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Solutions for internal tidal generation
over coastal topography

by P. D. Craig1,2

ABSTRACT
Internal tides may be described by a hyperbolic equation which, for the case of constant

buoyancy frequency, has constant coefficients. The equation is solved by using the characteristic
geometry and characteristic functions to establish a set of linear algebraic equations in the
modal amplitudes. The accuracy of the solutions can be assessed using energy considerations.
The capability of the solution technique is demonstrated by simulating the barotropic generation
of internal waves over linear topography, with emphasis on near-critical topography, when the
solution exhibits high shears and discontinuous behavior at the critical slope. The structure of the
waves is determined by the ratio, a, of the bottom slope to characteristic slope. The magnitude of
the waves may be estimated by considering the ratio of the baroclinic to the topographic length
scales which, for linear slopes, is also given by a. For supercritical slopes, the offshore energy flux
varies approximately linearly with a, while for subcritical slopes it varies as as.

1. Introduction

Internal tides are often a dominant feature of the water motion over continental
slope topography. Here, the movement due to the barotropic tides distorts the
equilibrium density field up or down the slope, causing a baroclinic pressure gradient
and a resultant secondary motion at the tidal frequency.

Theoretical models of internal tides have largely been developed on the assumption
of two-dimensional, linear, inviscid dynamics. Rattray (1960) pioneered the theoreti-
cal description with a model of a two-layered ocean over stepped topography. The
model was extended to include continuous stratification by Rattray et al. (I969) and
Prinsen berg et ai. (1974).

With the introduction of continuous stratification, the dynamics may be described
by a single linear, second-order hyperbolic equation, which will be discussed in Section
2 of the present paper. If the buoyancy frequency is constant, the equation may be
integrated analytically along the characteristics. However, despite the simplicity of the
integration, solution techniques tend to be complicated by the boundary conditions,
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which include the requirement for a radiation condition on at least one lateral
boundary.

Two solution techniques applicable to finite width topography utilize the properties
of the characteristics. The first, developed by Sandstrom (1976), introduces a
transformation of the horizontal coordinate in such a way that successive surface
reflections of a characteristic occur unit distance apart. This enables the solution to be
represented as a Fourier series in the horizontal coordinate. The second, developed by
Baines (1973; 1974; 1982), expresses the lateral boundary condition as a Cauchy-
principal-valued integral, leading to a restatement of the problem as a Fredholm
integral equation.

The relationship between the stratification and the topography is specified by the
parameter denoted in the present paper as a, defined as the ratio of the bottom slope to
the characte~istic slope. Values of a less than, equal to and greater than one define
subcritical,,,critical and supercritical bottom slopes respectively. An increase in a from
a value less than one to greater than one, caused by an increasing stratification, can
lead to a dramatic change in the two-dimensional characteristic geometry, and a
corresponding dramatic modification of the internal tidal solutions.

The solution procedures of Sandstrom (1976) and Baines (1982) both require
considerable modification of the formalism if segments of the topography are
supercritical.

An alternative technique that is equally applicable to subcritical and supercritical
topography will be introduced in Section 3 of the present paper. This technique uses
geometric considerations, based on the characteristic configuration, to reduce the
internal wave problem to a set of linear algebraic equations, the equation unknowns
being the amplitudes of the internal modes. The accuracy of the solutions so derived
depends on the number of modal amplitudes determined, and may be assessed using
energy conservation.

The technique will be applied, in Section 4, to the generation of internal tides over a
linear slope. The emphasis of the solutions described will be on the behavior at
near-critical slopes, and the change in dynamics with the transition through critical.
Presentation of the solution stream function enables the two-dimensional structure of
the waves to be visualized, and highlights the close relationship between the geometry
of the characteristics and the internal waves.

Aspects of the internal wave generation can be clarified using scaling analysis,
which will be discussed in Section 5. The energy of the internal tides is dependent on
the ratio of the baroclinic length scale to the topographic length scale which, for linear
slopes, is again given by a. The offshore energy flux varies approximately as as for
a < 1, but varies linearly for a> 1. The onshore energy flux varies as as for all a, but is
discontinuous at a = 1, decreasing, in the example considered, by two orders of
magnitude with the transition through a = 1.

For near-critical topography, there is a narrow band of highly sheared, energetic
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motion. This band is directed upslope and onshore for a subcritical, but downslope and
offshore for a supercritical. In reality, the motion in these bands will be strongly
modified by frictional and nonlinear effects not included in the model.

2. Equations of motion
We consider an incompressible, inviscid, stably stratified fluid, with equilibrium

density given by Po(z). Coordinates are Cartesian, with x crossshore, y longshore and z
vertical. The motion is assumed to be hydrostatic, with no longshore variation and of
small enough amplitude that it may be described by linear equations. If p and P are the
pressure and density perturbations away from the rest state, and u, v and ware the x, y
and z velocity components respectively, then the appropriate equations are (e.g.
Wunsch, 1968):

Po(u, - Iv) = --Px,

po(v, + fu) = 0,

0= -pz - pg,

Pc + WPOz = 0,

ux + Wz = 0,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where t represents time, f is the Coriolis parameter, and alphabetic subscripts
represent differentiation.

The Boussinesq approximation is assumed valid so that, in (2.1) and (2.2), Po may be
considered constant while its vertical derivative, POz in (2.4), may be regarded as
nonzero (e.g. Wunsch, 1968; 1969). The buoyancy frequency N, defined by

(2.6)

will be taken as constant.
The time dependence of the variables in (2.1) to (2.5) may be assumed to be of the

form exp (-iwt), for real positive frequency w. The hydrostatic approximation in (2.3)
is equivalent to the assumption that w2 « N2

•

By (2.5), a stream function 1/1 may be defined by

u = -t/;ze-iW1
, (2.7)

Equations (2.1) to (2.4) can be reduced to a single equation in 1/1 given by

1/Ixx - c2
1/1zz = 0,

where

(2.8)

(2.9)
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Equation (2.8) is hyperbolic, and may be rewritten

\h~~ 0,

where

(2.1 0)

~ = z + ex

are the characteristic coordinates. Now,

and 17 = z - ex (2.11)

(2.12)

where ¢ and 'Yare described as 'the characteristic functions'. The pressure is given, to
within an arbitrary constant, by

(2.13)

The solution domain has the form shown in Figure 1, representative of coastal ocean
geometry. The mean position of the free surface is z = H, a constant, and the lower
boundary is z = h(x), with the slope hX<x) assumed non-negative. Variations in the
topography are assumed to be of limited extent, so that h(x) = 0 for x < Xl'

representing the deep ocean, and h(x) = ho, a positive constant, for x> X2' representing
the continental shelf. The domain boundary X = 0 is assumed open, and the coastline is
given by X = L.

The bottom boundary condition for I/; is

on z = h(x). (2.14 )

At the free surface, z ~ H, the linear boundary conditions are

and w = -iwr, (2.15)

(e.g. Gill, 1982) where r is the free surface displacement. In terms of 1/;,

on z~H. (2.16)

The slope-ratio parameter ex, introduced in Section I, is defined by

(2.17)

For general topography, a will be a function of x. The significance of ex will become
apparent in following sections.

In constant-depth water, the solution to (2.8) satisfying (2.14) and (2.16) may be
obtained by separation of variables to give the familiar decomposition into orthogonal
modes (e.g. LeBlond and Mysak, 1978; Gill 1982). At length scales relevant to the
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Figure 1. The solution domain, representing continental shelf and slope bathymetry.

coastal ocean, the barotropic mode is given, for x < Xl> by

I/; ~ z exp (ickoX),

where

(
N2)1/2k = +-o - gH '

and the baroclinic modes by

I/; = sin knz exp (ick.x),

where

(2.18)

(2.19)

(2.20)

k = mr
n H' n = ± 1, ±2, ... (2.21 )

At this order of approximation, there is no (depth-integrated) horizontal mass flux or
surface displacement associated with the internal modes.

A stream function solution of the form (2.18) or (2.20), with exp (-iwt) time-
dependence, represents a wave with energy propagation in the positive x-direction if k
is positive, and in the negative x-direction if k is negative. The phase propagation is, in
each case, in the same direction. The radiation condition requires that, at open
boundaries, the solution must be expressed as a sum of modes, each of which has the
required direction of energy propagation (e.g. Baines, 1973).

In the present study, we wish to examine the generation of baroclinic modes by a
barotropic wave, representing the surface tide, incident on coastal topography of the
type shown in Figure 1. The form of the barotropic wave may be simplified because the
topographic length scale L, of the order of hundreds of kilometers, is much less than the
barotropic wavelength, 211"/ koc, of the order of thousands of kilometers. As a result of
this contrast in length scales, the surface condition (2.16) may be approximated by

I/;xx = 0 on z=H. (2.22)
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In the case of strictly barotropic motion, when N == 0, the solution to (2.8), satisfying
(2.14) and (2.22), is

z-h
t/; = -iwfo(x - L) H _ h' (2.23)

where fo is the barotropic surface tidal amplitude at the coast.
The solution (2.23) was derived by Battisti and Clarke (1982) as a model of the

barotropic M2 tide. Their model also includes a wavelike dependence on the longshore
coordinate, which has been ignored in the present formulation.

In the presence of stratification, when N is nonzero, the barotropic mode will
continue to be given by (2.23) over the flat sections of the topography, x < Xl and
X > X2' That is, over the flat topography, the amplitude of the barotropic mode is
unaffected by the presence of stratification. This result follows necessarily because the
barotropic mode accounts for all the surface displacement and depth-integrated
transport.

We are now in a position to state fully the problem to be solved. We seek a solution to
(2.8), satisfying the bottom condition (2.14) and the surface condition (2.22). For
x < Xl> the solution is required to have the form

(2.24)

where fo is specified, and the an, n = 1, 2, ... , are the (unknown) amplitudes of the
reflected waves. For x> X2,

where

£n = mr/(H - ho), n = 1,2, ., . ,

(2.25)

(2.26)

and the bn, n = 1,2, ... , are the (unknown) amplitudes of the transmitted waves. The
factor 2i is included in (2.24) and (2.25) for later convenience.

In (2.25), the coastal boundary is assumed reflective to the barotropic mode but
transmissive to the baroclinic modes. The boundary will exert a strong influence on the
barotropic wave because the shelf width is so much less than the wavelength. By
contrast, the shelf width is usually considerably longer than the first-mode baroclinic
wavelength so that internal waves of tidal frequency are effectively damped before
being reflected by the coastal wall (e.g. Prinsenberg et al., 1974; Baines, 1982).

3. Solution technique
The earliest solutions to the problem defined at the end of the previous section were

determined for the special topographies of a step (Rattray et al., 1969, and Prinsen-
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berg et a/., ]974) and a strictly supercritical slope (Prinsenberg and Rattray, 1975). In
these cases, the solution representation (2.24) holds for x < Xl' where Xl is assumed to
be the location of the step or shelf break. The amplitudes an and bn can then be
determined by requiring continuity of I{; and I{;x at X =X1 for z > ho, with I{; ~ 0 on the
slope face.

For arbitrarily complicated topography, the solution for I{; may be determined by a
technique that may be regarded as a conceptual extension of this matching procedure.
Now the modal representations (2.24) and (2.25) cannot be equated at the same point
in space, but must be matched across the domain using the characteristic functions.

The characteristic functions for X < Xl are determined from (2.24). At X ~ 0, where
t = 17 = z, q; and 'Ymay be expressed as functions of z,

and

iwro (Z2 ) '"'Y\ (z) = - - + Lz + Lan exp (iknz) + aQ,
2H 2c n",[

(3.1)

(3.2)

where the subscripts 1 have been introduced to indicate evaluation at X = O.
Inclusion of the constant ao gives the most general form of q; and 'Y. However, it does

not affect the solution for I{; and does not enter the surface or bottom boundary
conditions. Thus, ao may be arbitrarily set to zero. At X ~ L, ~ ~ z + cL, 17 ~ z - cL and
q; and l' may again be expressed as functions of z,

(3.3)

and

(3.4)

where subscript 2 indicates evaluation at X = L. It is essential to retain the constant bo
in these expressions for q; and 'Y.Once ao has been set, the constant bo is no longer
arbitrary. It will have no effect on the solution for I{;, but will appear in the expression
for the pressure. Without the inclusion of bo, energy conservation cannot be satisfied
and the solution procedure will not converge.

The function q; is constant along characteristics of negative slope (~ = constant),
while l' is constant along characteristics of positive slope (17 = constant). For any
characteristic ~ ~ constant, intersecting the boundary z ~ h(x) or z = H, we may
consider the reflected characteristic 17 ~ constant, as shown in Figure 2. At the point of
intersection with the bottom boundary

q; = -'Y, (3.5)
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Figure 2. Successive characteristic reflections in a domain with (a) strictly subcritical bottom
topography and (b) a supercritical bottom segment. ZI and Z2 are the z-coordinates of the
initial and final points of the characteristic trace, and Xl and X2 are x-coordinates of the
surface reflections.

by (2.14), while at the point of intersection with the surface, by (2.22) and (2.23),

(3.6)

where XR is the x-coordinate of the surface intersection. It is thus possible to trace the
characteristic, and the appropriate characteristic function values, through the domain,
as shown in Figure 2. In Figure 2a, the bottom slope is everywhere subcritical (i.e.
a < 1), and the characteristic from x = 0 terminates at' x = L. If the bottom slope is
supercritical (i.e. a > 1) in places, a characteristic originating at X = 0 may be
reflected back to x = O. This situation is shown in Figure 2b.

For every characteristic trace we obtain a relationship between characteristic
function values at x = 0 and either at x = L (Fig. 2a) or x = 0 (Fig. 2b). The
characteristic path in Figure 2a, for example, would lead to the equation

(3.7)

while the path in Figure 2b would give

(3.8)

where z, and Z2 are the z-values at the end points, and XI and X2 are the x-coordinates of
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(b)

Figure 3. Two examples of characteristic traces for (a) ex = .6 and (b) ex ~ 1.4. The traces are
generated in each case by 16 characteristics originating at 9 equally spaced points on x ~ O.

the surface reflections, as shown in Figure 2. The relationship between the characteris-
tic functions, exemplified by (3.7) and (3.8), is in fact a linear algebraic equation in the
modal coefficients an and bn.

If the solution at x = 0 is to be represented by K modes (that is, the series in (3.1)
and (3.2) are to be truncated at the Kth term), then K separate characteristic traces
must be undertaken. This may be achieved as follows. The total depth at x = 0 is
divided into Kj2 subintervals of size ~z = 2H j K. The positive slope characteristic is
traced from z = 0, both characteristics from z = ~z, 2~z, ... (Kj2 - l)~z, and
finally, the negative slope characteristic from z = H. Two examples of this tracing
procedure are shown in Figure 3, one for subcritical bottom topography, and the second
for supercritical. For these examples, K = 16.
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At this stage, K (ZI, Z2) pairs are established. If M is the number of coefficients bn to
be evaluated then, accounting for the constant bo, M - I modes can be represented at
x = L. A further M characteristic traces are then undertaken by dividing the z-interval
(ho, H) at x = L into MI2 segments, and following characteristics from each of the
nodes, as was done from x = O. The traces establish a further M (ZI, Z2) pairs.

All the information about the bottom shape that is required for the solution is
contained in the K + M (ZI, Z2) pairs. In this sense, the K + M pairs represent a
projection of the bottom geometry by the characteristics onto the lines x = 0 and x = L.
In some ways, the pairs represent a discretization of the 'phase function' used by
Sandstrom (1976), which was essentially a description of the projection of the bottom
geometry by the characteristics onto the line z = H.

Using equations of the form (3.7) and (3.8), it is now possible to set up K + M linear
equations in ai' a2, ••• aK, bo, ... bM_I• A single matrix inversion is then required to
determine the solution. It should be noted that the K + M equations are complex, so
that the coefficient matrix will be complex with dimension (K + M) x (K + M).

The K + M linear equations express the relationship between the characteristic
functions at x = 0 and x = L. The equations may thus be considered as a discrete
equivalent of Baines's (1973) Fredholm integral equation, which expressed the
relationship between the characteristic functions in analytic form.

Once the coefficients an and bn are determined, the solution for if; is determined, at
least to within the approximation implied by the modal series truncation, at x = 0 and
x = L. The values of if; can be calculated at internal points simply as the sum of the
characteristic functions.

The technique will, of course, give an accurate representation of the solution only if
the first K modes for x < XI and the first M modes for x> X2 carry most of the energy of
the flow. Assuming the modal representations (2.24) and (2.25) converge, then K and
M can be made large enough for the energy of the truncated modal series to fall within
specified limits of the energy of the infinite series.

The convergence of a solution may be assessed using energy flux calculations. Since
there are no energy sources in the solution domain, the total, time-averaged energy flux
through the domain boundary should be zero.

The energy flux through a vertical section is given by

F-j
depth

1
- (p*U + u*p)dz,
4

(3.9)

( e.g. LeBlond and Mysak, 1978) where * denotes the complex conjugate, and u and p
may be calculated from (2.7) and (2.13). Thus the energy flux due strictly to the
reflected baroclinic modes is

(3.10)
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on x < Xl> while that due to the transmitted baroclinic waves on x> X2 is

(3.11)

The total flux for x < Xl and x> X2 also involves a contribution from the barotropic
pressure multiplied by the baroclinic velocity component. While these cross-terms
must be included in the energy balance calculation, they actually average out to zero
over a full first-mode baroclinic wavelength. Thus, F] and F2 may be regarded as the
baroclinic fluxes for x < XI and X > X2' Strictly, they are the depth-integrated,
horizontally- and time-averaged baroclinic energy fluxes on X < Xl and X > X2

respectively.
There is no energy flux thr!Jugh z = hex), but at z = H, the surface, there is a

nonzero flux resulting from the vertical barotropic velocity and the baroclinic pressure.
While the fluxes at X = 0 and X = L can be integrated analytically, that through z = H
must be numerically integrated. By tracing characteristics from z = H back to x = 0,
the baroclinic pressure can be determined at any point on z = H, so that the numerical
integration can be performed accurately. The flux calculations are straightforward and
will not be described in further detail.

For the solutions in the following section, three energy flux values will be presented:
F1, F2 and the energy flux residual, 0, defined as the time-averaged flux through the
domain boundary. For an exact solution, 0 would be zero. Its value is therefore an
indication of solution accuracy.

4. Solutions for internal wave generation

The solution procedure developed in Section 3 will be used in this section to examine
the generation of internal waves over shelf-type topography. For ease of interpretation,
attention will be limited to linear slopes over which a, defined by (2.17), is constant.
Solutions will be presented for a fixed bottom topography, as shown in Figure 3,
representing in idealized coastal configuration. The shelf is 50 km wide and 200 m
deep. The gradient of the slope is .01 and the ocean at the foot of the slope is 1000 m
deep. The wave frequency w is set to 10-4 s -[, f is set to zero, and the surface tidal
amplitude, ro, is assumed to be I m. We shall examine the nature of the internal wave
solutions for buoyancy frequencies of the ord(:r of 10-2 s -I, with particular emphasis
upon the difference in behavior between subcritical and supercritical situations.

With the given parameter values,

(4.1)

where a is dimensionless and N has the units of S-I. The examples to be presented will
be classified in terms of the value of a but may also be described, using (4.1), according
to the value of N.
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Figure 4. Generated baroc1inic wave for a ~ 0.6, showing streamlines over a half-period at

intervals of a sixteenth-period. The Roman numerals indicate the number of sixteenth-periods
past high tide. The streamline interval is 0.5 m2 S-I; arrowheads indicate the circulation
direction.

Solutions will be presented as streamline plots. This representation allows for easy
visualization of the two-dimensional structure of the waves.

It is important to note that the barotropic and barocIinic solutions do not have a
separate identity over the variable topography. The barotropic solution (2.23) does not
satisfy the governing equation (2.8) when N is nonzero. However, the barotropic
solution for x < Xl and X > X2, together with the surface displacement and
depth-averaged horizontal velocity component for all X are independent of the
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Figure 4. (Continued)

stratification. Thus, it is common practice (e.g. Baines, 1973), when N is nonzero, to
regard (2.23) as 'the barotropic solution', and the difference between the total stream
function and (2.23) as 'the baroc1inic solution'.

Figures 4 and 5 show the baroc1inic solutions, calculated using K = M = 16, for a
equal to 0.6 and 1.4 respectively, corresponding to the grid geometries in Figure 3. The
solutions are plotted over a half-wave period at successive instants separated by
one-sixteenth of a period. In the second half-period, the motion is the same as in the
first, but with the sign of the streamlines changed. Thus Figures 4 and 5 allow the wave
motion to be followed over a full wave period.

In each figure, the phase propagation away from the slope, in the same direction as
the energy propagation, is apparent. For the subcritical case (Fig. 4), there appears to
be approximately equal energy propagating into the deep ocean and onto the shelf,
with somewhat more energetic motion over the slope. For the supercritical case (Fig. 5)
there is energetic motion over the slope and in the deep ocean with relatively little
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Figure 5. Generated baroclinic wave for a ~ 1.4. Details are as for Figure 4.

[45, 1

motion over the shelf. (The shelf motion is not well resolved by the contouring in Figure
5.) There is a relatively higher energy beam, extending between parallel characteris-
tics, from the slope region into the deep ocean for the supercritical case, and onto the
shelf for the subcritical case. The highest velocities occur within these beams.

An interesting feature of Figures 4 and 5 is the manner in which the circulation cells
originate over the slope discontinuities. For example, in diagram iv of Figure 4, a small
cell is beginning to grow directly above the foot of the slope. This cell grows in time,
and in diagrams i to iii it separates, one lobe propagating into the deep ocean, the other
propagating upslope and, eventually, onto the shelf.
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Figure 5. (Continued)

Streamlines for a values of 0.9 and 1.1, close to, but on either side of, critical, are
shown in Figures 6 and 7. The streamlines exhibit the same large-scale features as
those for a equal to 0.6 and 1.4. As is to be expected, there is a narrow, high-energy
beam directed upslope onto the shelf in Figure 6, and downslope into the deep ocean in
Figure 7. These features are more intense than those in Figures 4 and 5. It should be
noted that the large-scale features over the slope and in the deep ocean show marked
similarity in the sub- and super-critical solutions of Figures 6 and 7.

Table 1 lists the values of FI, F2 and 0 for values of a ranging from 0.2 to 2 in steps of
0.2, calculated using both 8 and 16 modes at each of x = 0 and x = L. Doubling the
number of modes results in an improvement in the accuracy of the solution. The error is
reduced by an order of magnitude for subcritical a, but at supercritical values
decreases from an order of magnitude improvement at a = 1.2 to no improvement at
a = 1.8. Over the a-range listed in Table I, the relative error, 0/FI> ranges from better
than .01 to .05.

Table 1 reveals major differences between the baroclinic energy fluxes for subcriti-
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Figure 6. Generated baroclinic motion at the near-critical IX - 0.9, (a) in-phase and (b)
out-of-phase with the surface tide. The streamline interval is 0.5 m2 S-I and the arrowheads
indicate the circulation direction.

cal and supercritical a. For subcritical a, offshore energy fluxes (F1) and the onshore
flux (F2) are approximately equal. In addition, increases in a lead to dramatic
increases in the energy flux. Increments of 0.2 in a result in increases of up to an order
of magnitude in the energy flux.

For supercritical a, the energy flux onto the shelf (F2) is of the same magnitude as
the error of the calculations, being of the order of 2% of the flux directed offshore. The
offshore energy flux is apparently linearly dependent on the buoyancy frequency.
Increments of 0.2 in a lead to constant increments of 40 Wm-I in the energy flux.

The variation of the energy flux with a will be examined in more detail in the
following section.

5. Discussion

Broad features of the streamline distributions in solutions such as those of Figures 4
to 5 can be predicted from the characteristic distributions in Figure 3. In this section, it
will be shown that the magnitude of the stream function can be predicted by
assessment of the relative scales of the barotropic forcing and the baroclinic response.

If the total stream function,1/;, is expressed as the sum of a baroclinic component, 1/;',
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" I9

Figure 7. Streamline solution at the near-critical a ~ 1.1. Details are as for Figure 6.

and the barotropic forcing defined by (2.23), (2.8) can be rewritten as

By (2.24), we may estimate the modal coefficient al by

and, by (3.10), the energy propagating toward the deep ocean is estimated by

(w2 - f2)1/2 2
FI - PoN---- "lral·

w

(5.1)

(5.2)

(5.3)

The barotropic forcing, defined by the right-hand side of (5.1), occurs over the
topographic depth and length scales, Z and X say, which are in the ratio hx. The depth
to length scale ratio of the baroclinic response, defined by the left-hand side of (5.1), is
c. The depth scale of the baroclinic response is again the depth scale Z, which is a
physical restriction on the motion. The depth and length scales of the baroclinic motion
are then Z and (1/ c) Z. For the linear slope, when the flow is subcritical, c > hx and the
response length scale is less than the topographic length scale. In the supercritical case,
c < hx and the response length scale is greater than the topographic scale.
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Table I. Baroclinic energy flux toward the deep ocean (F.) and onto the shelf (F2), and energy
flux residuals (0) in Wm-l, for bottom to characteristic slope ratio a ranging from 0.2 to 2.0.
Results are shown for calculations using 8 and 16 modes.

16 modes 8 modes

a Fl F2 0 F, F2 0

0.2 .071 .065 .0021
0.4 .74 .70 .034 .92 .73 .10
0.6 4.5 3.1 .0071 5.1 3.5 .67
0.8 12 12 -.085 II 12 -.031
1.2 150 6.2 6.8 180 13 49
1.4 190 6.5 9.3 190 18 20
1.6 230 6.5 4.9 230 11 12
1.8 270 7.2 3.7 260 11 -3.4
2.0 300 11 5.5 280 12 6.2

The relationship between the length scales can be clearly seen in the subcritical and
supercritical solutions of Figures 4 and 5. In the subcritical case, baroclinic circulation
cells over the slope are narrower than the slope region. In the supercritical case, they
extend well beyond the slope into the deep ocean region.

The consequence of these relative length scales is that, in assessing the forced
response, the appropriate length scale, over which the effective forcing occurs, is
(1/ c) Z for subcritical slopes and X for supercritical slopes.

If, from (5.1), we define

(
z - h )

(3 = wSo H _ h (x - L) xx'

then the magnitude of the baroclinic stream function may be estimated by

1/;~x - (3.

For the subcritical case, x -(1/c)Z, so that

and

where

and

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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Table 2. Comparison between FI (in Wm-I) from full model calculation and that estimated by
order-of-magnitude formulae (5.7) and (5.11)

F] F}
a from Table I by formulae

0.2 .071 .04
0.4 .74 1.3
0.6 4.5 10
0.8 12 40
1.2 150 150
1.4 190 175
1.6 230 200
1.8 270 226
2.0 300 251

For the supercritical case, x - X, so that

(5.10)
and

(5.11)

Thus, simple scaling analysis predicts that the energy flux varies as a5 for subcritical
buoyancy frequencies, but is linearly dependent on a for supercritical frequencies.

Substitution of appropriate parameter values provides a quantitative test of the
arguments leading to (5.7) and (5.11). A comparison between F} predicted by (5.7)
and (5.11) and that in Table I is listed in Table 2 and plotted in Figure 8. The
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Figure 8. Log-linear plot of energy flux F. against a for full model calculation (dashed line) and
order-of-magnitude formulae (continuous line).
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parameter values used in the calculations were: w ~ 10-4 s-\ f = 0, So = I m,
(z - h)j(H - h) ""0.5,X = 8 x 104 m, Z = 800 m, x - L ""X, a2jax2 ~ljX2 and Po =
103 kg m-3•

Given the high powers involved in (5.7) and (5.11), and the arbitrariness in choice of
scales, the agreement in Table 2 and Figure 8 is surprisingly good. Manipulation of the
scales can lead to better agreement. For instance, use of the average depth over the
slope, 600 m, as the estimator for Z in (5.7) gives values of F. of .01, .4, 3 and
13 Wm-1, for subcritical a corresponding to those in Table 2.

The order of magnitude relationship (5.6) states simply that, for subcritical bottom
slopes, the amplitude of the internal wave motion varies proportionally with the
background vertical density gradient. In simple terms, the greater the buoyancy
frequency, the greater the horizontal density gradient set up by the motion due to the
surface tide, and hence the stronger the baroclinic response.

For supercritical slopes, an increase in N not only increases the horizontal density
gradient caused by the surface tides, but also increases the distance over which the
response must occur to beyond the horizontal extent of the topography. The effect of
the forcing, which occurs over the topographic length scale, must be 'spread' over the
baroclinic length scale to maintain the motion. These two effects cancel one another
and the order of magnitude result (5.10) indicates that, for supercritical slopes, the
amplitude of the stream function is independent of N. This means that the vertical
velocities and displacements may actually decrease with increasing N, while the order
of the horizontal velocity components will not change.

It is apparent from the form of (5.7) and (5.11) that the offshore energy flux F[ is
predicted to be a continuous function of a at the critical slope. This continuity may be
also inferred from the similarity of the solutions in the deep ocean in Figures 6 and 7.
By contrast, the onshore energy flux F2 will decrease dramatically with the transition
from subcritical to supercritical conditions.

The full time-development of the solutions in Figures 6 and 7 may be inferred from
Figures 4 and 5 respectively. In each of the in-phase pl~ts of Figures 6 and 7 there is a
triangular cell, centered over the foot of the slope, whose shape and size is determined
by the domain boundaries and the characteristics from the foot of the slope. One
quarter of a period later, the cell is splitting. In each case, the lobe over the slope
propagates similarly to a free wave, reflecting upslope from the subcritical boundary,
and downslope from the supercritical.

From each point on the subcritical slope, the ~-characteristic is directed offshore and
the 7J-characteristic onshore. There is approximately equal energy propagation
offshore and onshore, so that (5.6) serves as an estimator for v/ over the shelf, and (5.7)
may also be used to estimate F2•

For the supercritical case, however, most of the baroclinic energy propagating onto
the shelf appears likely to be generated upslope of the ~-characteristic from the shelf
break, that is, in the triangular region between this characteristic and the vertical line
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through the shelf break. This hypothesis can again be tested using the order of
magnitude relationships. In this region, since the baroclinic length scale is less than the
topographic length scale (5.6) and (5.7) again apply, but with Z = 200 m, and x = 2 X

104 m. By (5.7), F2 is then estimated as 5.1 and 16 Wm-I at a = 1.6 and 2.0
respectively. These values are consistent with those of 6.5 and 11 Wm-l in Table 1.

Using (5.7) with a = 1 and the appropriate scales, F2 is estimated to drop from 125
to 0.49 Wm-1 with the transition from a subcritical to a supercritical. With a
supercritical, F2 is then expected to increase again as a5•

There are many subtleties which are not described by the scaling analysis, and care
must be taken with its application. One such subtlety is the following. At a = 0.67, the
~-characteristic through the shelf break reflects from the surface as an 7J-characteristic
which passes exactly through the foot of the slope. For this a, most of the baroclinic
energy is trapped over the slope',and very little propagates into the deep ocean or onto
the shelf. This phenomenon was also noted by Baines (1973) and Sandstrom (1976). In
this case, although (5.6) still remains a good estimation of the magnitude of
1/1 over the slope, (5.7) drama ticall y overpredicts the energy flux Fl'

It is stressed that the reasoning of the present section has been applied only to a
linear slope. For other topographies, the relationship between forcing (topographic)
length-scales and response (baroclinic) length-scales will not be so simple, but
extension of the concepts developed in the section should not prove difficult.

6. Concluding comments

The major advantage of the solution technique described in the present paper is its
simplicity. The technique is strictly algebraic in its implementation and, in providing a
solution to the stream function equation (2.8), requires as its only approximation the
truncation of the modal series. By appropriate choice of the number of modes, it is
possible to resolve the solution over arbitrarily complex topography.

As demonstrated in Section 4, the technique may be used to examine solutions at
topographic slopes close to critical. These solutions indicate the mathematical behavior
as the critical slope is approached, providing information on the location of regions of
high shear and energy flux. In reality, these regions will be highly frictional and
nonlinear. Detailed description of the dynamics in such regions will require specialist
models incorporating these additional physical influences (e.g. Gordon, 1980).

For general oceanographic application, the most severe limitation of the solution
technique is the restriction to a buoyancy frequency independent of depth. This may be
a good approximation for water near the shelf break, particularly in thermally
stratified tropical waters (e.g. Holloway, 1984). However, it will never be a good
approximation in the deep ocean.

With a z-dependent density gradient, the stream function equation (2.8) remains
unchanged. The characteristics are, however, no longer straight, and characteristic
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functions cJ> and l' can in general no longer be defined. In this case, solution of the
equation requires resort to numerical techniques. One approach, described by Chuang
and Wang (1981), is to use standard finite-difference stepping procedures. This
approach has the disadvantage that it takes no account of the properties of the
characteristics, nor of the relationship between the characteristic slope and the bottom
slope. Alternatively, it is possible to modify the technique described in the present
paper.

Definition of the functions cJ> and l' effectively represents analytic integration of the
governing equation (2.8) along the characteristics. With N variable, the integration
may no longer be performed analytically, but may be approximated numerically. The
characteristic traces (e.g. Fig. 3) may then be regarded as a grid upon which
two-dimensional numerical integration may be undertaken. With this approach, the
modal representations of the solution at each end of the domain may be related, again
leading to a set of linear algebraic equations in the modal coefficients.

Numerical extension of the solution technique is described in detail in Craig (1986).
Preliminary results indicate that the dynamics are qualitatively similar in the presence
of variable N. Details of the solutions vary, however, so that, for comparison with data,
the model must include an accurate representation of the vertical density profile. The
order of magnitude formulae introduced in Section 5 still appear to result, with correct
definition of the x and z scales, in good estimates of the baroclinic amplitude.

Numerical solution of a hyperbolic equation in a partially bounded domain is not a
trivial problem. There is considerable attraction in the use of a simple analytic
technique, such as the one described in Section 3, in studies of internal tidal generation
and propagation. This form of study can be made site-specific by use of the relevant
topographic profile, leading to a qualitative understanding of the local internal tidal
dynamics, and their response to changing density gradients.
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