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Single-particle dispersion, Lagrangian structure function and
Lagrangian energy spectrum in two-dimensional
incompressible turbulence

by Armando Babiano,' Claude Basdevant,' Pascal Le Roy' and Robert Sadourny’

ABSTRACT

The single-particle dispersion, Lagrangian structure functions and Lagrangian energy spectra
characteristic of two-dimensional incompressible turbulent flows are investigated theoretically
and numerically. The domain of validity of the classical asymptotic estimates is extended; it is
shown in particular that the asymptotic behavior of the single-particle dispersion at small times
remains valid throughout the whole self-similar range when the Lagrangian energy spectrum is
steeper than w™'. Straightforward estimates of the Lagrangian integral time scale 7, and the
diffusion coefficient at large times #, based on energy and enstrophy, are proposed; to some
extent, they remain valid locally, which allows an analysis of the spatial variability of 7T, and #,
within a single turbulent field. Finally, the detrimental effect of artificial numerical diffusion on
the numerical simulation of Lagrangian statistics is highlighted and discussed.

1. Introduction

Flow measurements by means of Lagrangian tracers are now becoming widely used
in dynamic oceanography (see for example Freeland et al, 1975). The synoptic
circulation and its quasi-two-dimensional regime will be studied in the near future
using such Lagrangian observational techniques sustained by recent advances in buoy
technology and localization devices such as the ARGOS Satellite Location and Data
Collection System (1978). In relation to these developments, a number of new
problems are arising. The aim of the present work is to clarify the kind of information
on the macro-turbulent structure of the large-scale oceanic flow to be retrieved from
drifting buoy trajectories. More precisely, our main purpose here is to investigate the
variability of the eddy diffusion coefficient in a two-dimensional turbulent flow-field
containing sporadic coherent vortex concentrations, considered as an elementary
model of large-scale oceanic motion; the presence of coherent vortices (McWilliams,
1984; Couder et al, 1984) as well as nonmlocality (Bennett, 1984), important
consequences for particle dispersion.

First we consider the formulation and theory of Lagrangian statistics in general,
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involving Lagrangian energy spectra and single-particle dispersion, by following
closely the approach already used by Babiano et al. (1985b)—hereafter refered to as
BBS—for Eulerian statistics. We insist on the natural relations between the Lagran-
gian spectrum, the single-particle dispersion and the diffusion coefficient, which lead
to a consistent interpretation of asymptotic behaviors at both small and large times.
The Lagrangian time scale is also investigated in terms of its relation to enstrophy; so is
the asymptotic value of the diffusion coefficient, related in turn to the proper
combination of energy and enstrophy.

The analysis is then followed and sustained by a set of numerical experiments, where
ensembles of particles are released in selected areas of a two-dimensional turbulent
flow obtained from numerical simulations of the two-dimensional Navier-Stokes
equations; the launching areas are selected to provide separate investigations of
Lagrangian statistics in the various conditions encountered in such a flow, from strong
coherent vortices to weak turbulent surroundings. The problem of numerical diffusion
and its impact on the Lagrangian statistics, is addressed.

2. Definitions and relations

We consider the time evolution of the separation of a fluid particle from its initial
position in a homogeneous, stationary, zero-mean two-dimensional turbulent velocity
field. The squared displacement of the particle identified by its Lagrangian coordinate
a (its position at time ¢ = 0) is given by:

P¥a, 1) - ( fo "V(a, 7) df)l, (1)

which leads to

1 d .
55 P - fo V(a, 1) - V(a, 7)dr. )

Relations (1, 2) will be studied in statistical mean, using the average (- ) over all initial
positions a. We define the single-particle dispersion as

A(t) = (P*(a,0)).. 3)
The coeflicient of eddy diffusion is then defined by

1
K(t) SE%A(I)' 4)

All these definitions can be generalized to tensor notation, but such generality is not
needed in the present context.

a. The Lagrangian structure function. Let us recall some definitions and relations
involving the second-order Lagrangian structure function. The Lagrangian structure
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function is defined as
1
Su(t) = 5 (Iv@a,0) - v(a, ) *); (5)

and the Lagrangian velocity correlation coefficient as

{(V(a,0) - V(a, 1))

R/ (1) = 6
40 = Ve, o ©
Denoting by E the mean initial energy of the particles
E =% (|V(a,0)]?, )

which approaches the mean energy of the flow as the particle sampling gets dense
enough, we may write

Si(t) = 2E(1 — Ry(1)). (8)

The asymptotic behavior of the Lagrangian structure function at small times is given
by (Babiano et al., 1985a)

S.(1) ~ CP%, t—0 9)
with

RUAR

C
2p?

(10)

where p refers to density and p to pressure.
Assuming a finite Lagrangian integral time scale

TL=f0“’ R,() dt (11)

the Lagrangian structure function, at times larger than T, converges toward two times
the energy

S.() ~2E t>» T, (12)

b. The Lagrangian integral time scale. The Lagrangian integral time scale can be
related to enstrophy, according to the following argument. At small times (8) and (9)
yield

C,
R(1)~1— 5 (13)

To estimate T, we make the classical assumption that the integral of R (¢) (11) is
essentially determined by its curvature at ¢ = 0. Thus we may approximate R,(¢), using
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(13), by the Gaussian

C
R;(¢) = exp (— 3E tz),

1 [2zE
T,_—ZN/—E—. (14)

We now have to estimate C; for this, we may use relation (10) and Millianchikov’s
quasi-gaussianity hypothesis (Batchelor, 1951), which give

which yields

L1(d 2
C=6152f0 ;(ER//(r))dr. (15)

Using the same argument as above, we again approximate R,(r) by a Gaussian whose
curvature at the origin is given by relation (5) of BBS:

V4
R,(r) = exp( E 2)
where Z refers to enstrophy
= 1 {|lcurl V||?).
Then (15) is readily integrated to yield

- Y%EZ, (16)
T, = 2?” zZ\? (17

The general form of (16) and (17) could be anticipated on simple dimensional
arguments; the advantage of the analytical development is that it yields numerical
values for the proportionality constants, which can be verified experimentally. Further,
the Lagrangian integral time scale 7, is usually interpreted as the length of time
during which a particle keeps its initial direction; this time scale is thus related to the
curvature of trajectories and to velocity shears, both being measured by Z. Finally, we
may also point out that, Z being (in the weak dissipation limit) a Lagrangian invariant,
(17) can be efficiently used for any subset of practicles in the flow domain.

¢. Relations between Lagrangian structure function and smgle-parttcle dispersion.
Using the above definitions one classically obtains:

A = 4E [ Run)(t - mydr — 4E [ ( SL(T)) (t—ndr,  (18)
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K(1) = 2E fO’RL(T)dT _ 2Ef0’(1 _ S;g)) dr. (19)

Relations (9) and (11), added to (18) and (19), yield the following asymptotic
behaviors for the single-particle dispersion:

C
A ~ 2 T g2
(1) 2Et(1 12Et)

, t< Ty, (20)
C .,
K(t) ~ 2E1|1 —&t
A(t) ~ 2H1t
, t»T;. 2n
H ~2FET,

Formulas (20) (without the correction term in ¢*) and (21) were given first by Taylor
(1921), then by Kampé de Fériet (1939).

d. Relations with the Lagrangian spectrum. The Lagrangian energy spectrum is
defined by

2E fw
L(w) = — f R, (?) cos wt dt; (22)
™ 0
it is then related to the structure function by

S,(1) = 4 .( = sin? %’ L(w)de, (23)

and to the single-particle dispersion by:

A(t)=8f°° = Lw)do. (24)
]

The analysis of relation (24) shows (Kampé de Fériet, 1939; Batchelor, 1949) that at
small times all Lagrangian frequencies contribute equally to the aymptotic behavior
(20) of the single-particle dispersion. Conversely, at large times, small frequencies
dominate in (24), which leads to the following approximations:

A(t) ~ 2x L(0) ¢

# ~ wL(0) } (t> T;). (25)

Thus at large times the eddy diffusion coefficient is related to the Lagrangian energy at
the smallest frequencies. The implications of relations (23) and (24) on the Lagrangian
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structure function and single-particle dispersion in the case of a self-similar spectrum
will be discussed in the next section.

3. Behavior in a self similar range

Re-examining the relation between Eulerian energy spectra and Eulerian structure
functions or relative dispersion, BBS have shown that the latter saturate at a r’
dependency as soon as the former get steeper than k. This implies in particular that
energy spectrum is difficult to reconstruct from conventional Eulerian velocity
correlation measurements alone. The arguments developed in BBS are in fact very
general and can be directly restated in the Lagrangian framework involving Lagrang-
ian energy spectra, Lagrangian structure functions and single-particle dispersion.

a. The Lagrangian structure function. For instance, either (23) or formula (22) of
BBS yield the following behaviors of the Lagrangian or Eulerian structure functions
according to the slope-n of the corresponding (Lagrangian or Eulerian) energy
spectrum

n<l dS/doc~0
l<n<3 S()~c""'}, (26)
n>3 S()~c?

where o refers either to the spatial scale (in the Eulerian case) or to time (in the
Lagrangian case). Therefore the Lagrangian structure function also saturates at a ¢*
dependency for steep Lagrangian energy spectra, with the same detrimental effects as
stated above on reconstructing the latter from observations. Like in the Eulerian case,
the #* dependency extends the small-time behavior (9) to the whole inertial range;
replacing C by its value (16), we get

S(t) =% EZP, @n

orin terms of E and T,

Sut) = 3 ¢/T)’E. (28)

b. The single-particle dispersion. Similarly, the arguments given in BBS, applied to
relation (24), yield the following expression for single-particle dispersion

A(r) = 8t [ sinzg w gy, (29)
w

n

for a Lagrangian energy spectrum L(w) = w™" with low- and high-Lagrangian
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frequency cut-offs w, and w,. From (29) we get a relation analogous to relation (24) of
BBS:

1
A ) = n+l (1-m/2 _ I-my —(n+1) _ 2(n+1)/2 , 30
() = 1 ey QU @) = 5 () )|, (30)
yielding the following behavior:
(i) n>1 A(t) ~ 2
() -l<n<i A() ~ ™1, (31)
(iii) n < —1 dA/dt ~0

We proceed to a brief discussion of the three cases.

(i) n> 1. The t* dependency of the single-particle dispersion across the self-similar
range, obtained in the nonlocal case (n > 3) by the analysis of the Lagrangian
structure function, is now proven in a more general case (n > 1). This result
explains the weak dependency of the single-particle dispersion upon the
Lagrangian structure function shape noted by Taylor (1921) and Frenkiel
(1952, 1953).

(ii) —1 < n < 1. Linear dependency of the single-particle dispersion upon time
implies a constant energy spectrum (n = 0). But we have seen, from relations
(21) or (25), that A(t) is indeed linear at large times. This means that the
Langrangian energy spectrum must be white at small frequencies. It also
means that the asymptotic linear behavior of 4(¢) will be reached more or less
quickly, depending whether this asymptotic flatness of the energy spectrum
extends more or less to intermediate frequencies.

(iii) n < —1. This case, where the single-particle dispersion is constant, occurs for
an increasing spectrum, for instance just after a spectral gap.

¢. The diffusion coefficient. Definition (4) together with relations (31), yield the
following behaviors of the diffusion coefficient:

(i) n> 1:K(r)islinear in ¢. In this case the asymptotic behavior at small times (20)
extends throughout the whole range of time scales:

K(t) = 2Et, (n>1) (32)
(ii) — 1 < n < 1. In this case

K@) ~1", (~l<n<]l). (33)
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Table 1. Characteristic parameters of the numerical experiment.

L 1000 km

forcing scale R 50 km

small-scale dissipation t, = 6h30 2. =78km
large-scale friction t; = 76 days £4 =500 km
time step At=1h

energy 125cm? . s72

enstrophy 0.0177 (day)~?

enstrophy dissipation rate 1.38 107* (day)~?

The interesting case is the case #n = 0, which, as we have already seen, is the asymptotic
case for large times. Then K(¢) is constant, its value being given by the asymptotic
value (21):

K(t) = K = 2ET,,  (n=0). (34)

Then, the estimate (17) of the Lagrangian integral time scale yields

% = 8?’rzzz—lﬂ, (n = 0). (35)

Like in (16, 17), we have here an explicit value of the proportionality constant, which
has been derived from analytical developments and can be verified on experimental
grounds. A more complicated estimate, although dimensionally similar, has been
proposed by Holloway and Kristmannson (1984).

(iii) n < —1. In this case (31) yields

K(t) ~ 0, (n<-1). (36)

4. Numerical experiments
The Eulerian numerical model (Basdevant ez al., 1981) integrates the quasi-
geostrophic barotropic vorticity equation

S T D -FO) + 6O

on a doubly periodic square domain of side L, using a pseudo-spectral approximation
ona 128 x 128 grid. Here y refers to the stream-function, { to vorticity; F({) and G({)
respectively to the forcing and dissipation term. Dissipation is defined as

G = — 17 (— QA+ 1" Gy

where . and t, are characteristic times, and £, the cutoff scale and £, the largest scale.
Dissipation thus involves a “super-viscosity” based on an iterated Laplacian (Basde-
vant et al., 1983), designed to dissipate essentially enstrophy near the cutoff scale, and
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Figure 1. Initial vorticity field and localization of the six sets of tracers (a to f).

a linear “friction” designed to dissipate energy at larger scales. Forcing is included by
keeping the amplitude of the zonal mode k; = (0, 10) constant in time.

The model is integrated until stationary regime conditions are reached. At that
stage, the characteristic parameters of the flow are thos listed in Table 1.

At this stage particles are released in the flow and their Lagrangian motion is
obtained by integrating their transport equation using a first-order forward scheme
with a time step 7

x(t+71)=x() +7rV(x(2),1).

The velocity V at x(¢) is evaluated by linear interpolation within the relevant mesh. All
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Figure 2. Lagrangian structure functions as a function of time for particle sets a, d and f (log-log
scale); the £2 dependency is indicated.

experiments described in this paper use a time step = equal to the time step Az used for
integrating the equation of motion (which therefore verifies the CFL criterion).

The statistics leading to evaluation of Lagrangian structure functions, spectra,
correlations and integral time scales, as well as the evaluation of absolute dispersion
and large-scale diffusion coefficients, are constructed by following a set of fourteen
initially square patches of 10 x 10 particles released at contiguous gridpoints in
selected areas of the flow (Fig. 1). We first proceed to a detailed account of the results;
the question of how much they are affected by spurious numerical diffusion will be
addressed in Section 5.

a. Lagrangian structure functions. The Lagrangian structure functions computed
separately for patches a, d, f of Figure 1 are displayed in Figure 2. These three patches
have been chosen because they correspond to distinct energy or enstrophy levels: a is a
weakly energetic area, f is strongly energetic, and d corresponds to the average energy
of the flow (see Table 2 for more quantitative details). We indeed observe a ¢* behavior
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Table 2. Adimensional measures of energy E, enstrophy Z, Lagrangian time scale T;, and
combinations thereof within 14 patches labeled from a to n. The length scale and time scale
used for adimensionalization are /, = 159.1 km and ¢, = 386.3 days.

E Z T, 2ET, EZ-'/?

a 14.86 1838.7 0.052 1.55 0.35
b 25.28 2364.2 0.056 2.83 0.52
c 65.66 497.3 0.038 499 2.94
d 65.43 5596.7 0.0158 2.067 0.87
e 239.3 23167 0.0075 3.59 1.57
f 319.9 31460 0.0057 3.64 1.8

g 17.19 1254 0.0555 1.9 0.48
h 9.22 299 0.0895 1.65 0.53
i 111.21 6493.8 0.015 3.33 1.38
j 181.7 15123 0.00925 3.36 1.48
k 195.0 18417.3 0.007 2.73 1.44
1 15.25 1223 0.043 1.31 0.44
m 108 10983.7 0.00925 2 1.03
n 24.2 2570 0.0215 1.04 0.48

at small times, which in all three cases, extends approximately to the corresponding T,
(see again Table 2). The three structure functions can be used to quantitatively verify
relation (27). In (27), the coefficient 3.EZ has been obtained from asymptotic
arguments at small times; therefore, here £ and Z have to be taken as the initial value
of energy and enstrophy in each patch. In doing this we obtain, instead of the value 3
predicted by (27): .54 for patch a, .89 for patch d and .96 for patch f. For t > T, S.(¢)
is practically constant. There is no visible transition range between the two regimes.

b. Lagrangian energy spectra. Two distinct regimes are also seen on the Lagrangian
energy spectra (Fig. 3); they are approximately separated by T;' and are consistent
with the two regimes of S, (¢).

At high frequencies (w > T';'), L(w) is steeper than w > as expected; more precisely,
L(w) is significantly steeper than w > for frequencies slightly higher than 7;'; but at
very high frequencies (w » T;' ), all spectra saturate at w™>. This clearly illustrates
the systematic bias encountered in reconstructing an energy spectrum from a set of
correlation measurements, already mentioned in BBS for Eulerian spectra. The
correlation technique, if based upon an insufficient amount of data, tends to yield the
noisiest spectrum compatible with the ¢? correlation law; i.e., a w > spectrum. A precise
estimate of the real slope, if it is steeper than w™>, would require an unrealistically large
number of tracers. Figure 4 shows two estimates of the Lagrangian energy spectrum
over the whole domain of the flow, using either 256 or 4096 tracers; the —3 law
disappears in the second case.

At low frequencies (w < T'), we expect flat spectra, in accordance with (26) and
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Figure 3. Lagrangian energy spectra of particle sets a, d and f (log-log scale); the w™’
dependency is indicated.

the constant structure functions already found in Figure 2. In turn, this behavior
indicates, from (31), a linear behavior of A(z), or in other words, a constant dispersion
coeflicient given by (34).

c. Lagrangian correlations and integral scales. We show in Figure 5 the Lagrangian
correlations R,(f) obtained for the six patches of Figure 1, and in Figure 6, the
corresponding values of T, computed from (11), in relation to the local estimates of Z
or E given in Table 2. The diagram (7, E) of Figure 6b yields an estimate of the
variability of the dispersion coefficient #, as deduced from formula (21); the extreme
values of ¥ are within a factor 5, in spite of the large range of energies and enstrophies
involved in the choice of our patches (energy varies up to a factor 35 while enstrophy
varies up to a factor 100). Simultaneous estimates of £ and # reported from
observations in the ocean (Freeland er al., 1975; Price, 1981; Colin de Verdiere, 1983)
are also plotted in Figure 6b. Figure 6a shows that T, closely follows the Z~'/?
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Figure 4. Lagrangian energy spectrum of the whole flow. Solid line: estimation using 4096
particles. Dotted line: degraded estimation using 256 particles (log-log scale). The w™?
dependency is indicated.

dependency predicted by relation (17), especially in coherent vortex areas; the
coefficient v2w /3, however, appears overestimated; the experimental value is around
1.12 rather than 1.45. There is, to our knowledge, no observation of Z in the ocean,
connected with either measurements of the dispersion coeflicient, or measurements of
T,.

d. Single-particle dispersion. The dispersion coefficient % is given in Figure 7a as a
function of EZ~"2 according to formula (35). The formula is again reasonably
verified, but again it overestimates the slope by a factor 1.3. & appears less well
correlated to E than it is to EZ ~'/2, as shown by Figure 7b.

The absolute dispersion A4(¢) is shown on Figure 8, again for patches a to f. We
verify that the asymptotic law A () ~ t* extends indeed to time scales of the order of
T, as expected from (31) or (20); moreover, the coefficient 2F predicted by (20) is in
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Figure 5. Lagrangian velocity correlations R, (¢) for particle sets a to f.

excellent accordance with the numerical simulations. At ¢ ~ 7, we observe a rather
abrupt shift toward a linear dependency in time, consistent with the already noticed
saturation of the structure functions and the Lagrangian energy spectra. We know
from Figure 7a that % varies within a factor two in experiments a to f; such a
quantitative information is not easily recovered directly from the curves in Figure 8,
although it appears roughly consistent with them.

5. The effect of numerical diffusion

a. General considerations. The question of the accuracy of numerical schemes used
for simulating particle trajectories has been addressed by Haidvogel (1982) and
Haidvogel and Rhines (1983), who show that the first-order forward scheme we have
been using here is a scheme of poor quality, according to an efficiency test based on
particle conservation of “corrected” vorticity. This test, however, is somewhat incon-
clusive, for the following reasons. It consists in fact in integrating the Lagrangian
vorticity equation along the computed particle trajectory and comparing this Lagran-
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line; the solid line is a regression line using coherent vortex data only. In b, © symbol refers to
Price’s (1981), O to Freeland's (1975), and % to Colin de Verdiére’s (1983) measurements.
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(a) and initial energy (b).

Same symbols as in Figure 6.

gian prediction with the prediction obtained at the particle location using the Eulerian
model. In doing so:

(i)

(i1)

(iii)

we have to integrate the diffusion term along the trajectory, which introduces
an additional source of error;

the difference between the two values of vorticity at a particle location comes
from the numerical errors or uncertainties of both models, due in part to the
lack of definition of the sub-grid scales: it is not simply a measure of the
Lagrangian model deficiencies;

even though the initial seed of decorrelation between the two solutions, in terms
of Eulerian vs Lagrangian vorticity values, is the difference in truncation errors
of the two models, its subsequent growth is actually governed by the local
predictability properties of the motion: the lack of continuous dependency on
initial data which is characteristic of turbulent flows, makes this test a
predictability test rather than an accuracy test.

What we must evaluate is indeed the spurious numerical diffusion induced by our
present scheme. We get a first estimation by applying it to a set of particles drifting in a
frozen field; such particles would indeed follow the streamline if the displacement
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Figure 8. Single-particle dispersions 4(#) versus time for the 6 particle sets a to f. The slopes 1
and 2 are indicated, as well as the Lagrangian integral time scale T, for each set. The mesh
size Ax of the numerical model and the forcing scale R are also indicated.

algorithm were exact. We take the frozen field as the motion field at some arbitrary
time ¢ = #y; Figure 9 shows the trajectories of five particles followed during 4000 time
steps, superimposed on the frozen streamfunction field. On such a time scale we
observe rather small departures between trajectories and streamlines, except perhaps
around vortices, where particles are slowly expelled from the center.

To get a more quantitative estimate of numerical diffusion, we select six squares D,
(i = 1, 6) of m x m contiguous gridpoints, chosen to give a fair sampling of the various
flow conditions (vortices, active or inactive regions) encountered by a particle in its
motion (Fig. 9). For each square D, we define a time scale §; = n,7 ~ 2Ax/ VE;, where
E; is the energy per unit area in D;; 6, is thus a multiple of  which corresponds to an
average displacement of roughly two grid intervals for particles belonging to @;. Then
we consider 6 sets of particles which initially coincide with all the gridpoints a & D,
and we move them in the frozen field using 7 = A¢; we denote by x(a, 6,} their computed
location at time 6,. The root-mean-square variation of y in this motion

acY;

1
AYY(6,) ~ (# > lix(a, 0., 0] — ¥la, to]}z) 2 (37

which would vanish for a perfect scheme, is a measure of the spurious numerical
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Figure 9. Streamlines of the frozen flow used for testing the particle motion algorithm. Five
trajectories lasting over 4000 time steps are shown, together with the six squares D, for which
the ratio of numerical diffusion to turbulent diffusion is computed.

diffusion for the given flow conditions. Similarly we evaluate the (physical) turbulent
diffusion by

. 1/2
AYT(0) - Min [ T W+ to +6) — ¥(a, to)}Z)/ G8)
aC Dy, \M 4o,
where D, is the set of translations (kAx, 2Ax), —m/2 < k, < m/2. Thus (38) is a
measure of the deformation of flow structures, the minimum over @ & 2, being
applied to eliminate the local mean motion. The ratios A¥;' /A¥7, which measure the
ratio of erroneous numerical diffusion to physical diffusion, are displayed in Table 3
for the 6 samples of Figure 9; in (37) and (38) we have taken m = 10. Table 3 shows
that the effect of numerical diffusion when a time step 7 = At is used, is roughly an
order of magnitude smaller than physical diffusion. The worst case is the vortex f,
where we get a ratio of 0.3. The fact that we get a relatively large value there is easy to
explain; strong stable vortices tend to induce a relatively large numerical diffusion due
to the combined effect of high velocity and curvature, which ejects particles along
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Table 3. The effect of numerical diffusion when a time step r — At is used, is roughly an order of
magnitude smaller than physical diffusion. The worst case is the vortex f, where we get a ratio

of 0.3. The fact that we get a relatively large value there is easy to explain.

Sample D; a b c d e f
n; 224 172 108 108 56 49
AWN /AT 0.07 0.06 0.04 0.13 0.14 0.30

spirals; on the other hand, turbulent diffusion there is not particularly large, because
the strength of gradients is counterbalanced by stability. Even in this extreme case we
find that numerical diffusion is still significantly smaller than turbulent diffusion.

b. Numerical diffusion in a coherent vortex. Let us analyze in more detail the
numerical diffusion process within a circular vortex; we choose vortex f, which gave us
the worst result in Table 3. Figure 10 shows the Lagrangian correlation R(¢) for a
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Figure 10. Lagrangian velocity correlation R, (f) for a single particle released in the frozen
vortex f (discontinuous line), compared to the same correlation averaged over 100 particles

(solid line).
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Figure 11. Effect of the numerical diffusion on the Lagrangian energy spectrum (see text for
details).

single particle released in the frozen vortex. As expected, R(z) oscillates between 1 and
—1, with a period corresponding to one turnaround time. From the beginning however,
R(t) does not drop below —.9, which means that the path is not a perfectly symmetric
curve followed with perfectly regular speed; this has of course nothing to do with
numerical diffusion. Numerical diffusion is on the contrary responsible for the
long-term trends of the oscillation, characterized by a slow decrease in amplitude and
frequency. We thus observe that numerical diffusion begins to affect the correlation
significantly after a time of the order of .1; i.e., one order of magnitude above the
Lagrangian integral scale T, = .0057.

The effect of this numerical diffusion process on the Lagrangian spectrum can be
analyzed on Figure 11, where curve a corresponds to the Fourier transform of the
single-particle correlation R(#) of Figure 10; this spectrum is characterized by a broad
peak dominating a white noise band at low frequencies, and a = band at high
frequencies. The w™* effect has been already discussed in section 4b. Without
numerical diffusion we would have obtained something close to a Dirac function
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centered at wp = 27/ Ty, where T = .032 is the initial turnaround period of the single
particle. Numerical diffusion is thus responsible for the broadening of the peak at
frequencies w < wpg; this corresponds to the decrease in frequency already observed in
Figure 10. To see the effect, on the Lagrangian spectrum, of the various characteristics
of R(1), we construct an analytic function

. 2t
R(t) = 2By + (1 — o) cos—%exp (—at?) (39)

with T = Ty + t(Ty, — Tg)/ Ty Here Ty, = .4096 is the duration of our experiments.
Taking o, = .05, we get for R(z) the observed lower bound —.9 of R(¢); taking T, =
.044 yields a frequency modulation from an initial period close to T, to a final period
close to .054 as observed in R(?); and taking o, = 2.22 x 1077 gives us the observed
amplitude damping of R(f). With these values of the coefficients, the Fourier
transform of (39), performed in the same conditions as for obtaining curve a, yields
curve b of Figure 11, which exhibits a similar peak broadening, but misses the
low-frequencing white noise. Next, we degrade the approximation by choosing a, = 0,
hereby deleting the amplitude damping (curve c); obviously amplitude damping has
little effect on the spectral shape, if we compare curves b and c. We then get curve d by
deleting the period modulation, taking T, = T, and curve e by finally setting «;, = 0,
thus going back to a perfect cosine curve. The Dirac function centered at t = T is well
approximated by the two last curves. We conclude from this discussion that most of the
spectral peak broadening is due to the frequency modulation associated with numerical
diffusion. On the other hand, we have not really explained the low-frequency white
noise band; nevertheless, it is reasonable to also attribute it to numerical diffusion,
keeping in mind that our simple linear approximation of frequency modulation works
well in the immediate vicinity of wg (yielding the observed local broadening) but fails
to recover the behavior of L(w) at very low frequencies.

It is not fortuitous, in fact, that the broadening of a spectral peak associated with
single-particle motion within an isolated vortex occurs toward frequencies lower than
wg. An isolated vortex is a structure where vorticity is maximum at the center and
decreases regularly all around. On the other hand, the turnaround period T along a
closed streamline is easily identified with the average vorticity inside. Therefore, as a
particle is steadily expelled away from the vortex center by numerical diffusion, its
turnaround period increases.

Figure 12 shows the single-particle dispersion as a function of time, for the case of
vortex f. The effect of numerical diffusion is clearly described by the drift of the
extrema of curve a, which depicts the evolution of the absolute dispersion of a single
tracer released in the frozen vortex. If we compare curve a to curve b, which describes
the absolute dispersion of a set of 100 tracers in the same frozen field, we may infer
that the contribution of numerical diffusion to absolute dispersion in that case remains
negligible as long as ¢ does not reach at least an order of magnitude above T.
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Figure 12. Effect of the numerical diffusion on the single-particle dispersion (see text for
details).

¢. Evolving fields vs frozen fields. Figure 12 also shows the absolute dispersion of the
same initial set of 100 tracers, this time in the evolving vortex f (curve ¢). Comparing
curve ¢ to curve b, we observe that the time evolution of the flow does not alter
significantly the absolute dispersion, until times of the order of 10 x T, are again
reached. Of course at very long times, absolute dispersion in a frozen flow domain
characterized by closed streamlines becomes stationary or oscillating around a
constant value (except for the effect of numerical diffusion which tends to expel
particles out of the closed streamline domain), while absolute dispersion in the evolving
flow reaches the expected linear dependency of time.

Another illustration of the comparison between frozen and evolving fields is given in
Figure 13, which shows the Lagrangian correlation R; in both cases, for the three
patches a, d, f already described (remember that a is a weakly energetic region, d a
region with average energy, and f the strongest vortex in the flow). The fact that the
flow is frozen or evolving in time has obviously no effect on the Lagrangian time
scale.

Thus the fact that the flow varies in time has no significant effect on Lagrangian
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Figure 13. Lagrangian velocity correlations R, (¢) in evolving fields (solid line) and frozen fields
(discontinuous line) for particle sets a, d and f.

statistics until we reach time scales ¢ » T,. It follows from this that our present
statistics are not likely to be influenced by the truncation errors of the Eulerian model
in the same range of time scales.

d. Limits of validity of Lagrangian statistics due to numerical diffusion. We may
now go back to the discussion of Lagrangian statistics partially developed in Section 4,
and evaluate where biases due to numerical diffusion effects might affect the results.
Roughly speaking, we may trust everything which deals with time scales not
significantly greater than 7. For example, the frequency shoulders of the Lagrangian
energy spectra of Figure 3 are to be trusted. The low-frequency limits of the same
spectra, on the contrary, are dubious. We know that L(w) must become stationary at
very small frequencies, but the fact that stationarity is obtained right from the
frequency shoulder might be a numerical diffusion bias; we have seen in Section 5b
that numerical diffusion tends to broaden spectral peaks toward low frequencies.
Similarly, the estimates of single-particle dispersion shown in Figure 8 are likely to
be biased in the large time limit. At very large times, we normally expect, in connection
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with the stationarity of L(w), an asymptotic linear law (21)
A(r) ~2#1,

which gives the magnitude of the asymptotic diffusion coefficient #. A direct estimate
of # from Figure 8 is however impossible, because we cannot trust the single-
dispersion estimates A(r) in the large-time limit. On the opposite, the estimates of #
given in Figure 7 are reliable, because large time-scales have been discarded in
evaluating 7.

6. Conclusion

The present work confirms the classical asymptotic estimates of single-particle
dispersion at small and large times, given by Taylor (1921) and Batchelor (1949).
Further, it proves that the classical estimate at small times is more than an asymptotic
behavior when the Lagrangian energy spectrum is steeper than w™'; in that case it is in
fact valid all the way up to the integral time scale T;. For t < T, and spectra steeper
than w~>, we note a “practical indeterminacy” of the spectral slope, like the one
observed in BBS for the Eulerian spectrum, the Lagrangian spectrum, reconstructed
from an imperfect set of Lagrangian correlations, tends to saturate at an artificial
“background” w™* slope.

The Lagrangian integral time scale 7; has been related here to the local enstrophy of
the flow. This estimate is sustained by the remark that local enstrophy is indeed a
Lagrangian invariant in the weak dissipation limit; the relation between T, and local
enstrophy is of course particularly straightforward in the case of a coherent vortex. T,
appears as a very clear boundary between two regimes of the various Lagrangian
statistics. As ¢ increases and crosses T, single-particle dispersion shifts from a
quadratic to a linear dependency of time, the diffusion coefficient reaches its
asymptotic value, and the Lagrangian spectrum shifts from a steep power law to a zero
slope.

The Lagrangian statistics obtained from numerical experiments at large times (¢ »
T,) are difficult to use because they are contaminated by numerical diffusion. The
numerical diffusion bias could be alleviated by possibly an order of magnitude, just by
using a more elaborate (second order) scheme for extrapolating the particle motion;
this has not been done here. It was possible, however, to verify our theoretical
prediction of the value of the eddy diffusion coefficient at large times # = +8=/3-
EZ~'2 because this value is attained in practice as soon as ¢ reaches 7. From the
present simulations, the experimental estimate of # was found actually smaller than
the theoretical value by 20%; but more recent experiments performed by Lien Hua
(private communication) in the barocline case indicate a value 30% higher.

(3]
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