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A variational method for inverting hydrographic data
by Christine Provostl and Rick Salmon2

ABSTRACT
We present a new method for estimating the three-dimensional field of geostrophic velocity

from hydrographic station data. Very simply, we ask for the smoothest velocity field (in the
sense of an arbitrarily defined norm) which is consistent with the data and with selected
approximate dynamical constraints to within prescribed misfits, which, we will argue, should
never be zero. The misfits represent errors in the data and in the approximate dynamical
constraints. By varying the misfits relatively to one another, we explore the full envelope of
physically plausible estimates of the average geostrophic flow. We illustrate the method by
application to hydrographic measurements in the Labrador Sea.

1. Introduction
In this paper we address the classical problem of estimating the large-scale,

time-averaged ocean circulation from hydrographic measurements of temperature,
salinity, and pressure (and hence density). As every oceanographer knows, the density
field determines only the vertical shear of the horizontal geostrophic velocity, and thus
leaves the absolute geostrophic velocity undetermined by a constant of vertical
integration. This integration constant generally varies from one horizontal location to
another. Classically, the indeterminacy is removed by assuming that the geostrophic
velocity vanishes at some great and usually constant depth. Provided that the deep flow
is actually small, the classical method gives reasonable estimates for the geostrophic
velocity in upper waters. However, faith in the classical method has crumbled as
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technological advances have made possible the direct measurement of deep velocities,
which are sometimes found to be quite large.

In recent years, the classical assumption of a level-of-no-motion has been replaced
by other, more sophisticated assumptions which incorporate more of the physics. A
typical assumption of this type is that the average velocity vector is everywhere tangent
to surfaces of constant average potential density. See, for example, Stommel and
Schott (1977), Wunsch (1978), Davis (1978), and Stommel and Veronis (1981).
Unfortunately, although additional assumptions like the foregoing inevitably reduce
(but can never eliminate) the indeterminacy discussed above, these assumptions are
often far less justifiable than the more 'ordinary' assumptions of geostrophic and
hydrostatic balance. For example, the assumption of mean potential density conserva-
tion by the mean flow could be grossly inconsistent with the data if mixing is locally
important. In such cases, the extra assumptions may help to make the answer 'more
unique,' but the agreement with reality may actually be worse.

In this paper we describe a procedure for incorporating assumptions like the mean
density conservation in a way that allows their compatibility with the data and with
other dynamical constraints to be assessed. Very simply, we ask for the spatially
smoothest velocity field (in the sense of an arbitrarily defined norm) which is consistent
with the data and dynamical constraints to within prescribed misfits, which, we will
argue, should never be zero. The misfits represent 'errors' in the data and dynamics (in
the sense explained below) and can be estimated from a scaling analysis. By varying
the misfits relatively to one another, we can explore the full envelope of physically
plausible estimates of the large-scale, time-averaged flow. Similar methods have been
used by (for example) Wahba and Wendel berger (1980) for the interpolation of
meteorological data; by Bennett and McIntosh (1982) to incorporate observations into
tidal models with open boundaries; and by Shure et al. (1982) to estimate the magnetic
field inside the Earth.

2. General method
Our goal is to explore the envelope of geostrophic flow fields which are consistent

with the data and the imposed dynamical constraints. Since the data contain no very
useful information about horizontal flow scales which are smaller than the separation
between hydrographic stations, we shall be solely interested in the average velocity
field, defined (for example) as the running mean average of the exact velocity over
horizontal length scales comparable to the station separation, and over time scales
comparable to the time required for the occupation of all stations. We regard the
hydrographic measurements as measurements of this average field. The data therefore
contain aliasing 'errors' caused by internal waves, mesoscale eddies, and other
phenomena which escape our definition of average. Similarly, dynamical constraints
like mean density conservation are 'in error' by the amount by which they fail to apply
to this average flow. The 'errors' in the data and in the dynamical constraints can be
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estimated from a scaling analysis. The sizes of these errors determine the allowable
misfits between the data-dynamics and the average flow.

Variational calculus offers a simple and flexible method for obtaining average flow
fields which are consistent with the data and the approximate dynamical constraints.
Very simply, we will ask for the smoothest velocity field which agrees with the data and
the approximate dynamics, to within prescribed misfits. To illustrate the method in a
simple context, let I/;(x) be an abstract flow variable which has been measured at the
discrete locations {x;, i ~ 1, ... , Nal in three-dimensional space. A simple (and
arbitrary) measure of the roughness of I/;(x) is the functional

(2.1 )

where the integration runs over the domain of the fluid. The error in the measurement
d; ofl/;(xJ is

If I/;(x) approximately obeys the dynamical equations,

(2.2)

CAl/;] = 0, j= 1, ... ,M, (2.3)

(where Cj is any operator) then our method is to minimize the roughness R[I/;] subject
to the constraints that

and

NdL ef = q2Nd
i~l

(2.4)

(2.5)

where q is the expected error in a single measurement of I/;(x), Qj is the expected error
in the j-th dynamical constraint (2.3), and V is the volume of the fluid. More concisely,
we minimize the functional,

J[I/;] == J f f dX{(';;721/;)2 + 'Y L (I/; - dYo(x - xJ + L 'YjCAI/;F} (2.6)
j

where 'Yand hj} are the Lagrange multipliers corresponding to the constraints (2.4)
and (2.5). The equation determining I/;(x) is

01/;: ';;741/;= -'Y L (I/;(x) - dJo(x - xJ - L 'YjCAI/;]oC)ol/;. (2.7)
j

The Lagrange multipliers 'Y and 'Yj are uniquely determined by the misfits q and {Q). In
principle, we estimate the misfits by a scaling analysis, and determine the Lagrange
multipliers from (2.4), (2.5), and (2.7). In practice, it is easier to guess values for the
Lagrange multipliers, solve (2.7) for I/;(x), and then determine the resulting misfits
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from (2.4) and (2.5). The correct misfits can be reached by iterations, using the fact
that larger values of the Lagrange multiplier correspond to smaller values of the
corresponding misfit.

The variational formulation has several advantages. First and foremost, the relative
emphasis on smoothing, agreement with the data, and agreement with the dynamical
constraints can easily be changed by adjusting the Lagrange multipliers. This makes it
possible to assess the quality of the various constraints. If, for example, we discover
that some one of the constraints requires a very large (order one) misfit in order to
achieve an adequate agreement with the data and the other dynamical constraints,
then this particular constraint is obviously inappropriate and can be dropped. We thus
learn something about the physics.

Secondly, the estimate 1/;(x) is produced from (2.7) by a global optimization. In
contrast to other inverse methods, which pose dynamical conservation laws in the form
of flux balances across a few arbitrarily-chosen closed curves, our method requires that
these conservation laws be satisfied (approximately) in their differential form, at every
point in the flow domain.

Finally, only the total misfit is specified for each of the data-dynamics constraints.
Thus, for example (2.7) is free to concentrate all of the misfit with observations at only
a few of the data points, if those data are incompatible with all the others, or with the
dynamical constraints. The variational method therefore tends to isolate and disregard
spurious data and dynamical constraints. Of course, the weight attached to each
data-dynamics constraint can be made to vary with location in the flow. For example,
instead of (2.4) we may write

L ef/af = q2Nd/clo
i

(2.8)

where af is the statistical average of ef and 1T6 is the average of the {an. For a
statistically homogeneous flow (or in the absence of other information) we would
assume that aj ~ ITo.

The most arbitrary element of our formulation is the choice of a measure of
roughness. For example, instead of (2.1) we could as easily take

R[1/;] =1 J J dx\11/;. \11/; (2.9)

which attaches less penalty to very small-scale variability. The solution 1/;(x) to (2.7)
with roughness measure (2.1) has continuous zeroth and first derivatives, whereas the
corresponding solution with roughness measure (2.9) has logarithmic singularities at
the data locations Xj. In general, roughness measures containing higher order deriva-
tives yield estimates with less singular behavior near the data locations. For a rigorous
discussion, refer to Wahba and Wendelberger (1980). In this paper, we use discrete
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numerical analogues of both (2. I) and (2.9) on the sphere. The numerical representa-
tion guarantees a finite solution in either case. If the solution is sensitively dependent
on the choice of R[1f] or on the method of discretization, then our method has little
value. However, we find that the results are not very dependent on the precise choice of
the measure of roughness provided that there are a sufficient number of data and
dynamical constraints. Shure et al. (1982) report a similar conclusion for the
geomagnetic inverse problem.

3. Choise of dynamical constraints

We want to estimate the large-scale, time-average flow. To a very good approxima-
tion, this flow obeys the geostrophic equations,

fv = I ap
poa cos 0 a'A

1 ap
fu = ---

PoO ao
the hydrostatic equation,

ap
-= -pgaz

and an approximation to the exact continuity equation,

1 au I a aw--- + ---(cosO. v) + - = O.
a cos 0 a'A a cos 0 ao az

(3.1a)

(3.lb)

(3.2)

(3.3)

Here (u, v, w) is the velocity in the (east, north, up) direction, p is the pressure, ('A, 0) is
the (longitude, latitude), p the in situ density, Po a constant reference density, g is
gravity, a is the radius of the Earth, andf = 20 sin 0 where 0 = 21rday-I. Let (U, L, H)
be scales for (horizontal velocity, horizontal distance, vertical distance). If U =

10 cm sec-I, L = 100 km, H = 5 km, then the Rossby number

U
E E5-

OL

is of order \0-2. Outside narrow boundary layers, the fractional error in (3. I) is E, the
error in (3.2) is E2HJ L - 10-5

, and the error in (3.3) is opJ Po - 10-3 where op is a typical
change in the in situ density. These errors are all very small compared to the 'errors' in
the data and in the additional dynamical constraints introduced below. Let

1f('A, 0, z) == pJg. (3.4)
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Then by (3.1)

and by (3.2)
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-g a1/;u~---
a Pof ao

g a1/;
v=-----

a Pofcos 0 ax

#P~ ~- az.
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(3.5a)

(3.5b)

(3.6)

By (3.3) and (3.5) we also have Sverdrup's equation,

aw g 2ft. a1/;
az = poa2 f2 ax' (3.7)

Thus, u, v, w, and P are all expressible in terms of 1/;. The hydrographic data are
essentially aliased measurements of p. Thus

d; = - a1/; (X;, 0;, z;) + aliasing erroraz (3.8)

are also expressible in terms of 1/;.
The fractional error in (3.7) is dominated by eddy contributions to the vorticity

equation, and is of the order of perhaps 10%. Therefore, (3.7) is a usable constraint on
1/;, but only if we can eliminate the vertical velocity w. There are two ways to do this.
The first is to integrate (3.7) between levels at which w is known or can be related to 1/;
by a boundary condition. If this method is adopted, then the corresponding misfit is
relatively small because (3.7) is relatively accurate. The second method is to combine
(3.7) with another equation containing wand 1/;. The most obvious other equation is
some form of the 'density equation,' i.e., the first law of thermodynamics. Unfortunate-
ly, all usable approximations to the density equation have relatively large errors, and
hence require a relatively large misfit.

We apply the constraint (3.7) in both the vertically integrated form and also in the
nonintegrated form in combination with the density equation. Since (3.7) is accurate
outside boundary layers, we integrate from the top of the bottom Ekman layer to the
bottom of the top Ekman layer and obtain

where

~(X, 0) == J dz 1/;(X, 0, z)

(3.9)

(3.10)
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1
WT = -curl 'T

Pol

7

(3.11)

(3.13)

(3.14)

is the usual Ekman pumping approximation. Here, 'T is the average wind stress at the
ocean surface. If the Ekman suction into the bottom Ekman layer can be safely
neglected, then the bottom vertical velocity is

WB = -U· \lH

g I a(H,1/;B) (3.12)
= poa2 Icos 8 a(>.., 0)

where 1/;B== 1/;(>", 0, -H), and H(>", 8) is the depth of the ocean. Eq. (3.12) expresses the
kinematic condition of no normal flow through the bottom. Eqs. (3.9-3.12) may be
combined into a single constraint on 1/;, namely

2Q a~ ~ a
2

curl T __ 1_ a(H, 1/;B)
I a>.. g cos 0 a(>..,0)

This constraint applies to an accuracy of roughly 10%, depending strongly on the size
of L, the representative length scale for the average flow. Note that the constraint
(3.13) does not necessarily imply that the wind stress drives the local mean flow. In
fact, in the application described in this paper, the wind stress curl is small of the same
order as the eddy terms already neglected from (3.13), and we use (3.13) with T = O.
The equation then expresses the integrated conservation of average potential vortici-
ty.

To apply the constraint (3.7) in nonintegrated form we invoke a form of the density
equation. A relatively accurate form of the density equation is

Dp* 1 Dp*
Dt* ~ c2 Dt*

where the asterisks denote exact, un averaged flow variables. In (3.14), c is the sound
speed, and only the effects of molecular heat and salt diffusion have been ignored. If p*
is replaced by the exact potential density, then the right side of (3.14) is zero. The most
accurate usable approximation to (3.14) is

u ap v ap ap Pog---+--+W-~-W-
a cos 0 a>.. a ao az 2 (3.15)

where, as in all other equations except (3.14), the variables represent the sought-for
average flow. The largest errors in (3.15) result from eddy fluxes of density by the
unaveraged flow. The sizes of these eddy fluxes are rather difficult to estimate in
general, but they could easily be as large as the terms retained in (3.15). We therefore
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Figure 1. The 143 stations on II sections occupied by Hudson from 12 March to 12 May
1966.

(3.16)

regard the constraint obtained by eliminating w between (3.7) and (3.15) as rather
weak, and we will apply it with a correspondingly large misfit.

We can increase the number of independent constraints by considering tracers other
than density. If, for example, a is the average value of a conserved tracer which has
been measured at the hydrographic stations, then we may use

u aa v aa aa---+--+w-=oa cos 0 ax a ao az
as an additional constraint. Again, the dominant errors in (3.16) arise from eddy fluxes
of tracer. If a is nonconservative (like oxygen), then explicit source terms must be
added to (3.16), or the sizes of the source terms must be taken into account in deciding
the misfit on (3.16).

4. Application to the Labrador Sea
C.C.S. Hudson occupied 143 hydrographic stations in the Labrador Sea between

12 March and 12 May 1966 at the locations shown in Figure 1. The Hudson
measurements (of temperature, salinity and oxygen) have been described by Grant
(1968), Lazier (1973), and Ivers (1975). In this section we apply the general method
described in Sections 2 and 3 to the Hudson data, to estimate the large-scale field of
horizontal and vertical velocity averaged over the two-month period of the cruise.

Figure 2 summarizes the generally accepted picture of Labrador Sea circulation.
Both the shallow and deep currents are cyclonic and generally follow the bathymetric
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60

50

a

Figure 2. Schematic diagram of the circulation in the Labrador Sea near the surface (a) and in
deep water (b). For explanation, refer to text.

contours. The shallow circulation (Fig. 2a) consists of the West Greenland Current
(WGC), the Labrador Current (LC), and the North Atlantic Current (NAC). The
West Greenland Current is relatively narrow near Cape Farewell, but it widens as it
flows northwestward, and divides into two branches. One branch crosses the Davis
Strait into Baffin Ba)'. The other branch turns westward and joins the Arctic water
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flowing out of Baffin Bay to produce the Labrador Current, which flows south to
Grand Banks. The North Atlantic Current meanders northeastward as far as 55N.
This surface circulation was recognized in the early work of Smith et al. (1937).

The deep circulation in the Labrador Sea was underestimated until directly
measured by Swallow and Worthington (1969) using neutrally buoyant floats. They
estimated a deep transport of about 10 Sverdrups. Swallow and Worthington proved
that the deep waters of the Labrador Sea originate from Norwegian Sea overflow and
not from deep convection, as had previously been thought. However, intermittent deep
convection does occur in the Labrador Sea in winter. Lazier (1973) documents an
apparent renewal to 1500 m in 1967. The Labrador Sea water thus formed spreads at
mid-depth and is found throughout the North Atlantic north of 40N and along the
western boundary to 18N (Talley and McCartney, 1982). However, the Labrador Sea
is a region of great inter-annual variability, and the 1966 data used in this paper show
no evidence for deep convection during the previous winter.

Following the procedure described in Sections 2 and 3, we seek the smoothest field of
if;(A, 0, z), defined by (3.4), which agrees with the Hudson data and with the
approximate dynamical constraints. However, rather than using all the available
constraints at once, we consider instead a hierarchy of variational problems, in which
the number of constraints is gradually increased, in order of decreasing importance of
the constraint. In the simplest member of the hierarchy, only the roughness measure
and the data misfit are minimized.

a. Data-only models. We assume a priori that the vertical dependence of if;(A, 0, z),
can be fit as closely as desired by a low-order polynomial in z. Specifically,

where

M

if;(A, 0, z) = L if;m(A, O)¢m(z)
m-l

(4.1)

(4.2)

and if;m(A, 0) remain to be determined. The assumption (4.1) (with M a small integer)
is suppported by numerous observations of large-scale low-frequency flow and by the
results described below. In the simplest model of our hierarchy, we minimize

(4.3)

where

(4.4)
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is a roughness measure and

(4.5)

is the horizontal gradient operator in spherical coordinates. In (4.3), d; is the density
measurement at (A;, 0;, z;), and A is the Lagrange multiplier corresponding to the data
misfit q, defined by

(4.6)

Note that (4.4) does not penalize vertical variability, which is already limited by (4.1)
(with M a small integer). The variational equations corresponding to

(4.7)

are

cosO· \71 [~ I/;m J¢m¢. dZ] ~ l' ~ [~ I/;m (A;, OJ ¢:. (zJ + d;]
¢~(zJ o(A ~ AJ 0(0 - OJ), all n (4.8)

with boundary conditions

(4.9)

where

(4.10)

is the Laplacian operator in spherical coordinates and n is the unit normal to the
horizontal boundary.

Eqs. (4.8) are a coupled set of elliptic equations in the variables {I/;m}. Eqs. (4.9),
corresponding to no tangential flow at the computational boundary, are the 'natural'
boundary conditions arising from the contributions to oJ1 from 01/; at the boundary. If
alternative boundary conditions are desired, they may be inserted as constraints. For
example, if the data extend up to the coastal boundaries, and if there are no boundary
layers associated with unaveraged motions, then it may be preferable to require that
the average flow have no normal component at the boundary. In our case these
assumptions appear unjustified, and we regard the final estimate as meaningless
outside the region of data coverage. Of course, both the variational equations and their
boundary conditions change as we add dynamical constraints containing spatial
derivatives of 1/;.

The above equations must be solved numerically, and, because of the complicated
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Figure 3. The finite element mesh (a) and the locations of the Hudson stations (b) and the
bathymetry (in meters) (c) within the domain covered by the mesh.

geometry, we have used a method based upon finite elements and the Rayleigh-Ritz
procedure. The Labrador Sea was covered by the triangular mesh shown in Figure 3.
Each triangle is an element and the triangle vertices are called nodes. The node
locations bear no relation to the locations of hydrographic stations. Within each
element we assume that each 1/;mCX, 8) is a linear interpolate of its three nodal values.
Concisely,

N

1/;mCX, 8) = L 1/;':,.Sn(X,8)
n-I

(4.11)

(4.12)

where N is the number of nodes, and the 'shape function' Sn(X,8) is a tent-shaped
function of Xand 8 which: (a) is piecewise linear in both A and 8 on each element; (b)
has unit value at the n-th node; (c) is zero at every other node. We substitute (4.11) into
(4.3) and perform the integrations. Then J] is an ordinary function of the NM variables
{1/;':,.}. The equations

aJ,
a(t/;':,.) = 0, all m, all n,

are finite-element analogues of (4.8) and (4.9). As the element size shrinks to zero, the
solutions (4.11) of (4.12) converge to the analytical solutions of (4.8) and (4.9). Since
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Figure 3. (Continued)

b

c

13

(4.12) are linear in the {,p:,}, they may be written in the standard form

A1/I = d (4.13)

where 1/1 is the column vector of unknowns 1/1':.., d depends on the measurements di, and A
is a very sparse square matrix with dimension NM. Our representation contains 600
nodes and (typically) 5 vertical modes. Thus A is 3000 by 3000. We solve (4.13) by
block-symmetric over-relaxation, accelerated by the conjugate gradient method (Con-
cus et 01., 1976). For details, refer to Provost (1983). The function 1/IoCA, 8) remains
undetermined by a physically irrelevant constant. As explained in Section 2, it is
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Table 1.

Journal of Marine Research [44, 1

M 3

.097

4

.042

5

.017

6

.014

easiest to guess a value for the Lagrange multiplier 1', and then adjust the guess to
obtain the desired misfit q. Since

1
l' = - - dR jd(q2)

N
(4.14)

we expect l' > 0, if decreases in the prescribed misfit cause increases in the minimum
roughness. It can then be shown (Provost, 1983) that l' determines q uniquely and vice
versa. The values l' = 00 and l' = 0 correspond respectively to q = 0 and to

(4.15)

The data-only model contains no real dynamical information, and the levels-
of-no-motion are decided solely by the extremely arbitrary criterion of minimum
horizontal kinetic energy (4.4). The solutions 1/;(X, 8, z) of (4.6-4.9) are not therefore
superior to dynamic topography maps drawn by subjective methods. However, the
data-only solutions serve as interesting benchmarks for the more sophisticated
members of the hierarchy, and they illustrate ideas of general importance.

We have solved the data-only model with various amounts of vertical resolution
(M = 3,4,5,6). The choice M = 3 represents the vertical profile of density by a
straight line, while M = 6 represents the density by a fourth order polynomial in z. For
all M we find that, as the Lagrange multiplier l' is increased from zero, the roughness
(4.4) increases gradually until a critical misfit, qM, is reached. Further increases in l'
cause the sudden appearance of energetic small eddies in 1/; (of size comparable to the
station separation), with no significant further decrease in qM' We call qM the
'minimum achievable misfit' with M vertical modes. Table I gives qM in sigma units of
density. For comparison, instrumental errors alone would correspond to a misfit of .005
sigma units. But again, instrumental errors should be small compared to the aliasing
errors caused by eddies and other un averaged motions. We see from Table 1 that qM
decreases as the vertical resolution increases, but that the difference between M = 5
and M = 6 is very slight. Figure 4 compares the data-only streamfunction difference
between the surface and 1000 m (with M = 5) with a subjective map of dynamic
topography relative to 1000 m. The resemblance is very close. In all of the following,
we therefore use M ~ 5.
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a b
Figure 4. The surface streamfunction 1/;(A, 0, 0) minus the streamfunction at 1000 m, obtained

from (a) the data-only model described in the text with five vertical modes, and (b) a
subjective method based upon a level-of-no-motion at 1000 m. Each contour is one dynamic
centimeter.

Figure 5 compares sections of horizontal velocity obtained from the data-only model
using two distinct measures of roughness: the horizontal kinetic energy Rh and the
'enstrophy',3

(4.16)

Although the data misfits are comparable (q = .020 and .021), these two sections are
rather different. (We will show that these differences disappear as the number of
constraints increases.) The minimum energy section (Fig. Sa) has smaller velocity
extrema but greater small-scale variability than the minimum-enstrophy section (Fig.
5b). Again, however, neither solution contains any physics which is not implicit in the
measurements. In particular, neither model has a physical basis for deciding the
constants of vertical integration in the velocity. To remedy this situation, we begin to
add the dynamical constraints discussed in Section 3.

b. Data-Sverdrup models. The second member of our variational hierarchy includes
both the data constraint (4.6) and an approximation to the Sverdrup constraint (3.9).

3. Since (4.16) contains second derivatives, we cannot directly substitute the piecewise linear representa-
tion (4.11) into (4.16). Instead we replace (4.16) by a finite-difference estimate, and we find that the results
are insensitive to the precise choice of difference estimate.
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a
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Figure 5. Normal velocity (positive northward) through section A (Figure 3b) in em sec-1

obtained from the data-only model with (a) data misfit q = .020 sigma units and roughness
measure R,; and (b) q = .021 and measure R2•
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The Sverdrup constraint is very sensitive to the constant of vertical integration in the
horizontal velocity, because the absolute velocity enters both the advection of planetary
vorticity (the left side of (3.9» and the bottom torque of (3.12). The primary
inaccuracy in (3.9) results from the neglect of eddy vorticity fluxes. These fluxes are no
greater than about 10% of the planetary advection on the large spatial scales of
interest. The left side of (3.9) scales as HUI a - 10-3 cm sec-I. Therefore (3.9) applies
with a misfit Qs of about 10-4 cm sec-I. The upper Ekman velocity can be estimated
from the average wind stress curl and (3.11). According to Leetmaa and Bunker
(1978), the average wind curl is relatively weak, and WT is less than 10-4 cm sec-lover
much of the Labrador Sea. Thus WT has the same size as the misfit Qs and can be
neglected with no additional loss in accuracy.

The bottom vertical velocity WB depends on the magnitude of the horizontal velocity
at the bottom, and on the angle between the horizontal velocity vector and the isobaths.
However, WB scales no larger than sU, where s is the scale for the bottom slope. Near
the boundaries of the Labrador Sea s - 10-3 to 10-2 so that sU - 10-2 to 10-1 cm sec-I,
i.e., ten to one hundred times larger than the left side of (3.9). Therefore, on these steep
slopes, the Sverdrup constraint will either force the bottom horizontal velocity to be
near zero or to parallel the isobaths. In the central region of the Labrador Sea s - 10-5

to 10-4 and sU - 10-4 to 10-3 cm sec-I. Therefore in the flattest regions, the Sverdrup
constraint will not inhibit cross-contour bottom flow, but the constraint will tend to
choose a level-of-no motion for which the vertically integrated transport across latitude
lines is relatively small.

We now consider solutions to

(4.17)

where

(4.18)

and 'Ys is the Lagrange multiplier corresponding to the Sverdrup constraint

(4.19)

with misfit Qs. Each solution I/;('A, 0, z) to (4.17) is uniquely determined by a value for
the data misfit q and the Sverdrup misfit Q•• and thus corresponds to a point on Figure
6. We regard the region Ds of Figure 6 as the domain of physically plausible solutions
to (4.17). The domain Ds is bounded by:

(a) the vertical line q = .035 sigma units. This value of data misfit is (we believe)
the largest which could be explained by aliasing errors in the data. All points to
the right of q = .035 represent solutions which have unrealistically large
disagreement with the data.
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Figure 6. The domain Ds of physically plausible solutions for the data-Sverdrup model.

(b) the horizontal line Qs = 5 X 10-4 cm sec-I. This value of the Sverdrup misfit is
the largest which can be accounted for by the neglected eddy fluxes of vorticity,
the Ekman pumping at the surface, and errors in the bottom slope. All points
above Qs = 5 X 10-4 represent solutions which violate the Sverdrup constraint
by an unrealistically large amount.

(c) a curved line of Constant RI [1f], corresponding to the roughness value at which
small-scale eddies appear in 1f(A, 0, z). All points below and left of this curved
boundary represent solutions with unrealistically short horizontal scales (of the
order of the station separation).

The three solutions 1fh 1flI, 1fm(A, 0, z) shown on Figure 6 represent the extremes
encountered within the domain Ds of plausible solutions. All three lie near the
boundary of minimum acceptable horizontal smoothness. The solution 1fII has the
smallest misfit with the data, but it has an almost unacceptably large misfit with the
Sverdrup constraint. 1fm agrees well with the Sverdrup constraint, but its data misfit is
relatively large. The solution 1fI is a compromise between agreement with the data and
agreement with the Sverdrup constraint. Figures 7, 8, and 9 show the streamfunction
1f(A, 0, z) corresponding to the three models 1fh 1flI' and 1fm at various depths from 100
to 3500 m. These figures clearly show that a decrease in the Sverdrup misfit causes the
flow over steep slopes to intensify and to flow more nearly parallel to the isobaths.
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Figure 7. The data-Sverdrup steamfunction 1/;, at various depths. 1/;1 is computed with a data
misfit q = .025 sigma units and a Sverdrup misfit Q, = 2 x 10-4 cm sec-I.

We have examined other solutions from the interior of the domain Ds. These
generally resemble 1/1\ (but with greater horizontal smoothness) except near Cape
Flemish in the southwestern Labrador Sea. In the latter region of steep slopes and poor
data coverage, the solutions are very sensitive to the size of the Sverdrup misfit.

The streamfunction maps corresponding to 1/1\ reproduce the major surface currents
known from observations: the West Greenland current, the Labrador current, and the
North Atlantic current. The Labrador and West Greenland currents generally follow
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Figure 8. The same as Figure 7 but for 1{;", with q ~ .018 and Qs = 5 X 10-4.

the isobaths and appear to be steered by the bathymetry. The North Atlantic current is
not closely correlated with bathymetry except over the steep slopes of the Reykjanes
ridge. When we demand a close agreement with the Sverdrup constraint (Fig. 9) the
meanders in the North Atlantic current disappear.

The flow at mid-depths in the Labrador Sea has been controversial. Ivers (1975)
used a subjective method based upon the distributions of salinity and oxygen on neutral
surfaces to infer a relatively strong cyclonic flow at mid-depths, whereas Swallow and
Worthington (1969) argued that currents are near zero throughout the Labrador Sea
in the depth range 1000-1200 m. In Figure lOwe compare the horizontal velocity field
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Figure 9. The same as Figure 7 but for ~III' with q = .039 and Q. = 8 X 10-5•

through section A (Fig. 3b) from our solution 1/1. (Fig. lOa) with the corresponding
result obtained by Ivers (Fig. 10c) and a third section (Fig. lOb) based upon a
level-of-no-motion at 1000 m. Our section is similar to Ivers' in the western part of the
section but more similar to Figure lOb in the eastern part.

The deep flowin 1/11 is also cyclonic, and generally follows the bathymetry. The large
horizontal velocities (up to 30 cm sec-I) agree with Ivers' conclusions.

We have computed the vertical velocity from (3.7) and (3.12) with 1/1 = 1/1•• Figure
lla shows the vertical velocity at 100 m depth. The velocity is small and positive
(upward) over much of the area, and resembles the map of Ekman vertical velocity
obtained by Leetmaa and Bunker (1978) from wind stress data (Fig. II b). Although
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Figure 10. Northward velocity through section A predicted by (a) if;•• (b) subjective analysis
with a level-of-no-motion at 1200 m and (c) Ivers (1975). Units of em sec-I.

these surface velocities are of the same order as the misfit Qs = 2 X 10-4 em sec-I, the
resemblance between Figures 11a and 11b supports the idea that the density
measurements contain information about long-term wind driving. Figure 12 shows
vertical velocity in the plane of section A. The bottom velocities are significantly larger
than those at the surface. The deep water is rising on the Labrador side and sinking on
the Greenland side. These signs of vertical velocity correspond to a conservation of
potential velocity by water columns as the Greenland Current flows northward and
into deeper water, and the Labrador Current flows southward into shallower water.

To test the sensitivity of data-Sverdrup models to the choice of roughness measure,
we have solved the variational problem with R1[!f] replaced by

(4.20)

The misfits q and Qs are comparable to those used for the model !f! above. The
corresponding horizontal velocity through section A is shown in Figure 13. The
differences between Figures lOa and 13 are significant, but much less pronounced than
between Figures 5a and 5b. This reinforces our belief that the choice of smoothing
operator is not crucial if the data and dynamics control the flow sufficiently. On the
whole, the flow in Figure 13 obtained with the enstrophy measure (4.20) more closely
resembles Ivers' section (Fig. 10c) than did !fl'

c. Data-Sverdrup-density models. To further reduce the domain of plausible solu-
tions, and to reduce the differences caused by the choice of roughness measure, we
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Figure 10. (Continued)

c

introduce our final constraint, the conservation of potential density in the form

u • \lPe ~ 0 (4.21)

where u and Po are the average velocity and potential density. Again, the errors in
(4.21) result from neglected eddy fluxes of potential density, which may sometimes be
as large as the terms retained. We therefore apply (4.21) with a relatively large
misfit.

Eq. (4.21), unlike previous constraints, is nonlinear in the average flow variables,
and would therefore require that the resulting variational problem be solved by
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40"

a

b

Figure II. Vertical velocities in 10-5 cm sec-I at 100 m depth predicted by (a) the data-
Sverdrup solution If" and (b) Leetmaa and Bunker (1978).

Figure 12. Vertical velocity in 10-5 cm sec-1 in the plane of section A (Fig. 3b) predicted by the
data-Sverdrup solution Ifl'
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Figure 13. Northward velocity through section A in em sec-I predicted by the data-Sverdrup
model with q = .026 sigma units, Qs - 1.8 X 10-4 em sec -I and the enstrophy roughness
measure R2•

iterations. In the interest of economy, we prescribe P8 a priori, from the data alone.
Specifically, we determine P8 as the smoothest potential density field (by roughness
measure R\) which is consistent with the data and a misfit of .020 sigma units. We then

define

(4.22)

where u is given in terms of1/; by (3.5, 3.7, 3.12) and Qp is the misfit on (4.21). The

variational equation
(4.23)

(4.24)

is then linear in 1/;(X,0, z) and can be solved by the same numerical methods as in
previous cases. The numerical representation of P8 uses the same number of vertical
modes and horizontal elements as used to represent P = -a1/;/az. Because we do not
iterate, our final density estimate -a1/;/az is not perfectly consistent with P8' However,
our procedure is justifiable both because the difference between P8 and the potential
density consistent with our variational solution is relatively small, and because the

misfit Qp on (4.21) is relatively large.
The misfit Qp is more conveniently characterized by the "cancellation parameter"

Pc= IU·\7P81

Max I--u- ap8 ~ ap8 w ap8 \
a cos 0 ax ' a ao' az
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Figure 14. Domain Dsp of plausible solutions in the space of misfits corresponding to the
data-Sverdrup-density models.

whose smallness is a measure of the cancellation between terms in (4.21). Note that
o < Pc < 3. Every solution of (4.23) is characterized by a value of data misfit q,
Sverdrup misfit Q" and Pc> the volume average of Pc> and hence corresponds to a point
within the space depicted by Figure 14. The domain Dsp of acceptable solutions is now
a convex volume bounded by the three planes q = .035 sigma units, Qs = 5 X 10-4 cm

"..-.•..
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Figure 15. The projection of Dsp onto the q - Qs plane. For explanation, refer to the text.
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Figure] 6. The same as Figure 7 but for the data-Sverdrup-density solution ""IV'

sec-I, and Pc = .7, which we regard as the maximum acceptable average noncancella-
tion between the terms in the potential density equation. The curved boundary of Dsp is
a surface of minimum smoothness, corresponding to the same value of roughness R 1 as
before. We find that the cancellation parameter Pc cannot be made smaller than Pc = .4
without exceeding the maximum misfit on the data or the Sverdrup constraint.

Figure 15 superimposes the "top face" of Figure 14 (i.e., the intersection between
Dsp and Pc = .7) on the domain Ds of Figure 6. Figure 15 shows that there must be a
tradeoff between the misfit on the Sverdrup constraint and the misfit on the potential
density equation. That is, we must tolerate a somewhat larger Qs in order to reduce Pc
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Figure 17. Northward velocity in cm sec-1 through section A corresponding to the data-
Sverdrup-density solution ""IV'

20-
---15-

Figure 18. Vertical velocity predicted by ""IV in the plane of section A. Units of 10-5 cm sec-I.
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Figure 19. Vertical velocity predicted by "",vat 100 meters depth. Units of \0-5 em sec-I.

to an acceptable size. From Figure 15 we see that our previously preferred solution 1/;,
lies outside the new domain of acceptable solutions. A calculation shows that Pc = 1.2
for the solution 1/;1'

We now consider a solution 1/;,v(Fig. 15) which does lie within Dsp. The solution 1/;,v
corresponds to the values q = .025 sigma units, Q. = 3 X 10-4 cm sec-I, and Pc = .7.
The most important difference between 1/;IV(Fig. 16) and 1/;1(Fig. 7) occurs near the
surface in the northern Labrador Sea. Whereas 1/;1shows a significant flow directly into
Baffin Bay, the density-conserving solution 1/;,vshows a westward branching of the
West Greenland Current to join the Labrador Current. The two solutions also differ
significantly in deep water near the mouth of the Labrador Sea. Whereas 1/;1shows two
cyclonic gyres, 1/;lvhas only a single gyre. Figures 17 and 18 show the 1/;lvhorizontal
velocity through section A (Fig. 3b) and the vertical velocity in the plane of the section.
Figure 19 shows the 1/;,vvertical velocity at 100 m depth. The horizontal velocity
section closely resembles Ivers' section (Fig. 10c) and the section obtained with the
data-Sverdrup model and the roughness measure R2 (Fig. 13). Note that there is no
mid-depth southward flow on the Greenland side like that obtained in Figure lOa from
the data-Sverdrup model with measure RI' The 1/;lvsurface vertical velocities again
resemble the predictions of Leetmaa and Bunker (Fig. 11b). Overall, the 1/;lvvelocity
fields are spatially smoother than in 1/;1'The 1/;,vhorizontal velocities are slightly larger,
and the vertical velocities significantly weaker, than in 1/;,.

We have also computed data-Sverdrup-density models using the enstrophy rough-
ness measure R2• These solutions differ insignificantly from 1/;,v.Thus, when all the
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Figure 20. The cancellation parameters Pc for potential density conservation corresponding to
(a) the data-Sverdrup solution 1/;1; and (b) the data-Sverdrup-density solution 1/;]v.

constraints are used together, the solutions are insensitive to the choice of roughness
measure.

Figures 20a and 20b are maps of the cancellation parameter Pc for the models l{;[ and
l{;[V at 500, 1500, and 3000 m depth. The cancellation parameter is smaller in l{;[V, but it
shows the same spatial pattern in both models. The large values of Pc near the surface
and bottom suggest that eddy fluxes of potential density by unresolved small-scale
motions are largest near the boundaries.

It is possible to introduce further constraints, corresponding to the conservation
equations for other tracer quantities. The Hudson data include high-quality measure-
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Figure 20. (Continued)

31
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ments of oxygen. However, below 800 m the Hudson measurements all fall between 6.3
and 6.8 mill and show no organized pattern. We therefore did not attempt to use
oxygen conservation as an additional constraint.

5. Summary

We have proposed a flexible and transparent variational method for estimating the
mean ocean circulation from hydrographic data. This method has several important
characteristics which distinguish it from most other inverse methods used by oceanog-
raphers. First, the dynamical constraints are applied in their differential form, at every
point within the three-dimensional flow domain. There is no arbitrary selection of
control volumes to which the conservation laws will be applied.

Second, the minimized functional includes an explicit measure of spatial roughness.
This is desirable because sparsely-sampled data contain no information about length
scales smaller than the data separation, because spatial averaging increases statistical
confidence, and because the chosen dynamical constraints apply only to large-scale
flow.

Third, the method explicitly recognizes the existence of aliasing errors in the data
and Reynolds flux errors in the dynamics. The sizes of these errors, which can be
estimated by a scaling analysis, determine the domain of plausible estimates of the
mean flow.

Fourth, this domain of plausible estimates can easily be explored by adjusting the
sizes of the Lagrange multipliers corresponding to the imposed constraints. In fact, the
essential advantage of our method is its ability to distinguish between the quality of the
various constraints and to test and enforce them accordingly.

Our variational inverse method is essentially the same as that proposed by Wahba
and Wendel berger (1980), following earlier work of Sasaki (1958) and others. Unlike
Sasaki, Wahba and Wendelberger do not emphasize dynamical constraints, but
Bennett and McIntosh (1982) show how the method may be modified to cover the case
in which the constraints include the full tidal equations. In the geomagnetic study of
Shure et aJ. (1982), the magnetic field is constrained to have no sources outside the
Earth's core.

We have applied our general method to a set of hydrographic measurements from
the Labrador Sea. Our application is unusual in that the constraint to conserve
potential vorticity is applied in both the detailed, nonintegrated form (which relies on
mean potential density conservation) and in the vertically-integrated form (which does
not). The latter (integral) constraint has a significantly smaller error, essentially
because mean particle trajectories cross mean isopycnals more readily than they cross
the ocean's surface and bottom. Our results confirm that the detailed conservation of
potential density is a valuable constraint, but that it must be applied with a relatively
large misfit. This conclusion suggests that it is dangerous to assume that the mass
between isopycnal surfaces is exactly conserved along lengthy trajectories.
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The Labrador Sea study yields a representative estimate !/;.vof the mean circulation
whose horizontal velocities agree with the generally accepted picture of the circulation
and with the neutral-surfaces analysis of Ivers (1975). The estimated field of vertical
velocity is largest where coastal currents cross isobaths and the predicted field of
near-surface vertical velocity shows remarkable agreement with the estimate obtained
by Leetmaa and Bunker (1978) from the average wind stess. Since the wind data do
not enter our constraints, the only explanation for this agreement is that the
observations themselves contain information about the mean wind stress. This hints at
the synthetic power of the method.

The greatest weakness in the variational method as applied in this paper is the lack
of any imposed spatial variation in the misfits (or Lagrange multipliers) like that
discussed briefly in connection with (2.8). In the deep ocean, and away from
boundaries, a given difference between the estimated and observed density constitutes
a more significant error than in noisier regions with large density gradients, and these
differences should be weighted accordingly. This could be done in many ways. For
example, we could re-define the error as the vertical displacement required to match
the measurement with the estimated field of density. Similar remarks apply to the
dynamical constraints.
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