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On the amplification of convergences in coastal currents
and the formation of "squirts"

by Melvin E. Stern I

ABSTRACT
We consider the temporal evolution of a slow downstream decrease in the velocity of a coastal

current contained in the light upper layer of the ocean. The quasi-geostrophic model consists of
two piecewise uniform potential vorticity regions separated horizontally by a free interface
("front") which intersects the vertical coastal wall in a "nose" region. As time increases, the
slope of the front increases in this region, and the magnitude of the downstream convergence also
increases, according to a nonlinear long-wave theory. At the time when this theory becomes
invalid, the calculation is continued by numerical integration of the "contour dynamical"
equations. This shows a continuation of the increase of the slope of the front near the nose,
provided the total geostrophic transport is nonzero. (The case of zero transport is also discussed.)
As time increases, a plume forms near the nose of the front, thereby transporting coastal water to
very large offshore distances. It is suggested that this effect is responsible for some of the cold
water plumes which extend to large distances from the coast of California. The cause of the small
finite initial convergence (not implicit in our simple model) is attributed to differential
upwelling or to a current instability.

1. Introduction

The California "squirt" is an example of a very large offshore deflection of a coastal
current [Mooers and Robinson (1984), Rienecker, et al. (1985), Davis (1985),
Flament et al. (1985)]. This relatively cold plume appears in satellite imagery as a thin
jet emanating from an upwelling region. Under what conditions will the ubiquitous
coastal disturbances evolve to such proportions?
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Spatially varying winds and topography provide one mechanism for downstream
variations in the upwelled coastal current, and in the geostrophically adjusted regime.
A description of this large problem in coastal oceanography is beyond the scope of this
paper, and we will only consider the subsequent evolution of a slow downstream
variation ("weak convergence") of the geostrophic current which may arise from the
foregoing mechanism. Dynamic instability of a laminar coastal jet [Ikeda et al. (1984),
Ikeda and Emery (1984)] provides another important mechanism for initiating
disturbances and bringing them to finite amplitude. In this paper (as in Pratt and Stern
(1986) we try to isolate the dominant dynamics in the stage from large to very large
disturbances (e.g., the squirt). Another important mechanism for the squirt effect is
due to the presence of offshore geostrophic eddies [Davis (1985)]. The eddy/current
interaction problem (to be dealt with in a subsequent paper) may result in the capture
or entrainment of a portion of the currents, but in this paper we focus on an effect
which is internal to the current.

The orientation of the sketch in Figure la may facilitate comparison with the
California Current, the coast being on the right-hand side of the figure. The initial
(t = 0) axis of the coastal current is indicated by the long-dashed curve which connects
the points of maximum velocity at each x' section. Mo is the minimum distance of this
axis from the coast, and the initial downstream velocity in the upper layer of the ocean
is indicated by arrows. This layer has a mean thickness H and a density deficit t..p
relative to the much thicker and dynamically passive underlying layer. The Rossby
radius of deformation, used as the horizontal length scale in the subsequent nondimen-
sionalization is based on t..p, H, and the Coriolis parameter, and gravity. The
maximum offshore extent of the initial axis is assumed to be of the order of the radius
of deformation; and the Rossby number based on this width and the maximum velocity
is assumed to be so small that the temporal evolution is quasi-geostrophic.

We will show that the weak initial (t = 0) downstream convergence in Figure la
amplifies as faster portions of the coastal current "catch up" with slower ones, leading
to a steepening of the current axis as indicated by that portion (Fig. la) drawn with a
solid line. We believe that this simple model captures some important physical effects
present in the ocean even though the Rossby number is larger, the baroclinic structure
is more complex, and the topographic variations more explicit. The highly nonlinear
geostrophic effects are by no means vitiated by the absence of Kelvin or other coastal
waves in our model.

These conclusionswill be based on the model in Figure 1b, which differs from Figure 1a
in two respects. The upstream and downstream profiles in Figure 1b consist of piecewise
uniform potential vorticity regions (with an artificial cusp in the downstream jet profile),
and the maximum upstream current is at y = 0 (i.e., Mo = 0). The first of these
simplifications eliminates current instability, according to the Rayleigh Theory which
requires an extremum in potential vorticity for instability. The second simplification is a
natural limiting case, and the other limiting case (Mo -. 00 with (Lo - Mo) = 0(1))
corresponds to the free jet treated by Pratt and Stern (1986).
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Figure I. Schematic diagrams. (a) The dashed curve labeled t = 0 is the axis of a southward jet
near the eastern boundary of a northern hemisphere ocean, and M 0 is the minimum distance of
the axis from the coast. The velocity arrows indicate a weak downstream convergence in the
assumed initial state. As time increases, the axis steepens and folds, eventually (t» 0)
producing an offshore plume (or "squirt") of coastal water. (b) The model used to investigate
the amplifying convergence when the maximum upstream current is at the coast (Mo = 0).
The fast current is now on the left and is x-independent far upstream, and the slower jet is
x-independent far downstream. The current is modelled by two piecewise uniform potential
vorticity regions, separated by an interface ("front") whose displacement from the coast is
L(x, t). The figure shows the upper and less dense layer of the ocean, and the lower layer is
assumed to be relatively deep and motionless. (c) This model differs from the previous one in
so far as there are no velocities at x = -00, and consequently the geostrophic velocity profile at
x = 00 has zero transport.

The piecewise uniform potential vorticity model in Figure Ic has zero velocity at x =

-00, and thus the geostrophic current profile at all x has zero transport. We shall show
that no squirt forms in this case, thereby identifying one condition necessary for squirts
to form. This model (Fig. Ic) is also of interest for its own sake, and we shall compute
the leftward propagation of the nose (n.b. if Kelvin waves were present, they would
propagate energy to the right). This problem (Fig. Ic) reduces to the barotropic one of
Stern and Pratt (1986) when the radius of deformation is much larger than the width
of the coastal current.

For our "11/2 layer" model the quasi-geostrophic dynamics takes the following form.
Lety = L(x, t) denote the nondimensional displacement (relative to the Rossby radius)
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of the vorticity front from the wall (y = 0); let Lo denote the displacement at x - 00; let
u(oo, Lo, t) correspond to the velocity scale for the nondimensional x-velocity, let v
denote the y-velocity, and let Hh(x, y, t) denote the departure of the vertical layer
thickness from its value at y = 00. Then the normalized geostrophic potential vorticity
vanishes at y = 00 and in the entire region outside the front. If PI denotes the constant
potential vorticity (Eq. 1.2) inside the front (Fig. 1b) then we have

v = ahjax

y> L(x, I)
y < L(x, I).

(1.1)

(1.2)

One boundary condition is h(x, 00, t) ~ 0, and the wall boundary condition

v(x, 0, t) = 0 (1.3)

(2.1)

requires that h(x, 0, t) be constant.
If L(x, t) is known at any time t, then (1.2) may be solved by decomposing its

right-hand side into the sum of point potential vortices PJdxdy of equal strength Pl'
Each of these produces a circularly symmetric field h given by the Bessel function Ko.
To satisfy (1.3) "image" vortices must be added. The resulting integral gives h(x, y, t)
from which u(x, y, t), v(x, y, t) are computed. By evaluating these on y = L(x, t) we
obtain the velocities dxj dt, dLj dt of any Lagrangian point on the front. From this L(x,
t + dt) can be computed, and by repetition of this process we obtain L(x, t) at any
time. Thus the introduction of the uniform potential vorticity profiles allows us to
reduce the original problem containing two spatial dimensions to a one-dimensional
problem, in which L is given as a solution of an integro-differential equation containing
the aforementioned Green's function Ko. This contour dynamical method retains the
full geostrophic nonlinearity (e.g., in dLj dt), and no artificial (eddy) viscosity is
introduced.

2. The contour dynamical equations
First we note the far-field solution of (1.1 - 1.2) at x = 00, where L = Lo and

u(oo, Lo, t) = 1. For y ~ Lo this solution is u(oo, y, t) = exp -(y - Lo), and if A denotes
an arbitrary constant then the solution inside the front is

sinh y
u( 00, y, t) = A --:--h L + (1 - A)eY - L., (y < Lo)·

sm 0

Integration of this gives the wall height

cosh Lo - 1
h(oo, 0, t) = A . h L + (1 - A) (1 - e-L.) + 1= Pz. (2.2)

sm 0

Two values of the free parameter Pz, corresponding to A = (0, 1) will be considered,
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and the A = 1 case corresponds to a downstream jet (Fig. 1b) which vanishes at the
wall. For all A the constant value PI of the potential vorticity inside the front equals the
jump in vorticity across the front at x = 00, and from (2.1) we see that A is related to p.
by

(
cosh Lo )p] = - A -'-h- + (1- A) + 1.

sm Lo

Next consider the flow far upstream (x = -(0) in Figure 1b, where (1.3) implies

h( -00,0, t) = h(oo, 0, t) = P2

and therefore

u( -00, y, t) = u(y) = -iJhjiJy = P2e-Y

(2.3)

(2.4)

(2.5)

where the bar denotes the upstream profile. When P2 = 0 we obtain the zero transport
case of Figure 1c.

It is convenient and illuminating to make the following formal separation. Let

u(x, y, t) = u(y) + u'(x, y, t)

hex, y, t) = hey) + h'(x, y, t)

u' = -iJh'jiJy.

(2.6a)

(2.6b)

(2.6c)

Since 'il2h - h= 0 satisfies the same differential equation (1.2) as h, and since h'(-oo,
y, t) = 0, the appropriate Green's function for h' is -(P.j27r)Ko. This Bessel function
gives the circularly symmetric stream function produced by each area element P.dxdy
of potential vorticity on the right-hand side of (1.2). An image vortex -P.dxdy must
also be added (below the y = 0 plane) to satisfy the boundary condition (1.3), and the
summation of all the vortices gives

h'(x,y, t) = -P·f~ d~[L(M
27r .••(1) 0

dTJ{Ko«x - ~)2 + (y - 71)2)]/2_ Ko«x _ ~)2 + (y + TJ)2)1/2} (2.7)

where xn(t) is the nose point defined by L(xn(t), t) = O.
From (2.6c) we obtain

and evaluating this on the front y = L(x, t) gives

u'(x, L(x, t), t) = ~=lJ d~ {Ko«x - ~)2+ (L(x, t) - L(~, t»2)./2

+ Ko«x - ~?+ (L(x, t) + L(~, t»2)]/2 - 2Ko«x - ~)2 + L2(x, t»]/2}. (2.8)
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From v = ah'/ ax we also obtain

v = - PI rd~ aL(~, t) {Ko«x _ n2 + (L(x, t) - L(~, t)nl/2

21TJ ' a~ (2.9)

-Ko«x - ~)2 + (L(x, t) + L(~, t)2)1/2}.

It can be shown [Stern (1985)] that these expressions are still valid even if L(x, t) is a
multi-valued function of x, in which case the integrals are contour integrals, with d~ =
(dV ds)ds and ds is an element of arc length along the L-contour.

The Lagrangian integro-differential equation for material points (x(t),L(x(t),t» on
the front is then obtained from

dL/dt = v

dx/dt = u' + u(L)

(2.10)

(2.11)

by substituting (2.9), (2.8), and the value of u(L) obtained from (2.5). Each point
(x, L) on the front tends to move under the influence of two velocity components, one of
which is the undisturbed upstream flow u(y = L). The other is the velocity (u', v)
induced by all the anti-cyclonic potential vorticity anomalies located between the front
and the wall.

3. Long-wave equations

We first consider the behavior of L(x, t) when the variations in L(x,O) are large
(0(1» but slowly varying with x, i.e. L changes by a small fraction when x changes by
0(1). For x» Xn the leading term in the long wave expansion of (2.9) is

(3.1)

where we have used the Bessel identity

(3.2)

The leading term in the expansion of (2.8) is

Pu'(x, L, t) = -~ {I + e-2L - 2e-L}
2

so that

(3.3)
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Substituting these in the kinematical condition

dL aL aL
v=-=-+ u-

dt at ax

gives

aL + c(L) aLex, t) = 0
at ax

where

(3.4)

(3.5)

(3.6)

Eq. (3.5) is a first order hyperbolic equation whose well-known solution implies that
each value of L propagates with a speed (3.6). If aLex, o)/ax ~ 0, then steepening
(increasing aL/ax with time) will occur at those values of L(x, 0) for which ac/aL =
- (P2 + PI)e-L + 2Ple-2L < O. Referring to (2.2) we see that P2 (the wall height) is
positive (0 < A < 1), and (2.3) shows that PI < 0, -PI> P2 so that ac/aL < O. We
reach the important conclusion that steepening occurs continually in the region
between the nose and x = 00, until aLI ax is so large that the long-wave theory fails.
Although the foregoing asymptotic theory is not formally valid at the nose (L = 0), we
shall subsequently show that (3.6) also applies there as long as aL/ax « 1. This simple
calculation verifies the introductory remarks (Sec. 1), viz that the fast coastal current
(Fig. 1a) catches up to the slower part leading to a steeply sloping axis. We therefore
direct our attention to the later stage times by considering the evolution of an arbitrary
initial L which now has slopes of O( l).

4. Coastal current with a finite transport
We shall now compute the contour dynamical solutions pertaining to two cases in

which the relevant values of the constants are:

(4.1 a)

(4.1 b)

(4.1c)

A = 1:

cosh Lo - 1
P2 = 1 + . h

SIn Lo

1 + cosh Lo
PI= -----

sinh Lo
sinh y

u(oo,y,t)=-;--hL ,(y<Lo),
SIn 0

(4.2a)

(4.2b)

(4.2c)
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Explicit expression for the long-wave speed (3.6) can be obtained using the above
values.

The speed Un of the nose obtained by setting L(x, t) = ° in (2.5) and (2.8) is

Un = P2 - 2P1 f~d~ {Ko«x - ~)2 + L2(~, t))1/2 - Ko«xn _ ~)2)1/2}.
211" x.

From now on x and L(x, t) refer to distances measured in a coordinate system whose
origin is fixed to the nose point, so that the above equation may be written as

(4.3)

Let us note in passing that when L varies slowly with x at the nose then L(~, t) ""° in
(4.3), which then gives Un = P2 in agreement with the formal limit of (3.6) as L -+ 0.
Thus (3.6) is valid at all L as previously asserted. In this limit the nose point moves with
the maximum upstream velocity.

In the new moving coordinate system the equations of motion (2.10)-(2.11) are

dL -PI Jdt = 211" dL(~, t){Ko«x - ~)2 + (L(x, t) - L(~, t))2) 1/2

- Ko«X - ~)2 + (L(x, t) + L(~, t))2)1/2} (4.4)

~~ = P2(e-L - 1) - ~1+ :1Jd~ Ko(e + L2U, tW/2

- :~Jd~{Ko«x - ~)2 + (L(x, t) - L(~, tW)I/2 + Ko«x _ ~)2

+ (L(x, t) + L(~, tW)I/2 - 2Ko«x - ~)2 + L2(x, t))I/2} (4.5)

where d~aL/a~ in (2.9) has been replaced by dL and the limits of the integrals have
been deleted to remind the reader that these are contour integrals in general.

It will be helpful to compute analytically the instantaneous velocities for the step
function:

The nose velocity (4.3) is then

(
0, x < °L(x, 0) =
Lo, x > 0.

(4.6)

(4.7)

Relative to this the velocities u = u+, V = v+ at the "top" (y = Lo, x - 0) of the step,
obtained from the right-hand side of (4.4) and (4.5), are

v+ = - :~ [I." dL{Ko«Lo - L)2)1/2 - Ko«Lo + L)2)1/2} > ° (4.8)
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u+ = P2 (e-L. - 1) - ~I+ :1.£00 d~ Ko(e + L~)1/2

- ~~ .£00 d~ {Ko<e)1/2 + Ko<e + (2Lo)2)1/2 - 2Ko(e + L~)1/21

(
-L. ) 3PI -L PI -2L

= P2 e - 1 - 4 + Pie "- 4e ". (4.9)

When A ~ 0 (Eqs. 4.1) the nose velocity (4.7) is Un = 1, u( -00,0, t) = 2 - e-L.,
u( 00, 0, t) = e-L., and (4.9) gives

1 -2L.
+ L. eu = -"2 + e- - -2- < O. (4.10)

This means that the x = 0 edge of the initial step (4.6) will start to tilt backwards. Eq.
(4.10) also implies that an initial state with single valued L but with a large positive
iJL/iJx will develop an even larger slope at a slightly later time and will then become
multi-valued. When A = 1 we obtain u+ = -(1 - e-L.)2/2 < 0, so that the same
qualitative conclusion holds.

S. Numerical calculations
The numerical problem posed by (4.4)-(4.5) requires only a minor modification

(due to the nose boundary condition) of contour dynamical programs used and tested in
previous work [e.g., Stern (1986) and Stern and Pratt (1986)] and this may be
consulted for the details of the numerical procedure. In brief, the method consists of
distributing N Lagrangian points on the initial L(x, 0), and computing (4.4)-(4.5) by
trapezoidal approximations to the integrals. These are indented at the logarithmic
singularity of Ko, and an analytical approximation for this small region is used.
Forward integration in time is accomplished by a second order Runge-Kutte approxi-
mation. As t increases, new Lagrangian points were inserted in the nose region in order
to maintain adequate spatial resolution. When the first point downstream from x = 0,
L = 0, exceeded a certain distance a new Lagrangian point was automatically inserted
half-way in between. (We experimented with various values of this distance to convince
ourselves of numerical stability and reproducibility.) With regard to the downstream
boundary condition we note that the last integrand in (4.5) vanishes for large ~ when x
is finite, i.e. 0 < x « XN -+ 00. Accordingly the integrals evaluated for x « XN were
truncated at XN' The last two points (i.e. XN and XN_1), on the other hand, were moved
with the undisturbed velocity because their distance from the nose was sufficiently
large.

All runs reported herein had an initial condition of the form

(5.1)

The first run (Fig. 2) for A = 0, 0= 250 was sufficiently close to the step function (4.6)
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Figure 2. The temporal (t) evolution of Figure Ib when Lo ~ I (one radius of deformation), A =
o (see text), and a = 250.

so that we were able to check the theoretical values of (4.8)-(4.9) against the
numerical calculations of u+, v+ after one Runge-Kutte time step ,1t = 0.1. As
expected from (4.10), the steeply sloping nose tilts backward at the "early" time t =

1.6. The initial velocity Un = 1of the nose exceeds the mean velocity in 0 <y < Lo at x =

+00, and thus there is a relative transport of water from the region inside (y < L) the
front toward the nose. This accounts for the formation of the plume in Figure 2, and its
continuation in Figure 3. At t = 14.7 the straining effect in the plume resulted in an
excessively sparse distribution of points, and therefore the calculation was redone
starting from t = 9.7 with some points deleted and some points added to improve the
resolution. The new integration yielded the curve labeled t = 14.7(b) which overlapped
the old calculation at t = 14.7 (not shown). Although the distribution of points is still
not satisfactory to continue the calculation beyond t = 14.7, it is strongly suggested
that the plume is about to detach from the rest of the front and to leave it behind.
Although the problem posed by the long time t» 14.7 evolution is an interesting one, it
is also delicate and beyond the resources (a personal computer) available to the author.
Furthermore, in connection with plume detachment, one should recognize the interven-
tion of smaller scale (e.g., eddy diffusion) processes in the prototype which will cut off
the neck of the plume before the computer does (see Pratt and Stern (1986». The
evolution of the plume in Figure 4 is similar despite the fact that the initial nose was
less blunt (a = 1).

For each of the two previous runs the nose speed was computed directly from (4.3),
and also indirectly from the conservation of mass (or the conservation of area in the
(x, y) plane for a quasi-geostrophic flow). This implies that the rate of increase of the
area bounded by the front between x = 0 and XN(t) is equal to the relative flux at xN(t).
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Figure 3. The temporal continuation of Figure 2 showing a portion of the plume up to a time
when the distribution of Lagrangian points (the dots) has become too sparse to continue.
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X- -2.42

1.0
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Figure 4. Same as Figure 2 except that a = 1 so that the initial nose is less blunt. But the nose
still steepens and a plume still forms.
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Figure 5. The nose speed as a function of time for the initial state of Figure 2 (0 = 250) and
Figure 4 (0 = I).

The later equals - (U(oo, y, t) - un(t» integrated fromy = 0 to Y = Lo' and the value of
this is known except for un(t). Thus the nose velocity can be computed by evaluating
the area in 0 < x < XN(t), and the curves in Figure 5 were obtained in this way. The
"directly" measured Un' on the other hand, had a much larger scatter (± 10%) because
(4.3) is sensitive to small fluctuations or errors in L near the nose [see Stern and Pratt
(1985) for a similar problem at the nose of a barotropic intrusion]. But we have found,
by varying the density of points and the time step, that the major structural properties
(maxL, minL, area) are very robust and reproducible. The calculation for a = 1 started
with N = 44 Lagrangian points, and with the insertions at x = 0 the number reached
N = 86 at t = 10.

The next calculation (Fig. 6) is for A = 1 which has a smaller value of u(oo, 0, t), a
slightly different u( -00, 0, t), and a more dense distribution of initial Lagrangian
points which improves the resolution near the nose by a factor of two. The main
difference between Figure 6 and Figure 4 is that the backward bending of the plume at
t = 6 is less in the former case. Consequently the anti-cyclonic anomalies in the plume
have a larger inductive effect at x-I, which accounts for the trough in L at t = 14 and
for the developing wave train in Figure 6. At t = 20 we see the plume about to pinch off
at its neck. The Lagrangian point #59 was located at the nose at t = 14, and the point
#33 was located at the nose at t = 11.6, implying an average offshore velocity of
3/(20-11.6) times the maximum jet velocity.

When Lo is doubled, other things being equal, a plume of greater area tends to form
(Fig. 7). The Lagrangian point located at the maximum L when t = 16 had an average
(from t = 9.6 to t = 16) offshore component of velocity equal to 0.5. On the other hand
when Lo is halved (Fig. 8), the nose speed approaches the mean speed inside the front at
x = 00, leading to a plume of smaller volume and different character. The point #90 is
moving toward (-x) with a speed of 0.5 and is apparently about to cut off the plume at
a much smaller value of y than in the previous cases. Point #70 was located at the nose
at t = 3.5.

A link between the long wave analytical theory and the foregoing calculations is
provided by Figure 9, which had the relatively small value of a = 1/3 for its initial state.
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#33

t-14

3.0

1.21 x

Figure 6. This has the same conditions as Figure 4 except that A = 1 (u(oo, 0, t) = 0), and also
the initial density of Lagrangian points near the nose is greater.

At t = I the increase in L for x » 0 is in accord with the long wave theory, and the
plume which forms later on is similar to that which occurred for the larger values of a.
Figure 10 gives the directly computed (from Eq. 4.3) nose speed for three different Lo
having the same values of a and A. Although these un(t) may have 10% errors, for
reasons mentioned previously, we may conclude from Figure 10 and Figure 5 that the

L

t-16

2.0

X·-4.19

Figure 7. Same as Figure 6 except La = 2.



416

L

Journal of Marine Research [44,3

1.0
#70

0.378 x

Figure 8. Same as Figure 6 except La ~ .5. For this small La the nose speed at r - 4.5 equals .48
and at r - 7, it equals .45.

nose speed decreases toward a value approximately equal to one half the maximum jet
velocity.

6. The intrusive nose with zero transport

To obtain the equations of motion which correspond to Figure lc in which u( -00, y,
t) = 0 we merely set P2 = 0 (Eq. 2.4), and this determines A. Then (2.3) determines Pjo
and we may proceed with the solution of (4.4)-(4.5). However in that which follows the

L

1.0

x
0.736

Figure 9. Same as Figure 6 except a ~ V3(a weaker initial convergence).
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Figure 10. Nose speeds computed from (4.3) for Figures 6, 7, 8.

unit of velocity (for the nondimensionalization) has been changed so as to make u(oo, 0,

t) = -1.
Figure 11 shows the temporal evolution for Lo = 1 and for two different values of a =

1, a = 2. In both cases the initial slope at the nose increases up to about t = 2, after
which a steady state L seems to be established at the nose. This is indicated by the three

L

- 10
1.0

1.0 x

Figure 11. The "pure" intrusive case (Figure Ie) for Lo = 1,a = 1 at t = 2,6, 10. Also shown at
t - 10 is the case a = 2, Lo = 1, which indicates the evolution toward a nose shape L(x, 00)
independent of initial shape.
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Figure 12. Same as Figure 11 except Lo = .5, a = 1. The curves from t = 6 to t = 12 are one unit
apart in time. Note the cusp-like feature which forms at t = 11 and also appears in the dotted
curve for t = 12 (only part of which is shown for the sake of clarity).

curves, t = 2,6,10 for a = 1 together with the a = 2 calculations for which only the
result at t = lOis shown in Figure 11. Apparently the equilibrium shape of the nose is
independent of initial conditions (but it does depend on Lo and the radius of
deformation). For a = 2 the nose velocities uit) at t = 2,4,6,8,10are: -.28, -.30,
-.31, -.32, respectively. For a = 2 the values of uit) at t = 1,2,3,4,5,6,7,8,9,10are:
-.31, -.31, -.32, -.32, -.32, -.32, -.32, -.32, -.32, -.32, respectively. If an
exact steady state exists at the nose, then the (geostrophic) mass conservation requires

Un = L;;I !oL. u(oo, y, t)dy = -.32 for Lo = 1. This agreement of the Un values is a
significant consistency result since mass conservation is not necessarily guaranteed by
the numerics. We should point out however that an exact steady state has not yet been
reached in Figure II, and a small amplitude lee-wave seems to be slowly developing at
t> 10.

The lee effect is much more pronounced in Figure 12 where La has been halved.
Although some sort of steady similarity solution seems to be developing at the nose,
and although uit) seems to have settled down to a steady value of". -.46 at t = 12, this
Un is significantly less than the theoretically required value of -.40 for an exact steady
state. The discrepancy is due to the pronounced unsteadiness between the nose and x =

00. The region in question (Fig. 12) at t = 12 is about to form a detached or cutoff
anticyclonic eddy as the cusp-like minimum L heads for the wall. For smaller value of
La our equations reduce to the barotropic ones studied by Stern and Pratt (1986),
which reveal a qualitatively similar structure to that shown in Figure 12 for La = .5.
Taken together the two papers cover a significant portion of parameter space, and
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indicate the different evolutionary patterns of a convergent coastal current, depending
upon its width, radius of deformation, and the ambient mean flow.

7. Discussion and conclusion
The following remarks may help to partially rationalize (or at least summarize) the

squirt effect.
In the weakly convergent (aL(x, o)lax« 1) initial state (Fig. la,b) the upstream

velocity at small y exceeds the downstream velocity, the pressure increases downstream
on a line of constant y, and a kind of "blocking" high pressure region is presented to the
upstream flow (Fig. 1b). It is relatively easy to see that in this state the nose point L = 0
moves with the fast upstream flow at y = 0, thereby overtaking the slower fluid
downstream. The implied steepening of the nose of the front is consistent with that
which is predicted for all L by the long-wave analytic theory. The image vortices and
their mutual induction effect are crucial here, because when Mo = 00 (the case of a free
jet considered by Pratt and Stern (1986» the propagation speed of long waves is zero
and there is no steepening at this stage. As max aLI ax increases (Fig. 1b), the offshore
velocities increase, and therefore the downstream convergence must increase. Also L
increases near the nose, Un decreases (4.3), and more anti-cyclonic vortex anomalies
come closer to nose. This increases the induced offshore velocities near the nose of the
front, and the accumulation of anticyclonic vortices also tends to rotate the nose of the
front in the opposite sense to that of the long-wave effect. These two effects can balance
leading to an equilibration of the nose at a finite aLI ax = 0(1) if, as occurs in Figures
11 and 12, there is no upstream flow. But in Figure 1b there is a finite u(L), and this
must be added to the u' produced by the vortex anomalies. Since u(L) decreases with L,
its effect is to rotate the nose of the front in the opposite sense to u', and (4.10) shows
that the sum of all effects is to continue the steepening predicted by the long-wave
theory. At this "blunt nosed" stage of development, the nose speed is approximately
equal to the maximum jet velocity far downstream, and this speed exceeds the mean
velocity from y = 0 to Y = La. Consequently there is a relative mass transport from x =

+00 toward the nose, thereby leading to the growth of the plume. Although the nose
speed then starts to decrease (Fig. 5), it still will exceed the mean speed inside the front
at x = +00, provided Lo is sufficiently large (Fig. 7). Thus the volume occupied by the
plume increases with time and also increases with Lo. The contour dynamical
calculations suggest that the plume pinches off and is left behind by the propagating
front. But this stage of the process needs to be investigated further, and our limited
time calculations by no means completes the story.

A change in the character of the plume occurs as La is decreased (Fig. 8). As the nose
of the front steepens and as the maximum value of L(x, t) starts to increase above Lo,
the anticyclonic potential vorticity anomalies in the growing plume tend to induce
shoreward displacements of the front at larger x. The close proximity of the coast
(Lo -+ 0) causes the front to turn (as at t = 7 in Fig. 8) and to pinch off at a smaller
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value of y and at an earlier time than occurs when Lo is larger. See Figure 23 in Pratt
and Stern (1986) where the small Lo regime is more clearly isolated.

To relate our limited degree of freedom model to the ocean, we imagine the cold
upwelled water in the latter case to be a relatively thin tracer, initially located very
near the wall (Fig. 2), and on either side of the nose. This thin tracer is then advected
toward the stagnation point from both sides of the nose, and then deflected offshore
along the vorticity front. The cold water tracer may appear on the inside of our growing
"plume" and also on the outside perimeter of the front. After (or near to) the time
when the elongated plume detaches, it no longer is subject to the strong vortical
constraints in the coastal current, so that the whole plume may be advected and
entrained by an offshore eddy that happens to be in its vicinity [Simpson (1984)]. If so,
the relatively small (baroclinic) energy of the plume will be added to the offshore eddy,
perhaps helping to maintain these relatively slowly decaying systems.

The formation of a far reaching plume, according to the foregoing theory, depends
on the existence of a nonzero transport in the convergent coastal current system. The
calculations for zero transport bear this out, and this regime is also of interest because
it shows how a coastal shear flow (with a potential vorticity gradient) can propagate
into an otherwise resting region. Note that a Kelvin wave propagates energy in only one
direction, and does not propagate gradients of potential vorticity, whereas the nose of
the pure coastal intrusion can propagate potential vorticity in two opposite directions.
When Lo ~ 1, the evolution shown in Figure 11 seems to be approaching a steady state
relative to the nose, which propagates with a velocity Un - -.3. Resting parcels lying
ahead of the nose are therefore displaced seaward as the nose advances, and no plume
forms. Even in Figure 12 no far-reaching plume can be said to form, but rather a
pronounced frontal wave which leads to the (apparent) detachment of a near coastal
eddy, and the formation of a new nose. The whole process may repeat and may be
important for the formation of eddies in the near coastal regime.
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