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On the role of topography in the ocean circulation
by Paola CessiJ and Joseph Pedlosky2

ABSTRACT
The ideas developed by Rhines and Young (1982a,b) are used to analyze the effect of

topography in simple baroclinic models. The presence of longitude-dependent topography
induces strong internal jets with transports of the same magnitude as the interior flow. It is
shown that the existence of these features is independent of the forcing structure at the top of the
model ocean, of the topography form and of the forcing in subsurface layers as long as the latter
is small. Some examples are given both for forcings which, in the absence of topography, would
give circulations closed in the interior and for forcings that require a western boundary current.

Topography also shifts the line of zero transport allowing for significant flowacross the line of
zero wind stress curl. Moreover, the lines dividing the subtropical gyre from the subpolar gyre
are different in every layer, a feature absent in the flat bottom case.

1. Introduction
In recent years a number of theories of the ocean general circulation have been

developed using conservative (quasi) geostrophic dynamics in the interior region of the
domain under consideration. Young and Rhines (1982) (YR) and Rhines and Young
(1982a) (RYa), using a quasi-geostrophic, large-scale layer model, have shown how
the circulation forced by a prescribed Ekman pumping can extend downward through
smal1 vertical transfer of horizontal momentum by eddies. Luyten et al. (1983) (LPS)
proposed a rather different mechanism, in which the subsurface waters are set in
motion by ventilation, through outcrop of density surfaces.

Al1 of these models are constrained by the Sverdrup relation between the vertica1\y
integrated meridional transport and the wind stress curl. This relation, though, is valid
only over a flat bottom, or where the bottom velocity is negligible, and Luyten et al.
(1985) have shown that in the North Atlantic subpolar gyre, topography has a strong
influence on the meridional transport.

The purpose of this study is to analyze the effect of topography on the wind-driven
circulation. We wi1\ borrow directly the ideas and terminology introduced in YR and
RYa.
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We find that large-scale topography, when containing a longitudinal variation, can
have a dramatic effect on the deduced circulation patterns in models of wind-driven,
stratified ocean flows. First, we show that even the presence of a uniform slope in the x
(longitudinal) direction alters the qualitative structure of the Sverdrup problem.
Closed geostrophic contours in the lower layer now contain flows which can be
matched to the Sverdrup external field only with the intervention of internal boundary
currents. We show that this arises whether or not the flow within the girdling
geostrophic contour has uniform potential vorticity and thus our results do not depend
sensitively on the homogenization arguments of RYa.

We then demonstrate that ridge-like topography, which we think of as a model of
mid-ocean ridge topography, will also produce boundary currents embedded in the
Sverdrup interior. This phenomenon is fundamentally different from the first case as it
depends on strong variations in east-west bottom slope and, in distinction with the
previous case, is present in homogeneous models as well.

During the preparation of this manuscript, the work of de Szoeke (1985) came to our
attention. De Szoeke has considered the role of uniform east-west slope (our first
topic). Although there are many elements in common in the two treatments, the
directions taken are quite distinct. We have chosen to emphasize the need to embed the
circulation in the dynamics appropriate to an oceanic basin. Therefore, in distinction to
de Szoeke we do not accept any deep flow on isolines of potential vorticity which
intersect the eastern boundary. Nor do we artificially adjust the wind field to produce
closure. This has important consequences for the predicted patterns. Our proposed
deep flows vanish completely outside the outermost geostrophic contour. We also show
that the general character of the flow is independent of homogenization of potential
vorticity and thus we do not restrict attention to harmonic topography as does
de Szoeke. We wish to emphasize that internal jets form with transport of order 1 both
in the interior and at the boundary of the region where the subsurface waters move and
such a region is well inside the interior of the basin.

Part of the motivation for considering topography was to examine whether the
effects of topography allow geostrophic flow across the line of zero Ekman pumping.
We show that this indeed occurs, especially in the case of forcing of realistic amplitude.
Moreover, the lines of zero transport are different in each layer, unlike the flat bottom
models.

In section 2 we briefly recapitulate the formulation and solution of the quasi-
geostrophic two-layer model for the case of constant bottom slope. That is, analogously
to YR and RYa we will force the upper layer with an Ekman pumping, while
subsurface forcing, provided by smaller scale activity will be considered small. Thus
subsurface flow will be significantly different from zero only in regions where flow
streamlines do not encounter boundaries unable to support boundary layers or,
obviously, where they close in the interior. The results illustrated by RYa strictly apply
to circulations that close in the interior of the ocean although eddy resolving general
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circulation models (see Holland et al., 1984) suggest that they may apply also to flows
passing through boundary currents. Therefore we will develop examples with wind
stress curl distributions that give circulations which close either in the interior or in the
western boundary.

In section 3 we present only the results of calculations of the three-layer model and·
make some comments on the results of the continuous case. In section 4 the
homogeneous and two-layer model are considered for the ridge-like topography.
Finally, in section 5 we make some speculations on the characteristic transport
expected in the internal jets we have predicted and the possible role of instabilities in
models which include the effects of relative vorticity.

2. Two-layer model
Our analysis is based on a quasi-geostrophic, two-layer, model on a is-plane, with a

wind stress applied at the top of the model ocean. In this section we consider a simple
constant slope topography at the bottom of the lower layer. We will assume that the
dominant internal nonconservative mechanism is lateral diffusion of potential vorticity
(for a discussion of this choice see Rhines and Young (1982b». If relative vorticity is
neglected, lateral diffusion of potential vorticity is equal and opposite in the two layers
and therefore gives no contribution to the vertically integrated flow. Therefore bottom
friction (for example) is also needed in order to balance the overall input of vorticity
but we will assume its effect to be negligibly small except in narrow regions.

The steady two-layer quasi-geostrophic equations are:

J(1/I2' q2) = R'iJ2q2 - D'iJ21/12'

with D « R/U (g' H2) « iSL, and

q\ = isy + 'iJ21/1\ + ~H5 (1/12 - 1/1\)
g \

2 /5 ( ) /ohq2 = isy + 'iJ 1/12 + g' H
2

1/1\ - 1/12 + H
2

, P2 - p\
g =--g

P2

(2.1)

(2.2)

where Ht, H2 are the average depths of the upper and lower layers respectively and h is
the topography.

In the interior of a wind driven gyre the relative vorticity is negligible with respect to
the planetary vorticity and the vortex stretching term, and so are all the nonconserva-
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tive terms. If the barotropic transport equation is formed one obtains:

where

(2.3)

(HI + H2),h = H.1f1 + H21f2'

Unlike the cases analyzed by RYa and YR, when topography is present the
barotropic transport cannot be calculated without solving for the lower layer flow. On
the other hand, flow in the lower layer will be (to the order where relative vorticity and
nonconservative terms can be neglected) along the contours of

, foh f~ ( ).1,
q2 = (3y+ -H + 'H H HI + H2 orb

2 g • 2

i. e., 1f2 = F('/2) and in particular 0 = F({3y + foh / H2) at the boundaries. In general the
argument of the r.h.s. will not be constant on the boundaries and the only solution is the
trivial one F(i'h) = O. This reasoning cannot be applied when the flow lines close either
in the interior or in some boundary layer region, which we choose according to the
dynamics of the specific problem. For example if topography is taken to be a constant,
say positive, east-west slope (h = hJx - xe» we know that linear frictional boundary
layers will be allowed on the northern side of the basin, in addition to the western one.
In this case 1f2 need not be zero if contours hit only the western or the northern
boundaries, or obviously if they close upon themselves.

Throughout this section topography has in fact been chosen as a constant positive
east-west slope, a ridge-like topography is dealt with in section 4. If such a slope is
chosen to be of the same order as the {3-term Q2, contours would go across the basin in
diagonal straight lines were it not for the interface displacement due to motion in the
upper forced layer. If this forcing is weak, though, such modifications will be small and
we can foresee that the lower layer flow will be zero. On the other hand if such an
interface displacement becomes comparable to the {3-effect (or the topographic term)
there may be some regions where q2 contours are bent enough to allow flow in the lower
layer.

To keep the mathematics as simple as possible we will select the forcing function in
the form of (see Fig. I)

We(x, y) = Wf(y)

1

y/Yo
fey) = 2 - y/Yo

y/Yo - 4

W<O

ify <Yo

if Yo ~y ~ 3yo

if 3yo ~y ~ 4yo (2.4)

which in the absence of topography would give two gyres antisymmetric about the
latitude of zero Ekman pumping.
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-IWI IWI

Figure 1. The Ekman pumping (2.4) as a function of latitude. The ordinate is y/4yo.

Wherever the lower layer is motionless the vertically integrated transport can be
ca1cula ted as

The resulting q2 contours are

• fo ( ) (h f6We(y»)
q2 = !3y + H

2
x - Xe x + g'H

1
!3 .

Some examples are shown in Figure 2 for different values of the forcing and of the
topographic slope. Notice that there is a region where the isolines do not meet either
the eastern or the southern boundaries (it is there that the lower layer will be moving)
and that this region increases as the forcing gets stronger. Comparing with the
corresponding case for flat bottom, it is evident that the line dividing the subtropical
and subpolar gyre is greatly displaced from the line of zero Ekman pumping, being
altogether absent for large bottom slope/forcing ratios. Analogously to YR, RYa and
Pedlosky and Young (1983), we will assume that where the lowerlayer moves it will do
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Figure 2. Isolines of (/2 for the two-layer model in the nondimensional x - y plane. Both x and y
are scaled by x •. (a)HJ - H2'/ohx/({3H2) = O,Yo/x. - 1/4,/~W/({32g'HIH2) = -.5 (b) same as
for (a) except for fohx/({3H2) ~ .8 (c) same as for (b) except for f~W/({32g'HIH2) - -1.2.
The heavy line is the outermost closed fh contour and the straight dashed lines are the
characteristics (2.6).

so as to keep its potential vorticity constant. The arguments leading to the homogeniza-
tion of potential vorticity may not hold when the flow lines pass through a viscous
boundary layer (see Ierley and Young (1983)), they apply though when the flow lines
close in the interior. Our point, however, is not to discuss here the validity of the
homogenization arguments, and we hope to be able to convince the reader that our
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(2.5)

results are independent of the choice of constant potential vorticity, although some
details may change if a different choice is made.

In order to get closed q2 contours we must have:

f61wl 2
X. ,H H > (3 Yo·g I 2

Typical oceanic values are: x. = 6000 km,fo = 10-4 sec-I, HI = 1000 m, H2 = 3000 m,
(3= 1O-13cm,,"1sec-I, Yo = 1000 km, g' = 1 cm/sec2, W = 1O-4cm/sec. For these values
the ratio of the left-hand side to the right-hand side of Eq. 2.5 is 2.

Furthermore, in order to obtain an anticyclonic circulation (beside the cyclonic one)
as shown in Figure 2c we must have:

The constant value Q2 of potential vorticity is chosen in such a way as to match the
streamfunction 1/12 on the outermost closed q2 contour.

Using this relation to eliminate 1/11> the barotropic transport equation becomes

(3(HI + H2)1/12x - foh,,1/12Y= foW. + (3HIg'h,,/fo

and is independent of the (constant) value of Q2' which appears only in the boundary
conditions.

If the stream function is nondimensionalized with

(x, y) = x.(x', y')

dropping the primes one gets (see also de Szoeke (1985)):

/
foh" f6W• fohx

(1 + H2 HI)1/12x - (3H
I

1/12y= (32g'Hi + (3H
1

with 1/12 = 0 on iMx, y) = Q2 which is a partial differential equation whose
characteristics are:

(2.6)

In Figure 2c it is shown that the characteristics intersect twice the outermost closed q2
contour in a significant portion of its perimeter. If the choice is made of satisfying the
boundary condition of no normal flow at the intersection lying at lower latitude, 1/12 will
have, in general, a value different from zero at the intersection at higher latitude.

The physical mechanism may be more easily understood if a simpler geometry is
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analyzed. Consider the following forcing function (compare with RYa)

W. = -ax

~=O

if x2 + y2 < r~
ifx2+y2<r~

with the domain of the basin being -00 < x < +00.

The governing equations are (2.1) and (2.2). Where the lower layer is motionless
(take HI = H2 = H)

R./, foa (2 2 2)
1-''1''1 = 2H x + y - ro

(11/;1 = 0

which is the equation of concentric circles centered at (0,0) of maximum radius ro· (/2

contours then become

The first is an equation for arcs of circle. If the forcing is strong enough, i.e.,
ro > [x~ + y~]1/2 with xo = (1g'Hhxf(af~) and Yo = (12g'H2f(af~), these arcs may close
to full circles centered at (xo, Yo) with maximum radius rl = ro - [x~ + y~] 1/2 (see Fig.
3). Notice that in the absence of topography xo = 0 and the circles are centered about
x = 0 so that f f A W.da = 0, where A is the area enclosed by any circle centered at
x = 0, y = Yo. When topography is added this center is shifted toward one side of the
basin so that the total input of vorticity is nonzero and cannot be balanced without
appending boundary layers. If the lower layer potential vorticity is assumed constant
inside these circles the total transport is governed by:

where the characteristics are the same as in Eq. (2.6). Again on the northwest half of
the r1 circle the value of 1/;2 as resulting from the interior dynamics will be different
from zero. In the following we show that the mismatch does not depend on the choice of
constant potential vorticity and would arise in any case as long as topography depends
onx.

Now returning to the more general case, suppose the forcing is such that there is a
contour of fh which closes in the interior with (/2 = {1y + fohf H2 + F'It ('It is the upper
layer streamfunction calculated with no lower layer flow and F = f~(HI + H2)f
(g'H1H2)): inside this contour 1/;2 = G(q) where q = {1y + fohf H2 + F1/;I'Therefore the
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Figure 3. Contours of rh. The dashed circle (r = ro) is the bounding contour for the barotropic
streamfunction. The dashed-dot lines are the characteristics (2.6). On the northwest half of
the outermost closed q2 contour (r = rl) the value of 1/;2 will be different from zero.

equation for the vertically integrated transport in the presence of topography becomes
(compare with Eq. 2.3):

((3 + H2 F dG ((3 + fohy) )''' _ fohx F dG .1, = foWe = (3'lt
HI dq H

2
'l"lx HI dq'l"IY HI X'

We can change to a new coordinate system ~ and T, where ~ are the characteristics of
the flow, such that

((3 + H2 F dG ((3 + fohy) )~'" = fohx F dG ~y
HI dq H2 HI dq

ax = (3 + H2 F dG ((3 + fohy)
aT HI dq H2

ay H2 F dG foh",
aT = - HI dq H2

so that the equation for 1{;1 becomes

a
aT 1{;1 = (3'lt",.

We now integrate the equation along a line where ~ is constant (~ = ~o) from the point
TO to the point TI' where TO and TI represent the intersections of ~ = ~o with the
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x
Figure 4. Sketch of the geometry for the integral constraints. See text for explanations.

outermost closed (/2 contour, as schematically shown in Figure 4. Assuming that at TO

Vt,(TO' ~o) = 'IJf(TO'~o) we find

Vt,(T" ~o) - 'IJf(TO' ~o) = {j fT' dT aa ('IJf(~0, 1'»
TO x

Using the definition of q2

and recalling that iJi To, ~o) = iJ2{ 1'(> ~o),

OVtl = {j fT' dT!.- ('IJf(~o, 1'» + I/F fT' dT!..- ({jy + foh/H2)IHo
TO ax TO aT

and finally using the definition of l'

OVt, = Vt,(T" ~o) - 'IJf(T" ~o) = {j/ F fT' dT q2Jc'
TO

The right-hand side vanishes for every value of ~o only if l' = const. lines coincide with
x = const. lines and this can only be if topography is independent of x. Similarly the
jump in the lower layer is given by
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Therefore, no matter what G(q) will be, a mismatch in the streamfunction field will
occur at the boundary of the region where the lower layer is moving. Because the
existence of the mismatch is independent of the particular form of G(q), we will
continue our calculations making the convenient assumption that potential vorticity is
constant in the lower layer. Notice that the jump in the lower layer potential vorticity
q2 is

qi7"I' ~o) - q2(7"I' ~o) = {31.'1 d7" (1 - F ~~) q2x

and for the abovementioned choice dG / dq = 1/ F so that there is no jump in potential
vorticity. In Figure 5 the resulting streamlines for the two layers are shown for the
more realistic wind stress pattern (2.4).

Because of the choice of constant potential vorticity the mismatch at the boundary of
the outermost closed q2 contour is equal in the two layers. This is plausible since this
choice implies strong interfacial friction which tightly locks the two layers. If for
example bottom friction is considered of the same order as interfacial friction, the
circulation integral inside closed q2 contours (see RYa) gives

q = F(1 + D/ R)1/;2 + constant

where D is the coefficient of bottom friction. Now the boundary layer transport in the
upper layer will be larger than that in the lower layer, in particular

The poSItIOnof the mismatch where a boundary layer has to be appended is
consistent with the notion that in the presence of this topographic slope a barotropic
flowwould be able to form a linear viscous boundary layer on the northern side of the
basin (see Appendix A). The length of the mismatch region increases with the
topographic slope and the strength ofthe forcing (see Table la). From Eq. (A.3) it can
be checked that as the point of maximum upwelling shifts northward the length of the
mismatch region becomes larger. On the other hand if one considers a fixed distance on
the outermost closed q2 contour from the point Xo where the discontinuity begins, the
strength of the jump is almost independent of the parameters. Because the jump
increases with increasing distance from Xo (see Table 1b), the final transport entering
the western boundary will increase with the topographic slope and the forcing
strength.

It is appropriate to mention here that the line of zero transport does not coincide in
the two layers unlike the case for flat bottom. Moreover there is some vertically
integrated flow across the line of zero Ekman pumping. When a subtropical gyre
appears in the lower layer (see Fig. 5b) the flow tends to be rather zonal in the
southwest corner of the subpolar gyre, in close analogy to the case of a barotropic flow
in the presence of the same topography (see Appendix B and Fig. Bl). As could have
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Figure 5. Streamlines for the flow in the two-layer model. (a) f~W/({32g'HIH2) -.5; (b)
f~ W/({32g'H1H2) = -1.2. The line of increasing thickness shows the location of the
discontinuity.
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Table lao Easternmost point of discontinuity in units of x. (constant slope topography) as a
function of the nondimensional forcing I~W/({j2g'HD (rows) and topographic slope 10k,';
«(382) (columns).

Topographic slope

Forcing .4 .8 1.2 1.6 2.0

-.50 .000 .154 .193 .213 .225
-.75 .203 .390 .390 .390 .390

-1.00 .315 .500 .528 .510 .500
-1.25 .388 .560 .628 .604 .584
-1.50 .440 .601 .667 .684 .653
-1.75 .480 .663 .695 .729 .714
-2.00 .513 .657 .717 .750 .780

been expected, when the forcing gets stronger the circulation in the lower layer
resembles more closely the forcing pattern itself and, therefore, the flat bottom
circulation. Comparing the lower layer streamfunctions of Figures 5a and 5b it can be
seen that the water crossing the zero Ekman pumping line (at y = 1/2) is of a more
southern origin when the forcing is weaker.

We now want to increase the vertical resolution of our model in order to test the
robustness of our results and to see whether topography produces other new features
when more layers are added.

3. Three-layer model
In order to make useful comparison between the two- and three-layer model, we

have to choose our parameters in such a way that these models represent different
approximations of the same physical process. Therefore some minimal requirements
arise: the total mass of our system has to be the same and the mass of cold and warm
waters have to be separately conserved. The first statement implies that, to the order
considered by the Boussinesq approximation the total volume has to be the same in the
two models. Therefore, indicating the two-layer model variables with primes

HI + H2 + H3 = H~ + Hz = 2H for equal layers.

Table 1b. Transport of lower layer flow at the northern boundary of closed Ch contours, as a
function of the distance from the point xu/ x. where the discontinuity begins (columns), for two
values of the forcing/~W/«(32g'HD (rows), with slope/ohx/«(3H2) = .8.

DIstance from Xo

Forcing .05 .10 .15 .20 .25 .30 .35 .40

-1.25 -.03 -.07 -.11 -.16 -.21 -.26 -.32 -.38
-1.75 -.02 -.06 -.11 -.16 -.21 -.27 -.35 -.43
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The second statement is not as easy to quantify, but a simple formulation which clearly
satisfies it is:

which gives

(3.1)

where g' = (P2 - PI)g/ P2. g" = (P3 - P2)g/ P2. g; = (P2 - p;)g/ p;.
The equations for a quasi-geostrophic, very large-scale, (j-plane, steady three-layer

model in the presence of wind stress forcing, bottom topography, small lateral diffusion
of potential vorticity and very small bottom friction, are:

J(lh, ql) =fO;:' + R'\12ql

J(Vt2, q2) = R'\12q2

J(Vt3, q3) = R'\12q3 - D'\12Vt3,

P
ql = {jy + 'Ho

(Vt2 - Vtl)
g I

f~ f~
q2 = {jy + 'H (Vtl - Vt2) + "H (Vt3 - Vt2)

g 2 g 2

f~ ) foh
q3 = {jy + "H (Vt2- Vt3 + -H .

g 3 3

Again we will assume that the potential vorticity is constant in the two unforced
layers, in those regions where the streamlines do not hit either the eastern or the
southern boundaries. The limiting contours of such regions are again found assuming
no flow in each layer outside them and are shown in Figures 6a and 6b. Now the
condition on the forcing strength in order to have a deep moving layer is:

f~1wi {:l2x. ---;--H2 > 'Y,.., Yo
gl

with

and the analogous condition for the middle layer is:
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Figure 6. Bounding contours for the regions of flow in the middle and lowest layer. Outside the
dashed line If3 - O. Outside the full line If2 = O. (a) loh./ ((JH.) - .8, Yo/x. - 1/4, HI - D,
I~W/({J2g'HD - -.5, g'/g; - 3/4' g"/g; - 1/2, H2/ D = H)/ D = 1/2. (b) same as for (a) except for
nW/({J2g' H D - -1.2.

Notice that, because of our choice (3.1), in order for the deepest layer to move the
forcing has to be stronger than in the equivalent situation for two layers. In particular

f~1wI (I H H "/(H2 '»R2x'-'-H2 > + 3 u: gl /J Yog\

which is to be compared with Eq. (2.5).
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In the following we will present the results without showing the detailed derivation,
emphasizing the similarities with the two-layer model and the new findings for
increased vertical resolution.

One result of the introduction of bottom topography can be readily seen by
inspection of Figure 6b: there is a small region at the northwest corner of the basin
where the deepest layer moves although the middle layer does not. This is quite
contrary to the results in the absence of topography where the region of "closed q3
contours is properly contained in the region of closed q2 contours" (see RYa). This lack
of "nesting" of the closed q contours also occurs when ventilation is present (see LPS)
although for different reasons. In the calculations we have done, though, we haven't
corrected the lowest layer flow for the absence of motion in the middle layer, since this
region is very small.

In the region where all layers are moving the characteristics of the equation for the
vertically integrated transport are the same as in the two-layer model (Eq. 2.6).
Therefore the characteristic lines are independent of the stratification.

In Figure 7 an example of flow is shown for one value of the forcing strength. Notice
that, as in the two-layer case, the line of zero transport is different in each layer, except,
of course, in the region where topography is not felt. Again in all layers there will be
noticeable exchange of water across the zero Ekman pumping line, a feature which is
absent in the flat bottom model. Although the small region where 1/;2 = 0 and 1/;3 "* 0 is
not shown we have checked that the mismatch at the southern side of its limiting
contour where 1/;2 and 1/;3 become nonzero, still exist together with a nonzero flowat the
northern rigid boundary.

We have extended these calculations to a continuously stratified model, again
assuming constant potential vorticity inside the region containing the subsurface flow.
In particular at the bottom, the quantity which is conserved is (fo/N2)(iJV;/az) + h
(N is the Brunt- Vais~ilafrequency), which can be thought of as bottom layer potential
vorticity in the limit of vanishing layer thickness. Similarly to the three-layer model,
there is a region at the northwest corner of the basin where the bottom water moves (as
well as the surface water) although there is no flow at mid-depth. Again in the region
where the water moves top to bottom, the characteristics of the equation governing the
vertically integrated flow are given by Eq. 2.6.

4. Ridge-like topography
In this section we analyze the effects of a bottom topography of varying slope on both

a barotropic and a two-layer model on a l3-plane. Topography will be ridge-like, i.e.,

{
-hx Ix - xol + hxa for Ix - xol < a

h= o for Ix - Xo I > a

where Xo is the point of maximum height hxa, and a is the halfwidth of the ridge. First
consider the case of one layer forced by a wind stress curl which is always negative, for
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Figure 7. Streamlines for the three-layer model. Same parameters as in Figure 6b. The line of
increasing thickness shows the location of the discontinuity.

example that of Eq. 2.4 with y between 0 and Yo. The equation governing the flow will
be

J(l/i\, fly + fohjH) = foW.(y)jH. (4.1)

The characteristics of the flow will be the geostrophic contours ~ = fly + foh j H, which
are piecewise continuous broken lines dividing the domain in 8 different regions (see
Fig 8). If we require the flow to be zero at the eastern boundary and at the zeroes of the
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Figure 8. Streamlines for the flow of the barotropic model in the presence of ridge-like
topography. The thin dashed line represents one of the characteristics dividing the domain in
different regions. The thick dashed line represents the characteristic at the location of the
discontinuity.

Ekman pumping we obtain the following results for the streamfunction for the
different regions shown in Figure 8.

(IB) 1/11 =foW.(y)(x - x.)j({3H)

IjY(2B) 1/11 = -h d", w.(",) + foW.(t!{3)(xo + a - x.)j({3H)
x UP

IIY(3C) 1/11 = - -h d",W.(l1)
x 0

1 lY j 1,(f) d )(3A) 1/11 = - -h d", W.(",) + I hx ", W.(",
x .(f) 2yo

(3B) 1/11 = - hI lY d", W.(",) + Ijhx l'W d", W.(",)
x .(f) 2yo

+ foW.(~j{3)(xo - a - x.)j({3H)
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1 ['(4C) 1/11 = - -h dT/ W.(T/) + fo w. (y)(x - x. + a)/({3H)
" 0

2 l'(4B) 1/11 = - -h dT/ W.(T/) + foW.(y)(x - x. + 2a)/({3H)
" '(P,)

where s(~) = V{3 - foh"a/({3H).
Notice that the flow in regions 2A and 3C is perfectly zonal and a discontinuity

arises at the boundary between regions C and B, in addition to discontinuities at the
western and parts of the northern and southern boundaries. The difference in transport
between regions B andC is given by

TB_C = [1/I1(3B) -1/I1(3C)h-foh.a/{PH)

= f~Wh"a(xo + a/2 - x.)/({32YoH)

and is constant.
The physical mechanism of this discontinuity can be understood by means of the

following analogy. Eq. 4.1 is equivalent to the equation for the concentration of a
passive tracer advected by a known velocity field (here the concentration is analogous
to 1/11 and the known velocity field has flow lines identical to the geostrophic contours
~).

In the absence of forcing and dissipation the concentration will be constant along the
flow lines and will be completely determined by the knowledge of the concentration at
the boundaries of the domain under consideration. On the other hand, there might be
some regions in the interior of the domain (such as the line dividing regions C and Bin
Fig. 8) where neighboring flow lines trace back to regions of the boundaries that are
very far apart and thus might have rather different concentration values. Therefore
although the concentration is continuous along the boundary it may become discontin-
uous in the interior.

This explains also why in our oceanic, wind-forced problem the jump in transport
across the discontinuity is constant. In the presence of forcing the flowis the sum of two
components: one across and the other along the geostrophic contours. The former is
determined by the forcing and is continuous on the characteristic dividing regions C
and B as long as the forcing is continuous there. The discontinuity arises in the
component along the characteristics (the only one in the passive tracer analogue)
which is obviously constant on a characteristic.

To emphasize the dependence upon the parameters we notice that the transport
across the discontinuity can be written as

T _ tJ..h/H(xo+ a/2-x.)
B-C - T'tJ..f/fo x.

where T. = foWx./{3 is the maximum Sverdrup transport in the absence of topography,
tJ..h/H = h" a/His the relative change in height due to the topography and
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Figure 9. Contours of ch- The heavy line represents the outermost closed contour and the dashed
lines are the characteristics dividing the domain in different regions. f~W/({J2g'HD - -I.,
frA/({JH2) = .8, xo/x, = .4, a/x, = .2.

!J.f/fo = {3Yolfo is the characteristic change in Coriolis parameter. For x, = 6000 km,
fo = 10-4 sec-I, W = 10-4 cmlsec, Yo = 1000 km, H = 4000 m, {3= 10-13 em-lisee-I,
!J.h = 1000 m, Xo = 3000 km, a = 1200 km, Ts = 60 Sv we get T 8--C = 60 Sv. This value
is clearly an upper limit for the transport at the jump since the barotropic model
velocities are very large at the bottom. Also the ridge height and the basin width are
very large in this example, at the limit of applicability of the quasi-geostrophic
approximation. Nevertheless this value is indicative of the fact that these jets have
transport of the same order as the interior flow.

We now want to see what are the effects of this ridge-like topography on the two
layers model considered in section 1.Again the forcing will be that of Figure 1.We will
take the streamfunction in the lower layer such as to keep q2 constant inside the
outermost closed fh contour and 1/;2 zero outside where now

an example is given in Figure 9. The characteristics of the flowwill be
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Table 2. Difference in transport (ridge-like topography) in the lower layer at the northern jump
(region 48 - 4A) for different values of the slope fohx/(fJH2) (columns), and the ridge
halfwidth a/x, (rows). (a)f~W/(fJ2g'HD = -1.0; (b)f~W/(fJ2g'HD = -2.0.

a. Topographic slope

Ridge
halfwidth .4 .8 1.2 1.6 2.0

0.1 -.04 -.07 -.09 -.10 - .11
0.2 -.09 -.14 -.18 -.22 -.25
0.3 -.14 -.22 -.28 -.34 -.37

b. Topographic slope

Ridge
halfwidth .4 .8 1.2 1.6 2.0

0.1 -.06 -.08 -.10 -.11 -.12
0.2 -.12 -.18 -.22 -.27 -.30
0.3 -.18 -.29 -.39 -.45 -.47
0.4 -.26 -.43 -.56 -.58 -.56

and they divide the region of lower layer flow in several parts shown in Figure 9.
Similarly to the barotropic case, in the lower layer there are two regions of weak
quasi-zonal flow (2B and 3D in Fig. 9) and a discontinuity in flow between regions C
and D. The jump in the stream function is the same in the two layers because of the
choice of constant potential vorticity. The vertically integrated difference in transport
at the jump is given by

and is always larger than the corresponding value for the one-layer model. A mismatch
analogous to that of section 1 occurs at the northern boundary of region 3B inducing a
discontinuity which continues with constant value at the boundary between regions 4A
and 4B. In Table 2 some values for this jump in the lower-layer stream function are
given for different values of the topographic slope, the width of the ridge and the
strength of the forcing. The nondimensional slopefohx j(fJH) = 2. and the nondimen-
sional halfwidth aj Xe = .2 in Table 2a correspond to the dimensional values given in the
previous example for the homogeneous model. This gives a dimensional total transport
of 60 Sv, which fortuitously happens to be the same value as the internal jet transport
for the barotropic model, and again this value is comparable to the interior transport.
Notice that this discontinuity grows more slowly with the topographic slope than TC-D,

while doubling the width of the ridge more than doubles the amplitude of the
discontinuity. This is what one would actually expect since the "internal" jump
(C - D) owes its existence to the change in slope of the bottom topography. In fact
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Figure 10. Contours of the zonal velocity field in the lower layer. Contours are smoothed since
velocity is computed with finite difference from the streamline field. (Full line for negative
values.) (a) Constant slope topography.f~W/(f32g'HlH2) - -1., all the other parameters as
in Figure 5b. (b) Ridge-like topography. All parameters as in Figure 9.

taking a very thin ridge, but with constant height (h"a = constant, a -+ 0) the internal
jump would continue to exist with almost unchanged strength while the mismatch at
the northern boundary of region 3B tends to vanish. For reasonable values of the
parameters both these discontinuities are of the same magnitude as the interior flow
and they arise in regions away (although connected to) the solid boundaries of the
domain.
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5. Discussion
We have shown how in the presence of topography internal jets arise when simple

Sverdrup dynamics are used. More specifically we find that for baroclinic gyres, jets
are formed at the boundary of the region containing the subsurface flow. Their
existence is independent of the forcing mechanism for the lower layer as long as such
forcing is small. On the other hand their very presence raises questions about the
applicability of conservative dynamics since at the jets' locations frictional effects have
to be much stronger than we considered initially. To avoid such difficulties de Szoeke
(1985), in an independent work on the same subject, has chosen to prescribe the flow as
completely continuous in both layers. This choice implies that either the forcing has to
be of a special form or that the eastern boundary condition cannot be applied in the
upper layer. We think, however, that it is inescapable to embed the circulation in a
closed basin and the occurrence of flows with internal jets must not be ruled out a
priori.

Since our results are not sensitive to the choice of constant potential vorticity in the
lower layer we need not restrict ourselves to constant slope topography. Therefore we
have also analyzed the effects of bottom topography of varying slope, in particular in
the form of a ridge. Again jets are found although of a different nature. In fact in this
case, internal jets occur in both stratified and even in homogeneous models; their
existence now is due to the change in sign of the bottom slope and the presence of the
southern gyre boundary along which 1/1 vanishes. For values of the parameters in the
oceanic range, the jets produced both in the ridge-like and in the constant slope
topography have very large transports, i.e. on the order of the maximum transport of
the interior flow. Notice also that for the choice of constant potential vorticity in the
subsurface layers all the internal jets occurring both in the constant slope and in the
ridge-like topography are westward (see Fig. 10) and they would be so even ifthe slope
were of the opposite sign. Therefore, if unstable, they could radiate to the interior of the
ocean where eddy energy is observed.

It is our intention in the future to examine numerical models that include relative
vorticity and small nonconservative mechanisms to see whether the features found in
the previous sections actually occur. It is possible that internal dynamics adjust the
flow so that the strong internal jets obtained with simple Sverdrup relation are avoided.
This would imply a deep modification of the vorticity balance which would be worth
analyzing.
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APPENDIX A
Assuming that lower layer potential vorticity is constant in the boundary layer, the

equation for the barotropic flow in the presence of small bottom friction is:

/
fohx f~W. fohx DH2 2

(1 + H2 H1)1/;2x - {3Hl 1/;2Y= {32g'Hi + {3Hl - {3LHI "V 1/;2'

The boundary of validity of constant potential vorticity dynamics is

Therefore, we define as boundary layer variable

where

and

f~ = y + (x - x.)(r + wof(y» - Q2/{3
r = frA/({3H2), Wo= f~W/({32g'HIH2);
A = x-x. as the other independent variable.

The dominant balance is (for f = DH2/({3LH1):

C(A) iJV;2+ g(A) ii1/;2 = 0
a~ ae

where g(A) is always positive:

and

g(A) = [r + 4wo(Qz!{3 - 1)]2 + (1 + 4WoA)2
1 + 4WoA

C(A) ~ 2[r + 4WO(Q2/{3 - 1)] - r(1 + 4WoA)2
1 + 4WoA

In order to get solutions which are decaying for ~ -- - 00 (inside the region of
constant potential vorticity) we must have C(A) < 0, which gives:

(A.1)

This is exactly the relation which determines the point at which the boundary is
tangent to the characteristics. For x-x. greater than this value the boundary layer
streamfunction grows exponentially but the amplitude of the boundary layer correction
goes to zero.

where

with

and

1/;2(~,A) = A (A)[1 - exp(-g(A)~/C(A»]

A(A) = -2wo(Y - Ys)(Y + Y. - 2 + r/(2wo»/r

Y = (Qz!{3 - rA + 4WoA)/(1 + 4WoA)

Y.= rA/2 + 1 - r/(8wo).

At the point given by (A. 1) Y = Y. and A(A) = O.
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Figure Ai. The Ekman pumping (A.2) as a function of y.
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If the Ekman pumping is taken of a more general form (see Fig. Al) (here the
variables are nondimensional):

(A.2)

The point at which the outermost closed q2 contour is tangent to the characteristics is:

where

A = (Y2 - l)(2b - l)jwoM

b = [0 + woMjr )[w~1 - Yl) - WOmO - Y2)].
2( 1 - Y2)( wOM - WOm)

(A.3)

APPENDIX B
The equation governing the transport of one layer of homogeneous fluid in the

presence of topography h = ax, forced by a longitude independent Ekman pumping
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o x

Figure 82. Streamlines for the barotropic streamfunction resulting from the Ekman pumping
W. = Wsin (2'IlY). Withf~W/({j2gH2) = -1.2 andfoa/(~H) = .8.

IS:

(3Vtbx- foal H Vtby= foW.(y)1 H.

Setting ~ = y + foa(x - x.)/({3H) = y + r(x - x.) its solution is:

Vtb= - Jy d'T/W.la + if>(~).

Given the form and the modified {3-effectwe choose to satisfy the following
boundary conditions:

Vtb= 0 on x = x. and Vtb= 0 on y = o.
Therefore the flow is divided into regimes:

and

Because of the choice of an x-independent forcing, in the southwest part of the basin
the flow is perfectly zonal. Notice also how the cyclonic gyre is reduced in favor of the
subtropical gyre (see Fig. Bl).
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