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A model for the inertial recirculation of a gyre
by Richard J. Greatbatchl

ABSTRACT
This paper considers the "time-mean" circulation of wind-driven ocean gyres in the limit

referred to as "inertial" or "almost~free." In this limit, potential vorticity is conserved following
the flow with sources and sinks of potential vorticity balancing in an integral sense around the
gyre. Approximate analytic solutions are obtained for a continuously stratified quasi-geostrophic
ocean by neglecting the relative vorticity in the gyre interiors. The solutions have features similar
to those found in the western part of ocean basins both in eddy-resolving numerical models and in
observations. In particular, a deep westward recirculation, such as proposed by Worthington
(1976) for the Gulf Stream system, arises naturally from the analysis as an enhanced barotropic
flow inside the region where the "bowl" containing the circulation has intersected the ocean
floor.This flow, which is driven by eddies and dissipated by bottom friction, leads to a sudden
increase in westward velocity similar to that found between 35N and 36N in the long-term
current records along 55W discussed by Schmitz (1977, 1978, 1980).

1. Introduction
Conservation of potential vorticity, q, provides a basic constraint on motions in the

atmosphere and ocean. To break this constraint requires either input of q by means of
forcing or its dissipation by frictional processes. In tl1ispaper, our concern is with the
wind-driven circulation of the ocean and the associated oceanic gyres. In the linear
theories of Stommel (1948) and Munk (1950), the forcing and dissipation are assumed
to be so effective that a fluid particle moving round the gyre always forgets its q and
adjusts to that arising from the planetary rotation at each latitude. Including the
nonlinear, inertial terms in the equations of motion allows a fluid particle to have a
memory and can lead to radically different dynamics. Indeed the opposite point of view
to that implied by linear theory is one in which the effect of forcing and dissipation is so
weak that a fluid particle remembers its q throughout many circuits of the gyre so that
at lowestorder in the dynamics, q is conserved following the motion. The limit in which
q is exactly conserved will be referred to as the "inertial," "almost-free" limit.

The realization that inertial effects could be important in the dynamics of ocean
gyres arose from attempts to make direct comparisons between linear theory and
observations. In the linear models of Stommel (1948) and Munk (1950), there is no net
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Figure 1. A comparison of the observed Gulf Stream transport (from Knauss (1969» and the
transport according to linear theory, as computed from wind-stress data by Hellerman (1965)
(from Gill (1971».

transport of mass across a latitude circle with the Sverdrup transport farther east being
balanced by a narrow, swift, western boundary current. The transport of this current,
therefore, depends only on the field of wind stress curl to the east and can be computed
from wind data. Figure 1, taken from Gill (1971), shows the calculated and observed
transports for the Gulf Stream system as a function of latitude. The observed transport
is found to increase with latitude and to be greatly in excess of that predicted by linear
theory. It was found, however, that the basic shape of the observed curve could be
accounted for by including the neglected nonlinear terms in Stommel's model and
solving the problem numerically, as was done by Veronis (1966).

More recent calculations using multi-level, eddy-resolving numerical models (see
Holland et al. (1983) for a review) also exhibit enhanced transport in the western
boundary current like that observed. In these models, the enhanced transport is
achieved by means of a deep, eddy-driven recirculation such as can be seen in Figure 2.
In the case shown, the model is driven by a symmetric, double-gyre wind stress. The
western boundary current leaves the coast at mid-basin to form an eastward jet
extending into the interior. This jet is flanked by deep (in fact extending to the ocean
floor) eddy-driven westward return flowsassociated with velocities up to 25 cm sec-1 at
the surface. A deep, westward recirculation such as this was proposed by Worthington
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Figure 2. Five year mean streamfunction if; (Fig. 2a) and potential vorticity q (Fig. 2b) at the
top, third and fifth levels, respectively, of an eight level eddy-resolving numerical simulation of
the wind-driven circulation, corresponding to mean depths of 150 m, 850 m and 1750 m
respectively (from Holland et al. (1984». The arrows mark the boundary of the deep
westward recirculation. (Reprinted by permission from Nature, 308, 698-705. Copyright C

1984 MacMillan Magazines Ltd.)
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Figure 3. (a) Volume transport streamlines for the deep (potential temperature less than 4°C)
general circulation of the North Atlantic according to Worthington (I 976). Also shown is the
location ofthe line of moorings along 55W referred to in Figure 3b (from Schmitz, 1977). (b)
Time-averaged zonal velocity at locations along 55W at indicated depths (eastward positive).
The solid bar is a rough indication of a range of mean positions for the axis of the Gulf Stream
(from Schmitz, 1980).
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(1976) for the Gulf Stream system (see Fig. 3a). Furthermore, the long-term current
records described by Schmitz (1977, 1978, 1980) at locations along 55W show a mean
westward flow in Worthington's recirculation area with velocities up to 10 cm sec-1 at
4000 m depth (see Fig. 3b). Stommel et al. (1978) also found the need for a deep
recirculation in order for the Gulf Stream system to maintain an overall mass
balance.

In this paper approximate solutions are found which exhibit such a deep recircula-
tion. These are obtained by considering the "inertial," "almost-free" limit. This limit
was first utilized by Niiler (1966), who considered wind-driven barotropic ocean
circulation, and has recently been suggested by Pierrehumbert and Malguzzi (1984) as
a model for blocking in the atmosphere. (Strictly speaking, the idea originates from
Batchelor (1956) and is a generalization of the Prandtl-Batchelor theorem in fluid
mechanics.) Here we find approximate solutions for a continuously stratified, quasi-
geostrophic ocean. The restriction to quasi-geostrophic dynamics is relaxed in Appen-
dix I where a comparison is given between the theory and the hydrographic section
along 50W made by Atlantis in 1956. The solutions are a generalization of those
presented by Marshall and Nurser (1986) who discuss 1Vz-Iayerand 2Vz layer model
oceans. Here, we give a comprehensive theory using continuous stratification and
including the interaction with the ocean floor which, as we shall see, is crucial for
obtaining a deep, inertial recirculation.

This is not the first paper in which potential vorticity conserving solutions have been
sought for a continuously stratified, quasi-geostrophic ocean and suggested as an
explanation for the deep transport associated with the Gulf Stream system. Niiler et at.
(1965) found solutions for which potential vorticity q is a linear function of
streamfunction if; i.e., q = Cl if; + Co and compared their solutions with the transport
diagram for water lying between 2°C and 12°C that was proposed by Worthington
(1965). The coefficients Cl and Co were chosen to be independent of the vertical
coordinate z and no attempt was made, as is done here, to relate them to the forcing
and dissipation or to take account of the effect of geostrophic eddies about which little
was known at that time. Taking account of these factors introduces z-dependence. This
plays an important role in our solutions (especially that of Co which is crucial for
determining the "bowl" which contains the circulation), as discussed in Section 5. The
solutions to be presented here are also examples of those discussed by Welander
(1971). In particular, the analysis given in Appendix I of this paper is an example of
his case in which potential vorticity, q, is a function of density alone. Here, however, we
have the additional feature of the "bowl" containing the circulation which must be
calculated.

Theplan of the remainder of this paper is as follows. Section 2 deals with the model
geometry and the basic governing equations. In Section 3 the "inertial," "almost-free"
limit is described. We are then in a position to write down the equations we actually
solve together with the associated boundary conditions. This is done in Section 4. The



606 Journal of Marine Research [45,3

structure of the solutions in the interior of the gyres is then considered. The
contribution of the relative vorticity in the potential vorticity budget is neglected
leading to simple analytical solutions. In Section 5 the structure of the solutions before
the circulation has stretched down to the ocean floor is described. Sections 6 and 7 deal
with the nature of the solutions once the ocean floor is playing a role. The closure of the
circulation by means of inertial boundary currents and an inertial (eastward) jet in the
interior of the ocean basin is discussed in Section 8. Solutions for two different choices
of the basic density stratification are given in Section 9. Section 10 closes the main
body of the paper with a summary and discussion, with particular reference to the
influence of the neglected relative vorticity term on the solutions. The paper also
includes two appendices. Appendix 1 attempts to compare the theory with the
hydrographic section along 50W made by Atlantis in 1956. Appendix 2 discusses the
appearance of the classical Sverdrup transport as a first order correction to the lowest
order flow in the "inertial," "almost-free" limit.

2. The model geometry and governing equations

Figure 4 shows the horizontal and vertical structure of the model ocean (which is
flat-bottomed) considered in this paper. We work on a mid-latitude {j-plane with
cartesian coordinates x, y, z increasing respectively eastward, northward and vertically
upward. The model is driven by a symmetrical double-gyre wind stress centered
around y = O. We shall think of the two gyre system as being equilibrated by the
transfer of potential vorticity between the gyres by geostrophic eddies. The only
explicit friction to be considered is bottom friction which will playa role when we
consider the deep, eddy-driven recirculation in Section 7..

In this paper, we follow Rhines and Young (1982a) and Young and Rhines (1982)
(hereafter referred to as RY and YR respectively) in employing quasi-geostrophic
dynamics (some relaxation of this restriction is given in Appendix 1). By so doing, we
emphasize the recirculation characteristics of a gyre and exclude the possibility of
outcropping and ventilation as described by Luyten e( al. (1983). Where the model
formulation in this paper differs from RY and YR is in the handling ofthe layer at the
surface which is directly acted on by the wind. Here, this layer is itself assumed to be
described by quasi-geostrophic dynamics with the Ekman transport due to the wind
entering as part of the ageostrophic flow field (this is the approach described by Gill
(1982), p. 507). The quasi-geostrophic momentum equations (excluding for the time
being the dissipation terms) are then

1 { ap' Dg ap'} Ty ) Ifoua = - {jy- - -- + --F(z
Pofo ay Dt ax POHM

1 ap' Dg ap' Tx
foVa = -{- {jy- - --} - -F(z)

Polo ax Dt ay POHM

(1)
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figure 4. The model geometry. (a) shows a horizontal plan view at the surface and (b) a vertical
section across the gyre. The wind stress curl forcing is symmetric about y = 0 with positive
wind stress curl over the subpolar and negative wind stress curl over the subtropical gyre. z =
-D(x, y) marks the edge of the "bowl" containing the circulation.

where

(
1 (-HMs'Zs'O)

F(z) = o (otherwise)

tu., VII) is the ageostrophic velocity field, p' the perturbation pressure,.fo the value of
the Coriolis parameter at y = 0, fJ the gradient of the earth's vorticity, Po a
representative density of sea water and Dg/ Dt the rate of change following the
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geostrophic flow. The wind forcing (Tx, Ty)J POHM' where (Tx, Ty) is the surface stress, is
modelled as a body force acting over the layer -HM :S Z :S O. HM is assumed to be
independent of x and y. if; and q will be averaged over this layer and will therefore be
taken independent of depth in this layer. We guarantee this by taking the buoyancy
frequency N to be zero over this depth range. For convenience the layer - HM :S Z :S 0
will be referred to as the wind forced layer or WFL for short.

In adopting the quasi-geostrophic formulation, we must also specify a basic density
stratification p(z) which depends only on the vertical coordinate z and is assumed to be
fixed in time (we are not concerned here with those mechanisms responsible for
maintaining the thermocline which is taken as given). If we take Po to be the average
density, this is equivalent, to specifying the buoyancy frequency N, given by

(2)

where g is the acceleration due to gravity. In addition to putting N2
= 0 in the WFL, we

also assume that there is a layer at the bottom of the ocean, influenced by bottom
friction, which is also well-mixed (i.e. N2

= 0). This layer will be referred to as the
bottom layer or BL for short. Apart from these layers, however, we do not specify the
form of N2 but allow it to be any physically realizable function of z.

Putting u = p - p, where p is the total density field, the quasi-geostrophic equation
for u is

Dgu N2w
--Po--=O
Dt g

u is related to the perturbation pressure p' by the hydrostatic relation

ap'a; = -guo

Combining (1), (3), and (4) with the continuity equation

(ua)x + (va)y + Wz = 0

leads to the governing equation

Dgq = _l_{~(TY) _ ~(TX)}F(Z) -:D,
Dt PoHM ax ay

where q = v2if; + (3y + ~ {f~aift}az N2 az

(3)

(4)

(5)

is the quasi-geostrophic potential vorticity, if; = p'J(fopo) is the quasi-geostrophic
streamfunction, and :D represents the dissipation. In this paper, we are concerned with
the steady, "time-mean" circulation obtained by time averaging (5). This leads to

J(if;, q) = ;} - :D - v . (u'q') (6)
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where J is the Jacobian operator, ':J represents the wind forcing and \1 • (u' q') is the
eddy flux divergence term.

Eq. (6) is the fundamental equation we shall be concerned with. Throughout, we
shall parameterise the eddy-flux divergence term as a downgradient transfer of q by
eddies so that

- \1 . (u' q') = \1 • (K\lq) (7)

for some K > 0 which will depend on the spatial coordinates x, y, z (it should be noted
that the divergence and gradient operators in (6) and (7) denote the horizontal
divergence and gradient only). For justification of this the reader is referred to Rhines
and Holland (1979) and Marshall and Shutts (1981).

As we shall see, the most important part of the problem is to calculate the "bowl"
whoseedge is defined by z = -D(x, y) and which contains the circulation. This feature
also formed part of the model formulation in RY and YR. As described by them, inside
the "bowl" the q contours are closed enabling the "weak" eddy forcing to generate
strong currents. Outside, the q contours intersect the boundaries so that "weak" eddy
forcing can only generate weak currents. We therefore identify the region z c: -D as
being the region occupied by the circulation and assume that outside this region the
ocean is at rest.

3. The "inertial," "almost-free" limit
We now consider the mathematical basis for the "inertial," "almost-free" limit.

Readers are referred to the papers by Niiler (1966), Pierrehumbert and Malguzzi
(1984) (hereafter referred to as PM) and Marshall and Nurser (1986) for further
discussion.

Following PM, we write the governing equation for the "time-mean" circulation as

J(1/I, q) = EG (8)

where the term EG represents the forcing (i.e. wind stress curl), the dissipation and the
eddy-flux divergence of q. As in PM, we assume that the dimensionless parameter E «
1. Niiler (1966) showed that for a barotropic ocean, E is the ratio of the velocity
associated with the Sverdrup transport in the interior of the ocean to that associated
with the free, inertial solution of (9) (see below) which is assumed to dominate the
flow.This is true here also. In fact, although the Sverdrup constraint does not enter
into the lowest order dynamics considered here, it does enter at next order as described
in Appendix 2.

Following PM, we expand 1/1, q and G in powers of E

1/1 = 1/10 + E1/I1 + .
q = qo + Eq. + .
G = Go + EG1 + .
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and substitute these expansions into the governing equation (8). At lowest order, that is
matching terms of 0(100), we obtain

(9)

of which the general solution is

(10)

At this stage, Q is an arbitrary function. By considering what happens at next order,
and so taking account of the term lOG, the variation of Q between 1/;0 streamlines is
determined. Q is then a known function of 1/;0 and z up to a z-dependent constant which
can be determined. The problem then becomes one of solving (10) for the streamfunc-
tion 1/;0'

Matching terms of order 10
1 in the expansion of (8) gives

(11)

(12)

which, following PM, can be written as

J(1/;o, ql - :~ (1/;0' Z)1/;I) = Go·

Integrating (12) over the area enclosed by any closed 1/;0 streamline in a horizontal
plane leads to the constraint

J GodA = 0 (13)

(The reason for calling the limit 10 « 1 "almost-free" is that although the lowest order
flow given by (10) is potential vorticity conserving, it still knows about sources and
sinks of potential vorticity through (13).)

Marshall and Nurser (1986) have shown that when wind stress curl forcing is being
balanced by down-gradient transfer of q by eddies, as is the case in the WFL in our
model, then iJQ/iJ1/;o is required by (13) to be negative. To see this, note that since

G
k. V'XT

10 0 = --- + V' • (KV'qo)
POHM

it follows from (13) that

-1-1k. V'XTdA = -1 V'. (KV'qo)dA
PoHM A A

(14)

which using Stoke's theorem on the left-hand side and Gauss' Divergence Theorem on
the right hand side leads to
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where here the integrals are around the closed 1/10 streamline enclosing the area A and;;
is an outward unit vector normal to this streamline. Substituting for qo from (10) we
then conclude that

:~ (1/1o,z) = - pO~MfT. d/j fKu. d/. (15)

This shows that where the wind stress T and the ocean currents circulate in the same
sense (as they do in the ocean) then aQ/a1/1o < O. Marshall and Nurser (1986) give a
simple physical interpretation of this result: basically if we have a subtropical gyre, for
example, for which 1/10 increases into the interior of the gyre, the only way down-
gradient transfer of q can balance the wind-stress curl forcing, which is tending to
decrease q in the gyre interior, is for aQ/a1/1o < O.

By a similar argument, we can show that if down-gradient transfer of q by eddies is
being balanced by dissipation of vorticity by bottom friction (as is the case in the BL)
so that

where 'Y is the (assumed) spatially uniform bottom friction coefficient, then (13)
implies that

:~ = 'Y f u . d/ j f Ku . d/. (16)

so that now aQ/a1/1o is positive. In each case, the integral constraint (13) has fixed the
gradient of Q with respect to streamfunction 1/10 at each level z. When the only
mechanism available for influencing q is downgradient transfer by eddies, as in those
regions of a gyre isolated from both surface forcing and bottom friction, then

(17)

as can be seen by putting T = 0 in (15) or 'Y = 0 in (16). This is the result obtained by
Rhines and Young (1982b) implying homogenization of potential vorticity along
isopycnal surfaces in such regions.

Keffer (1985) has recently published maps of the potential vorticity field on
isopycnal surfaces (which in the quasi-geostrophic formulation used here are just the
horizontal planes z = constant). Of particular interest are Keffer's Figures 11 and 15
for the Pacific Ocean. These show regions of homogenized potential vorticity on
isopycnal surfaces isolated from surface forcing. Also Keffer's Figures 4 and 5 show
potential vorticity decreasing into the interior of the subtropical gyres in both the
Atlantic and Pacific Oceans on isopycnal surfaces directly affected by surface forcing.
These features are in agreement with the general prediction of Eqs. (15) and (17) and
are also exhibited by the eddy-resolving numerical model shown in Figure 2.
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4. The equations to be solved

We now describe the equations to be solved and the associated boundary conditions.
We seek solutions which apply in the "inertial," "almost-free" limit. This means that
at lowest order

q = Q(tJ;, z) (18)

for some function Q (cf. Eq. (10», where now the subscript 0 on q and tJ; is dropped. In
this paper, we restrict Q to be linear in tJ; at each z. The presence of eddies, represented
by the diffusion coefficient K, does provide some flexibility in Eqs. (15) and (16)
whereby the eddies could conceivably arrange themselves in some "maximum entropy"
state in which the q-tJ; relationship is indeed linear. There is some evidence for this from
eddy-resolving numerical models (e.g. Rhines et al. (1985), McWilliams et al. (1978)
who consider a channel model-see their Figs. 25 and 26-and Bretherton and
Haidvogel (1976». Basically, however, this simplification must be judged by the
success of the solutions in describing features of the observed ocean circulation, on the
one hand, and eddy-resolving numerical models on the other.

The problem is now to solve

(19)

for z ~ - D(x, y) with appropriate choice of CI(Z) and co(z). As already discussed at
the end of Section 2, part of the problem is to solve for the surface z = - D which
bounds the circulation. For z < -D the ocean is at rest and q = (jy.

We choose CI(Z) consistent with the integral constraint (13). We shall therefore
solve (19) with CI(Z) given by

j
_A2 (-HM::s z ::S 0)

CI(Z) = 0 (-HI < Z < -HM)

B2 (-H::s Z ::S -HI)

(20)

where A and B are real constants so that CI < 0 in the WFL (as required by (15», C1 = 0
in the region -HI < Z < HM (as required by (17» and CI > 0 in the BL (as required by
(16».

For co(z) we take

j
{jyo (-HM::sz::sO, y>O)

co(z) = -{jyo (-HM::s z ::S 0, Y < 0)

o (otherwise).

(21)

This is the choice made by Marshall and Nurser (1986) for their calculations and is
consistent both with eddy-resolving numerical models and with observations. In the
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WFL there is a discontinuity in q along y = O. This corresponds to the sharp gradient in
q found in the top-most level of the numerical model shown in Figure 2. This occurs
where the eastward jet penetrates from the western boundary into the ocean interior. It
corresponds, in the observations of Bower et al. (1985) to the appearance of the Gulf
Stream as a "barrier" to the transfer of q in those layers strongly influenced by surface
forcing.

Putting co(z) = 0 in the region z < -HM implies, where c,(z) is also zero,
homogenization of q across both gyres to the same value. This is found in numerical
models (see those levels in Figure 2 at depths of 850 m and 1750 m) and corresponds to
the "blender" effect found by Bower et al. (1985) in those layers isolated from the
surface. Figure II in Keffer (1985) also suggests this kind of behavior in the Pacific
Ocean.

We shall see in the next section of this paper that the disparity in the value of co(z)
between the surface layer exposed to the wind and the region beneath is crucial to the
solutions we obtain. We defer until then a discussion of the dynamical reasons for
choosing co(z) as in (21).

We now turn to the boundary conditions under which (19) is to be solved. The
condition of no normal velocity along the edge of the basin implies

If = 0 alongy = ±Yo and x = 0, x = Xo·

We also have,

If = 0 along y = O.

Along the edge of the "bowl" z = - D(x, y) we have

If = OJ
fo along z = -D(x, y)

- N2lfz = 0

(22)

(23)

(24)

which ensures continuity of pressure and isopycnal displacement, respectively, across
z = - D. It is possible that the "bowl" will intersect the ocean floor at z = - H in which
case (24) is replaced by

We also have

fo
- N2lfz = 0 at z = -H.

fo
- -2 .1, = 0 at z = 0N ¥'z •

(25)

(26)

(If the ocean is spun up from rest, then (25) and (26) are a consequence of assuming
that the vertical velocity w = 0 at z = - Hand z = 0 for all time.)
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5. The flowin the gyre interiors
The prototype potential vorticity conserving solution on which those in this paper are

built is that of Fofonoff (1954) shown in Figure 5. This solution is for a barotropic
ocean and consists of a broad westward flow in the gyre interior, where the relative
vorticity '1121/1 can be neglected in the potential vorticity budget, and narrow inertial jets
which close the circulation. We seek solutions of a similar form here and begin by
neglecting '1121/1 in (19). In Section 8, this term is restored when we consider the inertial
jets that close the circulation and in Section lOa discussion is given on how we expect
this term to modify the solutions found here.

Let us therefore begin by seeking the solution for the gyre interiors. In this section
we consider only that part of the solution for which D, the depth of the circulation, is
less than HI' The effect ofthe BL is treated in Section 7. Note also that throughout this
paper, solutions will be found only for the subtropical gyre. The corresponding part of
the solution for the subpolar gyre can be found by replacing Yo by -Yo throughout. This
exact symmetry is a feature of quasi-geostrophic dynamics.

In the region -HI < z < -HM, (19) becomes, neglecting '11
2
1/1

a {f~a1/l}{3y +- -- =0.az N2 az (27)

Integrating (27) using the lower boundary conditions (24) gives an expression for the
isopycnal displacement

and the streamfunction 1/1

fa a1/l (3y
---=-(z + D)

N2 az fo

1/1 = - f{3~l'N2(z + D)dz.
o -D

(28)

(29)

Within the layer -HM:s z :S 0 where N2
= 0,1/1 is independent of z and must be given

by (29) evaluated at z = -HM to ensure continuity of pressure across z - -HM• It
follows that the entire solution is known once we know D, the depth to which the
circulation penetrates.

To determine D account must be taken of the dynamics in the WFL. To see this, we
note that the potential vorticity qM, of that layer is given by (neglecting the relative
vorticity)

(30)

where h is the displacement of the isopycnal at the base of the layer and (26) has been
used. Continuity of isopycnal displacement across z = -HM requires h to be given by
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Figure 5. Streamlines if; = constant for the solution found by Fofonoff (1954).

(28) evaluated at z = -HM i.e.

Combining (30) and (31) gives

(31)

(32)

(34)

which directly relates qM and D.
For our problem, qM is given by (cf. (19»

qM = -A21/1M - {3yo (33)

where use has been made of (20) and (21) to give C1 and Co and 1/IM refers to the
streamfunction 1/1 evaluated in the WFL. Substituting into (32) gives

D = _ HMyo _ A
2
HM 1/IM'

Y {3y
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Figure 6. A vertical section showing the isopycnal displacements when A2
= 0 and {3Yo/fo = 0.2.

Also shown is the edge of the "bowl" containing circulation defined by z = -D.

The associated isopycnal displacements are then obtained by substituting this D into
(28) i.e.

(35)

Figure 6 shows D and the associated isopycnal displacements when A 2 = O. This is used
as a reference case in the discussion to follow.

Eq. (34) has a simple physical interpretation. The boundary conditions (24) and
(26) imply that there can be no net vortex stretching in any vertical column of fluid
(indeed (34) can be obtained by integrating (19), with the v2

1/; term neglected,
between z = 0 and z = -D, using (24) and (26) to eliminate the stretching term and
dividing the result by (jy). Let us begin by considering what this means for the
subtropical gyre; that is the region -Yo:::; Y < 0 in which 1/;M ~ O. Substituting for qM

from (33) into (30) gives

(36)

It follows that the isopycnal at the base ofthe WFL is displaced increasingly downward
as we move northward from the southern boundary of the gyre at y = -Yo. This can be
seen in Figure 6. On the other hand, isopycnals below the WFL, where q = 0, are
increasingly squashed as we move southward from y = O. In this way, the vortex
stretching in the WFL is compensated by vortex squashing below, the depth of
penetration of the circulation D being precisely that depth at which the net vortex
stretching in the column is zero. Furthermore, the larger A 2 > 0, the more the WFL is
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stretched and the greater becomes the depth required for the net vortex stretching to be
zero. Note also that the nearer we are to y = 0 the greater is the stretching in the WFL
but the less is the squashing below. This forces D to deepen rapidly as we move toward
y = 0 (as in Fig. 6). For the subpolar gyre the situation is reversed. Here, vortex
squashing in the WFL is compensated by vortex stretching below and the depth D is
once again the depth at which the net vortex stretching is zero.

The crucial factor which enables the above argument to work is the disparity
between the value of the coefficient Co (cf. (21)) in the WFL and its value in the region
below. The effect of Co is to select the latitude at which isopycnals have the same
spacing as in the basic stratification (see discussion leading to Eq. (2)), corresponding
to a state of zero vortex stretching. For the case of the subtropical (subpolar) gyre this
latitude is the southern (northern) boundary of the gyre in the WFL, but is at
mid-basin y = 0 below. .

Let us now consider the dynamics which leads to this choice for Co- Putting co(z) = 0
in the region z s -HM follows directly from the argument by Marshall and Nurser
(1986) for the appearance of closed contours in the lower active layer oftheir 21/2 layer
model. This is because the outer of their closed contours is that corresponding to q = O.
To obtain the continuously stratified case considered here we simply consider the limit
in which the number of layers, and the vertical resolution are progressively increased
(this is the same argument as given by R Y for their "choice of Y" -see p. 581 and Fig.
8 in their paper). The choice for co(z) in the WFL can be understood by considering the
spin-up of an ocean from a state of rest following the application of wind forcing.
Initially we develop a Sverdrup regime away from the western boundary. In this region
fluid particles have their potential vorticity adjusted as they move outward from y = 0
by the action of the surface wind stress curl. This flow is returned by western boundary
currents which become increasingly nonlinear and carry the potential vorticity ±{Jyo at
the northern and southern boundaries of the gyres toward y = O. Here the discontinuity
in q implied by (21) and which can be seen in Figure 2 develops. In this way the value
for c 0 appropriate to the WFL is selected by the disparity between the Sverdrup region
on the one hand, where essentially linear dynamics apply, and the highly nonlinear,
swift, western boundary current on the other which is the key to setting up the
"inertial" solutions described here.

Let us now examine the isopycnal displacements in more detail. These are given by
(35). Figure 6 shows these displacements when A2 = O. In this case

so that the isopycnal displacements at each z are just straight lines sloping downward
in the subtropical gyre and upward in the subpolar gyre, as shown. This is similar to the
slope of isopycnals found from hydrographic sections across the recirculation area of
the Gulf Stream see, for example, Figure 8 and also the sections discussed by
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(37)

McDowell et al. (1982). Note that when A2 > 0, the slope of the isopycnals is increased
(and increases toward y = 0) in response to the increased pushing down (subtropical
gyre)/pulling up (subpolar gyre) of the isopycnal at the base of the WFL (see (36».

We now turn to the velocity field which is obtained by differentiating (29) with
respect to x and y and using (34) to give D. Since D is independent of x in the gyre
interiors, the flow is entirely zonal and is given by

_ {j 1z 2 { A
2
UHM}u = -1/;y = f~ -D N z + {j dz

where U = -1/;MY is the velocity in the WFL. We shall see in Section 8 that in order to
close the gyres by inertial boundary layers we must have westward flow in the gyre
interiors i.e. u < O.(See also Pedlosky (1965) and Robinson (1965». Since z < 0, this is
clearly guaranteed by (37) if Uis also westward. Evaluating (37) at z - -HM gives the
following expression for U

(38)

(39)

Westward flow is therefore guaranteed if the parameter a < 1 where

A2HMJ~H"N2da =--2- z
fo -H

and H is the total depth of the ocean. The results can be interpreted physically by
noting that the velocity field (37) could have been obtained by integrating the thermal
wind relation upward from the edge of the "bowl" z = - D, which is a surface of no
motion, using the known density field. The slope of the isopycnals shown in Figure 6
(which is for A2 = 0) clearly implies flowwhich increases westward with height since in
both gyres, subtropical and subpolar, density decreases northward on each horizontal
plane. As A2 increases from 0, the slope of the isopycnals increases and hence also the
horizontal density gradients implying swifter currents as predicted by (37) (since
U < 0). If A2 becomes sufficiently large (i.e. a -- 1) .then the horizontal density
gradients become so large that the surface flow increases indefinitely and ultimately
will reverse (a > 1).

Let us now consider the magnitude of the currents that can be accommodated by
(37). Clearly the maximum current, UMAX, obtainable for any given value of A (such
that a < 1), is given by taking z = -HM and D = H, the total depth of the ocean. It
follows that

1 {j J -H" 2
UMAX = (1 _ a)f~ -H N zdz (40)

When a = 0, this is essentially the propagation speed for baroclinic, long Rossby waves
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and is only of order 5 cm sec-I. For the model shown in Figure 2 velocities up to 25 cm
sec-I are found in the westward recirculation areas that flank the eastward interior jet.
Clearly, velocities of this magnitude could be accounted for if A2 is sufficiently large
i.e. a sufficiently near l. These velocities, however, are occurring in a region where the
"time-mean" flow in the model extends to the ocean floor (personal communication,
W.R. Holland) and a more likely explanation of their magnitude can be given by
taking account of this fact as is done in Section 7.

Before leaving this section, it should be noted that the magnitude of the westward
velocity given by (37) increases as we approach Y = 0 and it is possible, especially in
cases for which a is near 1, that it is no longer consistent to neglect the relative vorticity
term v2..p in the potential vorticity budget (This is discussed further in Section 10).
This increase in velocity, which is due to the increasing depth of penetration D of the
gyre, was also found by Marshall and Nurser (1986) in their 21/2 layer calculation.
There, the velocity in the upper of their two active layers exhibits a discontinuous jump
at the latitude marking the edge of the gyre in the lower layer. This discontinuity is a
consequence of the poor vertical resolution in their model and is reproduced here by
taking N2 in (37) to be a sum of two delta functions corresponding to the discrete
stratification implied by the layered formulation. When N2 is a continuous function of
depth z, the velocity u varies continuously with latitude y.

6. The intersection of the "bowl't with the ocean floor

In this and the next section we shall consider the influence of the ocean floor and the
associated bottom layer on the solutions found in Section 5. We begin by considering
the latitude Y = ±Yr at which the "bowl" containing the circulation intersects the floor,
and the dependence of this latitude on the structure of the basic stratification (for the
model geometry, see Fig. 4).

As noted in Section 2, we assume that the BL is well-mixed i.e. N2
= 0 there. As for

the WFL this ensures that the streamfunction 1/1 is independent of z in that layer. It also
has the advantage that until the "bowl" actually meets the ocean floor, 1/1 = 0 in the BL
and the full solution is that already discussed in Section 5. In particular, the depth D to
which the circulation penetrates is still given by (34) so to find Yr we simply put D = H
in (34) and solve for y.

This gives

(41)

When a = 0 (i.e. A2 = 0), Yr is independent of N and so does not depend on the basic
stratification. To illustrate the behavior of Yr for a > 0, let us consider an ocean for
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which N has a uniform value NI over the depth range -HI < z < -HM and is zero
otherwise i.e.

in which case (41) becomes

(-HM~ Z ~ 0)

(-HI < z < -HM)

(-H~z~ -Ht)

(42)

(43)

(44)

It is easy to show that as ex increases, the latitude Yl moves farther away from Y = 0
(this is a general result and can be shown from (41». In the extreme case ex = 1,

Yl = 2HMYo/(HM + HI)'

It follows that when N is given by (42), Yl always lies in the range

HMyo 2HMyo
~~Yl~ (HM + HI)'

Note that as the stratification is confined into a progressively thinner region immedi-
ately below the WFL i.e. as HI -- HM, 2HMYo/(HM + Ht) -- Yo. It is clear, therefore,
that if the thermocline is sharp and ex is near to 1 then the ocean floor can be expected
to have a big influence on the solution. As discussed in Section 10, the influence of the
neglected relative vorticity terms is also likely to increase the area in which the
presence of the ocean floor is felt.

7. The effect of the ocean floor
Once the "bowl" has intersected the ocean floor, the lower boundary condition (24)

is replaced by (25). This means that whereas if the ocean were infinitely deep the
isopycnal displacement would be brought to zero at depth D as given by (34), it must
now be brought to zero at the ocean floor which is at depth H < D. In order to achieve
this, the barotropic circulation of the gyre is enhanced. We can see this by integrating
(19) (with the relative vorticity term neglected) between the top and bottom of the
ocean using (25) and (26) to give

(45)

Here Co has been chosen appropriate to the subtropical gyre (subpolar gyre obtained by
replacing Yo by -Yo) and ""M and ""B are the streamfunctions in the WFL and BL,
respectively, both independent of z. Defining D to be as given by (34), (45) can be
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(46)

from which we can see that since D > H, 1/;8 is nonzero.
Now above the BL, the isopycnal displacements can be obtained by integrating (19)

(with v2
1/; neglected) down from the surface z = 0 using Eq. (26). This means that they

are given by the same formula as they were in Section (5) i.e. (28) with D given by
(34). Above the BL, therefore, the baroclinic structure of the gyre is governed in the
same way as it would be in an infinitely deep ocean, and the streamfunction 1/; is given
by (29) but now with an additional barotropic component 1/;8 given by (46) i.e.

(47)

(48)

where D is given by (34) (actually, since N2
= 0 in both the WFL and the BL, (47)

holds at all depths and, furthermore, the integral can be taken from depth H rather
than D). The velocity (which has no meridional component) is now obtained by
differentiating (47) with respect to y

u == -1/;y = (32 Jz N2(Z + A
2
UHM) dz10 -H {3

{3 { A
2
HM0

- B2(H - HI) H - (3 -I'
The enhanced barotropic circulation is now clearly revealed by comparing (48) with
Eq. (37).

To obtain the velocity Uwe put z = -HM in (48). The resulting equation can then be
rearranged to give

(49)

(50)

which is a generalization of (38). This time, in order to ensure westward flow, we must
have

A2HM
1 - a - B2(H _ HI) > O.

An interesting feature of (49) is the inverse dependence of U (and also 1/;8 in (46» on
B2

• This means that the more efficient eddies are in smoothing out gradients of q in the
BL (recall that B2

= oqjiJ1/;) the swifter is the resulting circulation (see, however, the
discussion in Section 10 regarding the neglected relative vorticity term). This clearly
reveals the role of eddies in driving the enhanced barotropic circulation against the
dissipative effects of bottom friction. It is easy to understand how this inverse
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dependence arises. We have seen that above the BL, the baroclinic structure of the gyre
is governed in the same way that it would be an infinitely deep ocean. The displacement
of the isopycnal at the top of the BL is part of this baroclinic structure and therefore
imposes the gradient aq/ay of potential vorticity that is experienced by the BL. Since
aq / ay = aq / it!/; • it!/;/ ay i.e. aq / ay = - B2

• u, the inverse dependence of U on B2 is
immediately apparent.

8. The inertial jets that close the circulation
In this section we show how the circulation in the gyre interiors discussed in Sections

5 and 7 can be closed by inertial jets along the western and eastern boundaries and
along y = 0 provided the interior flow is westward (as found by Pedlosky (1965) and
Robinson (1965».

Let us begin by differentiating (19) with respect to y so that within the "bowl" we
have

(51)

where U = -I/ty is the zonal velocity measured positive eastward. The solutions we have
found so far in this paper have been obtained by neglecting the '12 term in (51).

Denoting these solutions by Uj, they satisfy

a {f~aUf}az N2 az = Cl(Z)Uf + {j. (52)

We now seek solutions to (51) of the form U = 4>(x, y, Z)Uf(Y, z). Substituting this
expression for U into (51), neglecting the term involving 'V2ur and using (52), gives

'124> + :z {~~2~:}+ ~f 4>= ~f - 2{'Vur . '14> + 4>zurz ~2} (53)

from which it is clear that provided Ur < 0, i.e. the interior flow is westward, 4>has
exponential behavior and the circulation can be closed as required. Furthermore, the
boundary layer on the western and eastern boundaries will have local width ( - uri {j)1/2,
which is the standard width for an inertial boundary layer, and the jet along y - 0 will
have half-width (-urI{j)1/2 where here Ur is evaluated at y - O. These statements
assume that 4>varies across the boundary current and eastward jet faster than the scale
of variation of Ur•

These conclusions have been reached without actually stating the boundary condi-
tions under which (51) must be solved. These come from (22) and (23). Along the
western and eastern boundaries we have 4>= 0 which ensures no normal velocity there.
The condition on 4>at y = 0 comes from ensuring that all the mass associated with the
westward interior flow is returned by the eastward jet.
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Figure 7. (a) Streamfunction'" at depths of 150 m (upper line) and 3000 m (lower line) when N2
_

g'o(z + HM) corresponding to a two-density layer ocean. '" has been nondimensionalized by
{JYo/X2 where X-I is the baroclinic Rossby radius (g'HM)1/2//0' For this solution, HM - 300 m,
HI - 300 m, the ocean depth H - 4000 m, g' = 0.027m S-2 andfo and {J are chosen appropriate to
latitude 400. Y - - Y. marks the latitude where the "bowl" intersects the ocean floor. For Iyl >Y.
a _ 0.8 (Eq. (39». In the region Iy I <Y. a - 0 and B2 is chosen so that the velocity in the surface
layer is 0.25 m S-l [cf. Eq. (49)]. The solution for the subpolar gyre (0 < Y < Yo) is obtained by
symmetry about y = O. (b) As for (a) except that now H. - 2000 m and N2 has a uniform value of
2.5 x 10-3 S-I for -2000 m < z < -300 m and is zero otherwise. (c) The vertically integrated
volume transport in the western boundary layer (cf Fig. 1). The solid line is for the case shown in
Figure 7a and the dashed line for that in Figure 7b. The scale on the left, for the solid line, is in
units of {JYoK'H~/n. that on the right, for the dashed line, in units of {JyoNfHU6/5. The scales
have been chosen so that dimensionally the two lines can be compared directly. Note the sudden
increase in transport associated with the enhanced barotropic circulation in the region Iy I<Y. and
the sensitivity to the basic stratification with much greater transport in the two-layer case. (d) The
depth D to which the circulation penetrates. Notice how for the two-layer model (solid line) this
depth is deeper than for the case shown in (b) (dashed line) for which N2 has a uniform value over
the depth range - 2000 m < z < - 300 m and is zero otherwise.
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9. Calculated solutions

Figure 7a,b shows plots of the streamfunction 1/1 at 150 m and 3000 m depth in two
cases with different profiles for the buoyancy frequency N. In Figure 7a, N2 = g'o(z +
HM) so that the solution shown is the same as for a two-layer model in which all the
stratification is confined at the base of the WFL. In Figure 7b, on the other hand, N
takes a uniform value between z = - HM and z = - HI, but is zero otherwise. These
solutions are calculated using the formulae derived in Sections 5, 6 and 7-that is with
the relative vorticity term in (19) neglected. This means that 1/1 is a function of latitude
only at each depth. It has been assumed that in the region 0 < IY I < Yr, where the ocean
floor is playing a role, A2 is zero, although it is nonzero outside this region. This is
equivalent to assuming that within the WFL, the eddies are much more efficient in
homogenizing potential vorticity in the intense, barotropically enhanced recirculation
area than they are outside. We can see that this assumption is consistent with the
behavior of the numerical model shown in Figure 2 by looking at the plot of potential
vorticity at depth 150 m.

Looking at Figure 2 we can see that the presence of the eastward jet at mid-basin
distinguishes the "time-mean" flow in the western part of the basin from that farther
east. Comparing with Figure 7, we see that the solutions found here have features in
common with the flow in the western part. Note the sudden increase in westward
velocity that is associated with the enhanced barotropic circulation in the region IY I <
Yr indicated by the sudden increase in the gradient of 1/1. A corresponding increase is
found in the model at the boundary of the deep recirculation flanking the eastward jet
(marked by the arrows in Fig. 2). Note also that a sudden increase in westward velocity
between 35N and 36N is found in the observations described by Schmitz (1980) and
shown in Figure 3b. Furthermore, the enhanced barotropic circulation found here
clearly leads to a deep circulation reminiscent of Worthington's (1976) proposed deep
recirculation for the Gulf Stream system (see Fig. 3a). In connection with this, Figure
7c shows the vertically integrated transport in the western boundary layer, showing an
increase with latitude for the subtropical gyre similar to that observed for the Gulf
Stream system (see Fig. 1).

Comparing Figure 7a with Figure 7b, we can see that the flow field outside the
region of enhanced barotropic circulation is strongly dependent on the choice made for
N. In the case for which N is uniform in the region - HI < z < - HM, the velocities are
very weak in this region and only start to increase once the depth D of the "bowl"
increases rapidly near Y = ±Yr (see Fig. 7d). This dependence on the choice for N is not
surprising when one looks at Eq. (29) and notes that 1/1 depends on the integral of N2

upward from depth D. Clearly, such weak velocities suggest that in the outer parts of
the two gyre system (i.e. away from IY I = Yr), Sverdrup dynamics (not included in the
lowest order solutions given here-see Section 3 and Appendix 2) will play an
important role. This has, in fact, been suggested by Greatbatch (1986) on the basis of
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dynamical considerations which arise once we move away from the "inertial,"
"almost-free" limit. This was also found to be the case in the eddy-resolving calculation
of Robinson et al. (1977)-see their Figure 9a. It is also supported by the fact that the
calculated Sverdrup transport for the Gulf Stream at 31N is 32 Sverdrups (Leetmaa
and Bunker (1978» which compares well with the observed transport of 32 Sverdrups
through the Florida Straits (Richardson et al. (1969».

Related to the difference in 1/; between the two cases is the difference between the
depths D shown in Figure 7d. This difference arises because of the dependence of D on
1/;M in Eq. (34). For the two-layer stratification 1f,'M is much greater outside Iy I = YI so
that D is correspondingly deeper. This figure also shows clearly how the latitudinal
extent of the circulation shrinks with depth toward mid-basin, Y = O. This is also a
feature of the numerical model results shown in Figure 2.

10. Summary and discussion
We have seen how, by allowing a model ocean to have a memory of its potential

vorticity, approximate solutions can be obtained analytically which exhibit a deep
westward recirculation resembling that proposed by Worthington (1976) for the Gulf
stream system. We noted in Section 5 that the key to setting up the solutions is the
highly nonlinear, swift, western boundary current which carries its potential vorticity
toward mid-basin and leads to the formation of the eastward jet which penetrates into
the interior, as in eddy-resolving numerical models (see Holland et al., 1983, for a
review). By carrying low potential vorticity northward (subtropical gyre) the circula-
tion is stretched downward until it intersects the ocean floor. The presence of the ocean
floor then requires there to be an enhanced barotropic circulation of the gyre. This is
driven by eddies and dissipated by bottom friction. It is this enhanced barotropic
circulation which we have compared with Worthington's deep recirculation. It should
be noted that in this model, the baroclinic structure of the gyre provides a window
within which this enhanced barotropic circulation takes place. In particular, the
north-south scale of the deep recirculation is set by the baroclinic structure of the
gyre.

The approximation made to obtain these solutions has been to neglect the relative
vorticity in the gyre interiors. We can use (53) to check the consistency of this
approximation. It is apparent that wherever the solutions we have found vary on a scale
comparable to or less than (-UJ/{3)1/2 they are likely to be modified by the neglected
relative vorticity term. This will be the case where the "bowl" deepens rapidly and
intersects the ocean floor. Since the relative vorticity calculated from our solutions is
positive (subtropical gyre) in this region, we can expect this term to cause the "bowl" to
deepen even more rapidly than we have found here and broaden the region occupied by
the deep recirculation. This is because positive \121/; can partly balance the negative {3y
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term in (19). Also when the width of the deep recirculation region AI is itself
comparable to (_UJ/{j)1/2, the relative vorticity can be expected to modify the
structure of the deep recirculation region itself. These points will be explored in a later
paper. However, preliminary results suggest that the velocity within the deep recircula-
tion region cannot increase ad infinitum as B2 decreases (and hence the boundary layer
width increases) as suggested by (49). Furthermore, as B2

-+ 0, i.e. as the potential
vorticity in tbe bottom layer becomes more bomogeneoJJ3. the» so the vertical shear in
the westward flow is reduced (the model of Robinson et al. (1977), for example,
exhibits very little shear in this flow). Taking UI = 0.25 m s-1, appropriate for the
model shown in Figure 2, gives (Ud{j)1/2 = 112 km. This is sufficiently large compared
to the width of the deep recirculation (approx. 420 km) to suggest that the relative
vorticity is playing some role in this region.

It is not proposed here to enter into a detailed comparison between the "time-mean"
circulation in eddy-resolving numerical models and the solutions we have found (it is
hoped to do this in a later paper). An obvious point of discrepancy, however, concerns
the zonal penetration of the eastward jet. For the solutions found here, this jet extends
all the way to the eastern boundary. This contrasts with the situation found in models
(see Fig. 2). However, the solutions we have found apply in the "inertial," "almost-
free" limit in which potential vorticity is exactly conserved following the flow. As we
move away from this limit, we expect the eddies to become increasingly effective in
removing relative vorticity from the jet and in confining it more and more to the
western part of the basin. This is the situation found by Holland and Schmitz (1985).
By considering a number of different experiments with multi-level eddy-resolving
numerical models they concluded that the zonal penetration scale of the eastward jet
depends on a balance between instability processes that tend to confine it near to the
western boundary and inertial processes that try to extend it all the way to the eastern
boundary. A similar situation was also found by Greatbatch and Yamagata (1985) in
an equatorial example. Here, advection of relative vorticity from the western boundary
was important for maintaining a steady state eastward jet along the equator. The jet
was found to extend progressively eastward as the lateral mixing co-efficient (of
momentum in this case) was reduced. The question of this zonal penetration is further
discussed in Greatbatch (1987).
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APPENDIX 1
Comparison witb tbe bydrograpbic section along 500W made by "Atlantis" in 1956.

The purpose of this appendix is to compare the depth D of penetration of the
circulation as estimated using the theory in this paper with that which can be deduced
from the Atlantis section. This latter is taken to be given by the heavy black line in
Figure 8 which roughly marks the boundary of the region within which potential

sf1&.
so I I,

I

10llCI

a

ATLANTI' n,

Figure 8. Property sections along SOW made by Atlantis in 1956. (a) shows potential density
and (b) potential vorticity plotted with potential density as ordinate. Shading emphasizes low
potential vorticity water masses. The heavy black line marks the depth DODS (see Appendix 1)
(from McCartney, 1982).
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Table I. A comparison between depth D as given by (55) and DoBS(see text). Depths in
meters.

latitude

169
169

261
300

687
600

1055
929

1920 4338

(54)

vorticity q has been homogenized along the isopycnal surfaces. The depth of this line,
labelled DORS' is given for various latitudes in Table 1.

To obtain a theoretical estimate for DORS we must repeat the analysis at the
beginning of Section 5 this time without making the quasi-geostrophic approximation.
We do, however, assume that there is a basic density field P = fj(z) which the ocean
would have if it were undisturbed and at rest, as is done in quasi-geostrophic theory.
This sets the undisturbed spacing of the isopycnals corresponding to a state of zero
vortex stretching. Below those layers exposed to surface forcing and above the
influence of the ocean floor, the effect of eddies is to homogenize q along isopycnal
surfaces. We assume, as we did before, that isopycnals in this region have their
undisturbed spacing at the latitude of the zero wind stress curl line ()o (this was y = 0
before and corresponds to the choice co(z) = 0 for -H < z < -HM in (21». Within
the homogenized region we therefore have

f iJp fo iJfj
q=--=--

Po iJz Po iJz .

Here p is density, the Coriolis parameter f = 2Qsin(), where () IS latitude, and
fo = 2Qsin«()0)· Putting iJfjjiJz = f.J"(54) can be written as

sin ()o
iJpjiJz = -.-() f.J,(p).

sm

It then follows that assuming we know the depth h of an isopycnal of density p = Ph
say, which passes through the homogenized region, the depth - z (z is measured
positive upward with z = 0 at the surface) of an isopycnal of density p > PI is given by

-z = h - (sin ()jsin ()o) Jp _(1 ) dp.
PI f.J, P

Now the edge of the "bowl" containing the circulation, which is the surface
z = - D«(), occurs when this depth -z is equal to the depth the isopycnal has in the
undisturbed ocean outside the "bowl" where p ~ fj(cf. (24». This means that D is
given by both



1987]

and

Greatbatch: Inertial recirculation

fp 1
D=HM- -dp

PI Il(p)
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from which the integral can be eliminated to give

D= 1 { sinO}

{
sin O} h - -. 0 H M •1 - -- Sin 0

sin 00

(55)

Here HM is the depth the isopycnal P = PI has in the undisturbed ocean. This equation
corresponds to Eq. (31) and like that equation does not depend explicitly on the basic
density field p(z).

Table I shows values of D calculated using (55) with h taken to be the depth of the
11~= 26.8 isopycnal in the Atlantis section (Fig. 8). HM is taken to be the depth of this
isopycnal at ION and 00 is taken to be 40N. The agreement with Doss is clearly quite
good.Notice how D rapidly deepens north of about 30N and note also that the solid line
in Fig. 8 (which defines z = - Doss) curves down toward the Gulf Stream in the same
way as does D defined by Eq. (34) and shown in Figure 6 for the case when A2

= O.(A
proper test of the theory would be to use it to calculate h. This, however, would clearly
require a detailed analysis of surface processes which is beyond the scope of this paper.
The fact, however, that D (and Doss) curves downward in a way similar to that shown
in Figure 6 is a consequence of the similarity between h and the displacement of the
isopycnal at the base of the WFL i.e. at z = - HM in that figure. In the theory, this
displacement is dependent on the assumption that the flow in the surface layer is
described, at lowest order, by the "inertial" "almost-free" limit.)

Finally, we can now calculate the implied basic density gradient which was assumed
in the above analysis (although was not needed to evaluate D from (55)). Looking at
Figure 8, we can see that the solid curve intersects the 118 = 27.2 surface at 20N at a
depth of 600 m and the 118 = 27.5 surface at 25N at a depth of 930 m. This implies that
a local ap/az of (27.2 - 27.5)/330 = - 9 X 10-4 Kgs m-4

• However, within the
homogenized region (cf. Eq. (54)).

r a-
JO P 150 10-12 -1-1q = --<:=!. X m s
Po az

which implies ap/az = 16 x 10-4 Kgs m-4
, which is almost a factor of 2 larger! This

clearly shows that the assumption that a basic density field p(z) exists is suspect, which
perhaps is not very surprising (we can see in Figure 8 that in fact the isopycnals tend to
fan-out outside the "bowl" in association with the low q in the tropical zone noted by
McCartney (1982)-this, at least, is consistent with the discrepancy found above).
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APPENDIX 2
The Sverdrup transport as a first order correction

The governing equation for the steady, "time-mean" circulation is Eq. (8) i.e.

J(I/;, q) = ~G

where

(56)

and E is a parameter which, for the time being, need not be small compared with 1. In
the interior of the gyres, we neglected the contribution of the relative vorticity 'V21/;to q
so that (56) becomes

(
CJ {f ~CJI/;})J(I/;, (jy) + J 1/;, CJz N2 CJz = EG. (57)

Integrating (57) over the depth of the ocean, the stretching term drops out (using
integration by parts and the boundary conditions (24), (25) and (26» to leave

(58)

where

- fO - fOI/; = I/;dz and G = Gdz.
-H -H

For the calculations described in this paper,

where

{
I (-HM5, Z5, 0)

FI(z) = 0 (otherwise)

and

{
I (-H5,z5, -HI)

F2(z) = o (otherwise).

Here (7"" 7"y) is the surface wind stress, 'Yis the bottom friction coefficient and Y' •

(KY'q) is the eddy flux divergence term parameterized as a down-gradient transfer
(K> 0).
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When the surface wind stress curl dominates EG, (58) becomes

(59)

which is just the classical Sverdrup relation.
The "inertial," "almost-free" limit is precisely the limit in which E ---+ O. (Clearly we

need to nondimensionalize (56) in an appropriate way so that E arises naturally as a
small parameter. The reader is referred to Niiler (1966) to see how this works for the
barotropic model. A similar procedure would be used here.) Eq. (58) is then dominated
by an x-independent solution-the solutions for the gyre interiors found in Sections 5
and 7 ofthis paper (see also the discussion in Greatbatch (1986) of his Eq. (7) to which
(59) corresponds). Let us, how.ever, consider the expansion in terms of E discussed in
Section 2. At lowest order we have Eq. (9) i.e. J(I/;o, qo) ~ 0 and at next order equation
(12) i.e.

(60)

where

(61)

As before, we neglect the relative vorticity contribution to the potential vorticity.
Then

(c( given by (20»

(co(z) given by (21»

and

{jy + :z {~~2~o} = CI(z)l/;o+ co(z)

so that using integration by parts and the boundary conditions (24), (25) and (26), we
see that integrating (60) over the depth of the ocean leads to

(62)

where

- 10
- 10

1/;( = -H 1/;] dz and Go= -H Godz.
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(63)

This shows that the dynamics represented by Eq. (58) enters at first order when we
work in the "inertial" "almost-free" limit (i.e. E' « 1). When the wind stress curl term
dominates Go, Eq. (62) is just the classical Sverdrup relation. This shows that Sverdrup
dynamics is a first order correction to the solutions for the gyre interiors found in this
paper.

It is also easy to see how we can calculate the vertical distribution of the transport
associated with the first order correction. Neglecting the relative vorticity \12!/t, as
before, Eq. (60) takes the form

V ~ {- _1 f~2 ffi/lil + A2!/t1} = GMax HM N az z--HM

in the depth range -HM:5 Z:5 O.

a {a {f~ffi/l1}} 0ax az N2a; =

in the depth range -HI < z < -HM, and

~ { 1 f~ ffi/lil _ B2./, } _ G
VBax (H _ H ) N2 az ¥'I - B

I z--HI

(64)

(65)

(66)

in the depth range -H :5 z :5 -HI' Here V is given by (49) and VB is given by
evaluating (48) for u in the depth range -H :5 z :5 -HI' Similarly, GM and GB are
obtained by evaluating (61) in the appropriate depth ranges. Integrating (64) leads to

f~ av
N2 az = C

where v is the northward velocity (!/tl)", and Cis a function of the horizontal coordinates
x and y to be determined. Using (66), (63) and (65) become

v{ - ~M + A2VM} = G~ (67)

and

(68)

where VM = (!/t1)", and VB = (!/tl)", in the appropriate depth ranges. We also have,
integrating (66),

(69)
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(67), (68) and (69) are three equations for the three unknowns VM, VB and C and so
can be solved.
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