the present model. Therefore,
one may pre-specify G(1/;) and calculate the resulting flow for various topographies by
solving (2.2). Here, the pre-specification is based on the requirement that the flow be
jet-like and nearly zonal. Hence, I require that u = - Uo and v = 0 as Iy I -. 00 and
1x 1- 00 (i.e. away from the core of the jet and the topography). Setting .N = \121/; = 0
in (2.2) leads to

(3y = G(1/;) + F1/;

and differentiating this expression with respect to y gives

-G'(t/;) = -({3/uo) + F.
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The first requirement then is that G'(t/;) approach a constant value2 away from the jet
and the topography.

The choice of G(t/;) within the core of the jet can be motivated by noting that zonal
jets like the Gulf Stream east of Hatteras possess intrinsic potential vorticity gradients
much stronger than (3*. For example, Hall (1985) shows that the maximum potential
vorticity gradient in the upper Gulf Stream near 68W is approximately 50 times larger
than the planetary potential vorticity gradient. These strong features are a conse-
quence of the funneling effect of major zonal jets whereby fluid parcels originating
from widely separated latitudes can be brought into close proximity. In the present
model I attempt to mimic these local gradients by introducing discontinuities in the
value of G across certain streamlines. Specifically:

(2.3)

where

la y > LI(x)

{)= b L2(x) <y < LI(x)

c y<L2(x)

The flow is thus divided into three regions (I, II and III), each containing the same
potential vorticity gradient but each having a different 'background' potential vorticity
(= a, b, or c). The regions are separated by potential vorticity fronts coinciding with
the streamlines aty = L.(x) and y = L2(x) across which G(t/;) is discontinuous, but u, v,
and t/; are continuous. A definition sketch is shown in Figure 1.

It is further assumed that the topography and flow have a 'long wave' character,
meaning that the scale of variation L in the x-direction is always much greater than the
y-scales L. - L2, /iii /f, etc., and that the x-velocity scale is much larger than the
y-velocity scale. Denoting by E a typical ratio of the former to the latter, the continuity
equation (au/ax + av/ay = 0) suggests that v should typically be smaller than u by a
factor E. The relative vorticity term av/ ax is therefore smaller than auf ay by a factor E

2
,

and ":;J2t/; may be replaced by t/;yy + 0(E2). Doing so in (2.2) and substituting (2.3) for
G(t/;) leads to the approximate equation

(2.4)

where

2. This argument is equivalent to those used by Fofonoff (1954) in his discussion of free inertial modes in
closed basins and by Charney (1955) in his model of the Gulf Stream. Both use constant G'("').
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Figure I. Definition sketch showing potential vorticity fronts at y = LI and y = L2 and velocity
profile for the case ex = I, a - b = 6.5, b - c = 1.5, {J = .25, and .N = O. The abscissa
represents both the x-axis and the velocity scale.

As will be seen presently, the long wave approximation eliminates wave dispersion
and therefore expunges lee waves from the problem.

It is assumed that all steady flows have been established as the result of adjustment
from some simple initial state having continuous velocity. Conservation of potential
vorticity then implies that the velocity remains continuous at all times and this is used
as the matching condition across the two fronts. This condition is uneffected by the
long wave approximation. The solution to (2.4) satisfying the condition of velocity
continuity and for which t/; remains bounded as /yl- 00 is

!
(2li)-I[(b - c)e-w1L + (a - b)]e-a(y-L,) + a-2[,By +.N D - a] (y > L1)

t/; = (2a2)-1 [(b - a)e-a(L,-y) + (b - c)e-a(y-L,)] + a-2[{jy +.N D - b] (L2 <y <L1) (2.5)

(2a2)-1 [(b - a)e-w1L + (c - b)]e-a(L,-y) + a-2[,By +.N D - c] (y< L2)

where LiL(x) = L1 - L2 and D(y) satisfies

(2.6)
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U = -1/Iy = (2a)-1 [(a - b)e-a1y-L,I + (b - c)e-a1y-L,I] - Uo - a-2 .ND' (2.7a)

v = 1/Ix= (2a)-1 [(a - b)e-a1y-L,IaL./ax

+ (b - c)e-aIY-L,laL2/aX] - a-2 .N'D. (2.7b)

Eq. (2.7a) shows that the zonal velocity is composed of a westward background
component uo, a component related to the y-variation of the topography and two
components which decay away from the potential vorticity fronts. The latter are
proportional to the potential vorticity jumps across the fronts. The decay scale a-I =

(UO/{J)1!2 is identical to the inertial boundary layer thickness in the Fofonotf (1954)
and Charney (1955) problems. Figure 1 shows a sample velocity profile for a purely
zonal flow (.N = 0) with {J = .25, a = 1, (a - b) = 6.5, and (b - c) = 1.5.

3. Critical flow
Steady flows such as that of Figure 1 are able to support linear wave modes due to

the presence of the restoring mechanisms associated with the (J-etfect and the potential
vorticity jumps. I now attempt to identify conditions under which the phase speed c of
any long wave mode vanishes. Consider a small perturbation 1/1' = Re[A e1k(X-(t)] of a
basic state described by 1/1 = ~. Although long wavelengths are assumed, the
topographic term .N(x) is assumed to vary on an even longer scale, so that the
x-dependence of ~ and .N is merely parametric. Substituting 1/1 = ~ + 1/1' into the
time-dependent quasigeostrophic potential vorticity equation, linearizing, and neglect-
ing O(k2) terms leads to

(U(y) - c)(d2A/dy2 - FA) + «(3+ .ND' + FU - d2 U/dy2)A = 0 (3.1)

where fj = -dif;jdy (cf. Eq. 7.14.b in Pedlosky, 1987). Away from the potential
vorticity fronts the basic potential vorticity gradient is given by

dG/dy = ({J + .ND' + FU - Uyy) = (a2
- F)U (3.2)

in view of (2.1). Combining (3.1) and (3.2) leads to the alternative normal mode
equation

(3.3)

At the potential vorticity fronts I demand that A be continuous, leading to the
linearized matching condition

[A]~ = 0 (3.4)

where [V]~ denotes V(y+) - V(y-) at the designated values of y, and LI and L2 may
be regarded as the positions of the potential vorticity fronts in the basic state.
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Integration of (3.1) across each front and use of (2.3) and (3.2) then gives the
additional matching conditions

[U - c][dA/dy]~ + (a - b)A = 0

[U - c][dA/dy]~ + (b - c)A = 0

(3.5a)

(3.5b)

(3.6)

The object now is to search for a basic state such that c = 0 is an eigenvalue of
(3.3)-(3.5). Setting c = 0 in (3.3) leads to d2A/ dy2 - a2 A = 0, and the solution which
decays at Iy I = 00 and satisifes (3.4) can be written

[

( Cl + C2eaM.)e-a(y - L,) (y > LI)

A = C1e-a(y - L,) + C2ea(y-L,) (L
I

> Y > L2)
(C]eaM. + C2)ea(y-L,) (y < L2)

Applying (3.5 a, b) with c = 0 leads to

(a - b)C. + [(a - b) - 2aU (LI)]eaLlLC2 = 0
[(b - c) - 2aU (L2)]eaLlLCl + (b - c)C2 = O.

(3.7)

To obtain nontrivial solutions the determinant of the coefficients of C1 and C2 must
be set to zero. Doing so and substituting for U using (2.7a) leads to the following
condition for stationary waves:

2a-I[j3 + NeD' (LIc)][j3 + NeD' (L2c)]
= l(b - c)[j3 + .NeD' (L2c)] + (a - b)[j3 + NeD' (Lie)]) e-adLe. (3.8)

The subscript c is used to denote 'critical' values of the variables, i.e., those values at
which the linear phase speed is zero. This usage should not be confused with the usage
common in instability theory where 'critical' refers to a stability threshold.

4. Critically-controlled states
There are a number of ways of representing the steady states possible for given

topography. One of the most instinctive representations is in terms of the flow rate Q in
Region II:

in view of (2.7a). I will call flows having Q> 0 eastward jets and flows having Q < 0
westward jets.

Now consider the example of flow over an isolated ridge with elevation which
increases linearly in the y-direction: S = So + sy. From (2.6) the corresponding forcing
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term is D(y) = So + sy and substitution in (4.1) leads to the following single equation
for ~L(x):

Y2 (a - c)(l - e-aM.) - {3~L - a2Q
s.N = ------------.

~L
(4.2)

For each value of the topographic parameter s.N, (4.2) determines (possibly many)
values of the jet 'width' ~L. In physical terms, s.N is the northward slope of the
topography and is therefore a measure of the topographic potential vorticity gradient.
As a fluid parcel passes the ridge, it experiences a changing ambient potential vorticity
gradient due to the variations in s.N, forcing ~L to change.

The critical condition (3.8) reduces to

(4.3)

for the present choice of topography. Critical flow can thus exist if an ambient
potential vorticity gradient exists as provided by {3or the bottom slope s. In addition,
the ambient potential vorticity gradient must be smaller in magnitude and of the same
sign as the equivalent intrinsic potential vorticity 'gradient' a(a - c)/2; that is,

In dimensional terms, this requirement can be written

2(uU (3*) 1/2 [{3* + fiJ(71:! H)c/ ay*] 1
0$-----H-(-a-.---c-.-)---- $ (4.4)

where the star superscript denotes dimensional versions of previously-defined quanti-
ties.

The simplest way to illustrate the dependence of ~L upon .N is to plot the right-hand
side of (4.2) and locate its intersections with the horizontal line s.N, as done in
Figure 2. Note that

s.N' (~L) = (~L)-2 {a2Q - 1/2 (a - c)[l - (1 + a~L)e-aM.])

so that extrema occur when

2 2Q
( a ) = 1 _ (1 + a~L)e-aM.
a-c

(.N'(~L) = 0) (4.5)

Elimination of Q between (4.2) and (4.5) leads to an expression for the value of s.N
at the extrema:

(4.6)

Comparison with (4.3) shows that (4.6) is just the critical condition for DoL, and the
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Figure 2. Solution curve showing soN as function of t:.L for Q = ex = (3= 1, a - c = 8.

subscript c has been introduced accordingly. Thus, extrema in the sN(AL) curve occur
when the flow is critical.

The right-hand side of (4.5) increases monotonically from zero to unity as /)'L goes
from zero to 00 and therefore one critical value of /)'L exists provided that

2a2 Q
0=5( ) =5 1,a-c

otherwise critical flow is not possible. In dimensional terms the above requirement can
be written

2 Q*
0=5 H2(uU{3*) (a* _ c*) =5 1 (4.7)

where Q* is the dimensional volumetric flow rate. It will be shown later that (4.7) is a
necessary condition for the existence of any solution, controlled or otherwise. The
physical interpretation is that the geostrophic mass flux cannot exceed a value
determined by the difference in layer depth across the jet implicit in the potential
vorticity difference.

If one further observes from (4.2) that sN(I1L) -- -00 as I1L-- 0 and sN(I1L)--
-(3 as AL -- 00, then the salient characteristics of the solution curve are known.
Figure 2 shows the solution curve for the case Q = 1, a = 1, (a - c) = 8, (3 =, 1. The
curve has a single maximum at I1Le = .96 and sNe = 0.53. I will refer to flows having
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(4.9)

t:..L < t:..Le as supercritical and those having t:..L > t:..Le as subcritical in the anticipation
that only the latter will permit upstream propagation of the controlling linear wave
mode. This hypothesis is based on the simple observation that smaller values of t:..L
must correspond to larger mean eastward velocities in order to conserve the flow rate
Q. Thus, the eastward advective tendency grows as the t:..L decreases. In addition, the
subcritical states observed in the Armi (l989a) experiment corresponded to widths
greater than the critical width. These considerations suggest categorization of the flow
according to a (3 - Froude number (or 'FroudejRossby number,' as labeled by Armi,
1989a), defined by

a(a - c)e-aM. H(a* _ c*)e-4L·/(u~/fj·)1/2

Ffj = 2«(3 + sN) = 2(uN(3*)1/2 [(3* + j'a(1/*jH)jiJy*] (4.8)

The flowis thus supercritical, subcritical or critical according as Ffj > 1,Ffj < 1, or Ffj =

1.
The two values of t:..L or 'conjugate states' corresponding to flow far away from the

topography lie at the two intersections of the solution curve with the sN = 0 axis. In
Figure 2, the subcritical value has been labeled t:..Lu and the supercritical value t:..L,. In
order for these solutions to exist at all, the solution curve must have a maximum
(already guaranteed by 4.7) lying above the t:..L axis, i.e. sNe must be positive.
According to (4.6) this requirement is equivalent to a(a - b)e-aM.e > 2(3which, in
turn, can be satisfied only if a(a - b) > 2(3,or

2(U~j(3*)1/2 *
H(a* _ b*) (3 < 1.

In summary (4.7) and (4.9) may be regarded as necessary conditions for the existence
of the eastward flowingjet, controlled or otherwise.

Now suppose that the upstream flow is subcritical, t:..L = t:..Lu, and that the
topography consists of an isolatged ridge with Nmax less than .Ne• An observer
approaching the ridge from the west will see that t:..L decreases from t:..Lu as .N(x)
begins to increase. When the crest of the ridge is met (point P in Fig. 2) t:..L has reached
its minimum value; proceeding farther east causes t:..L to increase until the value t:..Lu is
reached. In this subcritical solution the upstream and downstream values of t:..L are
identical. A similar scenario is possible when the upstream flow is supercritical
(t:..L = t:..L,) with t:..L initially increasing, then decreasing to its upstream value as the
ridge is passed.

If Ne = .Nmax, t:..Lcan pass from the subcritical to supercritical branch of the solution
curve or vice versa. When the upstream state is subcritical, t:..L = t:..Lu, the jet width
decreases continuously as the topography is passed and t:..L -+ t:..L, far downstream. In
this state upstream wave propagation is allowed upstream but not downstream of the
ridge crest, and the flow is critically-controlled. The opposite case (supercritical flow
upstream and subcritical downstream) is also possible; however, this arrangement in
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the hydraulic analog is unstable at the crest of the obstacle.3 In the present model it is
expected that the expansion from supercritical to subcritical flow will involve some
turbulent or wave-like transition analogous to a hydraulic jump.

A topographic depression (N < 0) with a southward slope (s < 0) can also exert
critical control in the manner described above. However, if Nand s have opposite
signs, as in a northward sloping trough, 6.L must lie outside the interval 6.L, < 6.L <
6.Luand no critical control is possible. Also if the topography has no y-structure (s = 0)
then 6.L remains fixed at its upstream value 6.Luor 6.L, for all x and critical control is
expunged. The physical interpretation is that the topography is no longer able to alter
the ambient potential vorticity gradient and thereby induce the varicose changes
necessary to achieve the desired critical width. In summary, it is necessary that

sNmax> 0 (4.10)

for critical control.
If the flow is westward (Q < 0 for (3> 0) then the solution curve in Figure 2

asymptotes to positive sN as 6.L - O. Since the curve possesses at most one extremum
it can cross the 6.L axis only once in this case. Hence, the upstream and downstream
values of 6.L are always identical and no critical control is possible. In this case (or the
case sNmax < 0, Q> 0) an apparent example of complete flow blockage can be found.
Consider the case (sNmax < 0, Q> 0) and suppose that the upstream value of 6.L is
subcritical and that -sNmax > {3.To construct a solution over the topography one
follows the solution curve (Fig. 2) to the right of 6.Lu. As -sN increases so does 6.L
until the value -sN = (3 is reached, at which point f1L becomes infinite. The physical
explanation is that the total ambient northward potential vorticity gradient vanishes
and the fronts turn and move along lines of constant eastward potential vorticity
gradient. This description is somewhat speculative, however, since the long wave
approximation is violated where f1L - 00.

Once f1L(x) is determined the individual frontal positions L1(x) and L2(x) can be
computed from LI = L2 + f1L and

The latter is obtained by evaluating (2.5) at y = L2• Note that even when 6.L remains
constant, as in the case of a uniform ridge, deflections of the fronts occur (L. and L2

change) as the topography is crossed. Figure 3 shows examples of the solution types
discussed above for parameter settings close to those of Figure 2 and for N(x) =

.N _x2
maxe .

3. As noted by Pratt (1984), wave propagation in this case is directed toward the ridge crest from
upstream and downstream. Therefore, disturbances to the flow become focused at the crest and attain
infinite energy density.
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Figure 3. Examples of the four solution types for a = (3= S = So = 1, a - c = 6.5, b - c = 1 and
N = Nmax exp (_x2). Nm •.• has value .0164 (subcritical); .0622 (critically-controlled); .0610
(supercritical); and .0622 (supercritical to subcritical). In all cases L2 = 0 at x = -00 and the
flow is from left to right.

If Nmax > Ne the flow cannot surmount the ridge. In classical hydraulics a similar
situation can arise and there the flow undergoes a time-dependent adjustment in which
new upstream conditions are established allowing passage of the fluid. The new steady
state is critically-controlled and the time-dependent adjustment by which it is
established essentially describes the process of upstream influence (see Baines and
Davies, 1980, for a review of the subject). Solution of the corresponding time-
dependent problem for the jet is not attempted here; however, it is anticipated that
ridges with N rna. > Ne would induce adjustment to critically-controlled states.

It is also instructive to examine the case of a jet imbedded in a resting ocean. To
understand this case in the context of the present model it should first be noted that the
finite far field velocity, uo, is intimately related to the fj-effect. Since the potential
vorticity is a function of 1/;, the latter must vary in the far field to allow G to vary. Thus,
taking Uo - 0 also requires fj - O. Reformulation of the problem in this double limit
results in a solution of the form (4.2), but with fj/Uo replaced by F and fj (appearing
alone) set to zero. The solution curve resembles the curve of Figure 2, but with sN - 0
as!1L - <Xl and a single zero crossing at finite!1L corresponding to supercritical flow. If
Nma• is less than Ne the solution resembles the supercritical flow of Figure 3. If NInA, =

Ne the solution near the obstacle crest is unstable, as in the lower solution of Figure 3.
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Figure 4. Flow rate as a function of the maximum ambient potential vorticity gradient for a
critically-controlled jet. Q is the dimensionless flow rate per unit depth between the potential
vorticity fronts and s.Nm •• is the northward slope at the ridge crest. In dimensional terms the
ordinate is 2Q·/H2(uNfJ·)(a· - c·) and the abscissa is 2(uNfJ"')[fJ· +ftJ(1J:/H)/fJy·l/
H(a· - c·).

Critical control implies a relationship between the elevation of the ridge and the flow
rate, obtained by eliminating b.L between (4.5) and (4.6):

2a
2
Q = 1 + {In [2({j + SNmax)] _ I} 2({j + sNmax) . (4.11)

(a - c) a(a - c) a(a - c)

Figure 4 shows a plot of 2a2Qj(a - c) vs. 2({j + sNmax)ja (a - c) over the range in
which critical control is possible (see 4.7 and 4.9). Increasing values of sNmax

are associated with decreasing values of Q, and when sNmax exceeds the value
'ha(a - c) - {j the flow becomes completely blocked (Q = 0). Eq. (4.3) shows that
b.L -- 00 in this case, implying that the fluid is forced to turn and flow parallel to the
ridge, a situation which cannot be portrayed by long wave theory.

Two cases of apparent flow blockage by the topography have been noted. The first
involves subcritical flow with sN < 0, the blockage occurring when the ambient
potential vorticity gradient sN + fJ vanishes. The second instance involves a
critically-controlled flow with sN > O. If sNc is increased to the point where the
northward ambient potential vorticity gradient sNc + fJ equals the northward intrinsic
potential vorticity 'gradient' a(a - c)j2, then Q -- O. Finally, note that critically-
controlled solutions experience a finite form drag due to the ridge, whereas the purely
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Figure 5. Form drag exerted by the ridge against the jet. For a - b = 7, b - c = So = s = 1 and
L1( -00) = O.Values of fJ and a are given in the legend.

subcritical or supercritical solutions experience none. Form drag refers to the net
bottom pressure force exerted by the ridge against the flow (i.e. the integral of bottom
pressure times the x-component of bottom slope over the area of the ridge). The
dimensional form drag Df can be expressed in term of the present nondimensional
variables as

PU~~L = 1: 1: if/(iJTls/iJx) dydx

= a-21~"" [(0 - b )(So + ~sL] )L] + (b - c)(So + ~SL2)L2} d.N (4.12)

where the second step is obtained by substituting for 1/; using (2.5) and performing the
y-integration. For purely subcritical and supercritical states L. and L2 are symmetric
with respect to .N and the integral in (4.12) vanishes. For critically-controlled flow L.
and L2 are asymmetric with respect to .N and the integral is finite. Note further that
the form drag is independent of the form of .N(x) since no x-dependence is explicit in
the integral.

Figure 5 contains a plot of form drag as a function of the maximum value of s.N for
the critically-controlled solutions having a-b = 7, b-c = 1, (3 = s = So = a = 1 and
L.( -(0) = O. The plot shows an approximately linear increase in form drag with s.Nma ••

Also shown are plots for a higher planetary potential vorticity gradient «(3= 2) and
lower inertial boundary layer thickness (a = 2). In the first case the higher value of (3
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restricts the variations experienced by LI and L2 and the form drag decreases. In the
second case the larger 13 or smaller Uo implied by larger a = (l3fUO)I/2 has a similar
effect.

If the potential vorticity parameters a-b and b-c are known in addition to L2( -00)
and tJ..Lc, the form drag is uniquely determined as follows. Apply Eq. (4.3) to compute a
and then use Figure 4 to determine Q. These complete the parameter set required to
compute Ll (N) and L2(N) and thus the form drag integral (4.12) can be calculated. In
practice it might be possible to perform similar calculations to estimate the form drag
of topographic features known to act as critical controls. The potential vorticity
structure of the flow might be obtained from hydrographic sections taken upstream of
the topography, and quantities like tJ..Lc and tJ..L2( -00) might be obtained from satellite
imagery. Of course this application will require the development of more sophisticated
models.

5. Discussion

There are a number of geophysical flows to which the above model might apply.
Armi (1989b) has argued that the winds of Jupiter may flow near the critical speed and
may therefore be subject to upstream influence. More immediate applications might
include midlatitude ocean jets such as the Gulf Stream and Kuroshio Extension. These
currents are generally observed to spread (rather than narrow) in the downstream
direction, although it is possible that local regions of narrowing might occur as
topographic features like the Emperor and New England Seamounts are passed.
However, there is little evidence of such narrowing and if critical control occurs, the
control point may lie upstream where the flow runs along the western boundary (as
suggested by Luyten and Stommel, 1985). In this case, the flow would be supercritical
after separation from the coast and might resemble the super-to-subcritical solution
shown in Figure 3.

A more likely candidate for critical control is the Antarctic Circumpolar Current
(ACe) which appears to narrow across a number of topographic features. Evidence for
this narrowing can be observed in the map of the 0-1000 db dynamic height anomaly
appearing in the Gordon et al. (1986) atlas. For example, the 0.4 and 1.0 dynamic
meter contours, which contain the greater part of the mass flux, experience a decrease
in horizontal separation from 2500 km at 60E (slightly upstream of the Kerguelen
Plateau) to 1400 km at 88E (slightly downstream of the Kerguelen Plateau). A second
zone of convergence is observed between 130E and 170E where the contour separation
narrows from 1600 to 800 km as the Macquarie Ridge is passed. A third possible choke
point is the Drake Passage, although interpretation in terms of the dynamic height
field is confused by the Falkland Current which drains water to the north.

It is well known (e.g., Nowlin and Clifford, 1982) that the ACC has a multi-front
structure, the two most prominent features being the Subantarctic Front (SA F) and
the Polar Front (PF). The largest eastward geostrophic velocities occur at the fronts
and the flow thus has an element in common with the two-front model presented here.
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In view of this similiarity, one might ask whether the necessary conditions (4.7) and
(4.9) are satisfied by the ACC and what values of FfJ occur. There is at least one
conceptual obstacle to such a comparison, namely that the equivalent barotropic model
assumes flow confined to a bottom layer underlying an inactive upper layer. In the
ACC, on the other hand, the largest velocities generally occur in the upper water
column. Thus, the critical parameters applicable to flow over the Kerguelen Plateau
and Macquarie Ridge should be formulated using a more realistic representation of the
stratification, perhaps through a two-layer model.

To obtain a preliminary estimate of FfJ' one can treat the model as describing flow in
an upper layer overlying an inactive lower layer. Since interaction with bottom
topography is no longer possible, I set .N = 0 in the definition (4.8) of FfJ and use the
result to get an approximate indication of criticality of the flow. This approach is most
valid in the vicinity of the Drake Passage, where the topographic forcing is primarily
due to sidewall contractions. After inspection of the eleven sections appearing in the
Gordon et al. (1986) atlas, it was found that the least ambiguous estimate of FfJ possible
is at section VIII (134W) where the ACC is relatively broad and is making its
approach to the Drake passage. As an upper layer, the fluid between the 27.4 and 27.8
potential density surfaces is chosen. At 134 W this layer ranges in depth from
200-700 mat 63S to 1300 to 2200 mat 54S. The width 6.L* clearly corresponds to the
distance between the SAF and PF, about 500 km at 134 W. I do not attempt to estimate
the value of Uo; rather, the inertial boundary layer thickness (u~ /(3*)1/2 is simply taken
as the observed decay scale of the geostrophic shear away from the two fronts. At
134W this scale is difficult to estimate but appears to lie within the range 60-250 km.
Finally, the background potential vorticity difference a* - c* is estimated by
evaluating the stream function (Eq. 2.5) atYa andYe lying several (uo/(3) 1/2 units to the
north of LI and south of L2' respectively. These values give 1f; (and hence the layer
thickness) away from the region of strong horizontal shear. Subtracting the two
expressions and converting to dimensional variables leads to

a* - c* = (3*H-1 (y: - Y:) - g'f-1H-1 (uti/(3*)1/2 (Ha - He>

where Ha and He are the dimensional layer thickness at Y: and Y:. If Y: and Y: are
chosen to be a distance (u6f(3*)1/2 to the north and south of the SAF and PF
respectively, then Ha = 880 ± 50 m and He = 475 ± 75 m. Using these thicknesses and
a mean thickness H = 700 m gives a* - c* in the range (1.7 to 2.3) . 10-8 m-1s-1 for
the given range in (u~ /(3*)]/2.

Table 1 gives the values of FfJ over the range of (u6f(3*)1/2 indicated above. Note
that all values at 134 Ware <1 indicating subcritical flow. Also listed are the values of
FfJ corresponding to 6.L * = 200 km, which is typical of the frontal separation in the
Drake Passage. Here FfJ ranges from .38 to .90, with the majority of values lying
between .81 and .90. Thus flow near the critical speed (F = 1) is indicated over most of
the range of (uti/(3*)1/2. If the frontal separation is decreased again slightly, say to
6.L * = 180 km, the majority of FfJ values exceed unity. Critical control by the Drake
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Table 1. Estimates of F~at 134W and 60W (Drake Passage) based on data from Gordon et al.
(1986) and Nowlin and Clifford (1982).

{u~ /(3*)1/2 F~

t.L* = 500 km t.L* = 200 km
(I34W) (Drake Passage)

60 2.6 x 10-3 .38
90 2.0 x 10-2 .56

120 6.7 x 10-2 .81
150 0.12 .88
200 0.20 .90
250 0.27 .90

Passage would require FfJ < 1 upstream, FfJ = 1 at some point within, and FfJ > 1
immediately downstream of the Passage. The downstream value of FfJ is difficult to
estimate due to the complexity of the flow field; however, given the uncertainties in the
approximations and the simplicity of the model the above estimates within and
upstream of the Passage are consistent with, if not suggestive of, critical control.

In the process of computing FfJitcan be shown that 2{3/a(a - c) < 0.36 so that (4.9)
is satisfied. The other necessary condition (4.7) can be evaluated by estimating the
volume flow rate Q* contained between the SAF and PF and within the layer under
consideration. Using Table 3 in Nowlin and Clifford (1982), I estimate Q* = (15 ± 5)
Sv, and this value must be less than H2 (ut/f3*) (a* - c*) in order that (4.7) be
satisfied. Using the quantities calculated at 134W, the latter ranges from 90 to 625 Sv.
The reader is reminded that (4.7) and (4.9) are necessary conditions for eastward flow
in the model jet and their satisfaction is more an indication of model applicability than
of critically-controlled flow.

In summary the frontal structure of the ACC allows comparison with the model
developed herein, and satisfaction of (4.7) and (4.9) solidify the grounds for compari-
son. The streamline convergence over the Kerguelen Plateau and Macquarie Ridge is
reminiscent of the critically-controlled solution of Figure 3. Although FfJ is difficult to
estimate at these locations, estimates at Drake Passage (a third possible control point)
suggest flow near the critical speed. These estimates are based on the behavior of an
individual density layer in which the PF and SAF are modeled as potential vorticity
fronts. Refined estimates of FfJ will require a model with more realistic stratification,
perhaps allowing outcropping of density surfaces.

6. Conclusion
The calculations presented herein suggest that free jets in the ocean and atmosphere

can be subject to the same upstream influence or control that occurs in fluid flow over a
dam or through a nozzle. The implications of upstream influence are contained in
Figure 4 showing that the flow rate Q*, potential vorticity difference (a* - c*),
horizontal decay scale (uri/{3*)1/2 and thickness H of the jet cannot be specified
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independently of the bottom topography when the flow is in a critically-controlled
state. The topography thereby exercises influence over the general circulation as a
whole, as opposed to exerting a purely local influence.

Along with the similarities with classical hydraulics, there are some important
differences which should be pointed out. First, upstream influence in the jet is
associated with potential vorticity waves having a varicose component; the gravity
waves which exert upstream influence in free surface or internal hydraulics are
irrelevant here. Also, the transition from supercritical to subcritical flow in a jet must
be drastically different from the transition which occurs in classical hydraulics. In the
latter case a hydraulic jump forms, in the former the constraints imposed by strong
rotation may tend to suppress hydraulic jumps. In laboratory experiments with
supercritical coastal currents in a strongly rotating environment Pratt (1987) showed
that a lateral jump, characterized by an abrupt increase in the width of the current, can
take the place of the classical hydraulic jump. Something akin may take place in a free
jet; however, the question remains open.

Finally, it should be mentioned that hydraulic effects have apparently been observed
by Rhines (1988) and Hogg (1988) in connection with models of broad, planetary-
scale flows over ridges and other isolated obstacles. Their two-layer calculations based
on the quasigeostrophic, planetary geostrophic models allow O( I) changes in layer
thicknesses. Familiar features such as blocking and critical flow are observed, but
interpretation in terms of classical hydraulic phenomena is obscured by the full
horizontal two-dimensionality of the flow field.
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