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Wave propagation and growth on a surface front in a
two-layer geostrophic current

by Peter D. Killworth, I Nathan Paldor2 and Melvin E. Stern3

ABSTRACT
We study analytically and numerically small amplitude perturbations of a geostrophically

balanced semi-infinite layer of light water having a surface front and lying above a heavier layer
of finite vertical thickness which is at rest in the mean. In contrast with previous studies where
the latter layer was infinitely deep we find that the equilibrium is always unstable regardless of
the distribution of potential vorticity, and the maximum growth rates are generally much larger
than in the "one-layer" case. The amplifying ageostrophic wave transfers kinetic energy from
the basic shear flow as well as potential energy. Good quantitative agreement is found with the
laboratory experiments of Griffiths and Linden (1982), and our model seems to be the simplest
one for future investigations of cross frontal mixing processes by finite amplitude waves. The
propagation speed of very low frequency and nondispersive frontal waves is also computed and is
shown to decrease with increasing bottom layer depth.

1. Introduction

Fronts are frequent synoptic features of both the atmosphere and the ocean
(Hoskins, 1982; Legeckis, 1978). They are important in the ocean because they are
believed to be the site of much of the oceanic dissipation and mixing (Joyce, 1980).
This is in part because the flow at fronts is known to be highly unstable; both
observationally, e.g. the Gulf Stream (Fofonofl', 1981), and in the laboratory (Griffiths
and Linden, 1982; Chia et al., 1982). Our previous frontal studies have been largely
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Figure I. The frontal configuration used in this paper.
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motivated by a desire to understand these latter laboratory studies, but hitherto the
theory has been restricted to only one active layer of fluid. This omitted at least one
fundamental mode of instability such as happens in the classical Phillips (1954) model
for nonfrontal configurations. The frontal model to be considered here (Fig. l) differs
from its predecessors because it has two active layers of fluid which are actively
coupled.

In the one layer study of Griffiths et al. (1981), hereafter GKS, a density current
having two fronts on the same level surface was studied theoretically and experimen-
tally and shown to be highly unstable when the distance between these two fronts was
not large compared to the Rossby radius of deformation. Otherwise substantial
disagreement between theory and experiment was found, and this was attributed to the
presence of another kind of instability mode. Paldor (1983) showed that a single-layer
front (semi-finite) with uniform potential vorticity was completely stable and the
dispersion relation for the frontal waves was computed. Killworth (1983) showed that
this front is destabilized if the layer tends to uniform depth at infinity more rapidly
than a layer of constant potential vorticity of the same depth. The effect of a vertical
boundary, which is relevant to coastal fronts, was examined by Killworth and Stern
(1982), hereafter KS, who showed that the potential vorticity (evaluated at the
boundary) must be increasing toward the vertical boundary in order for instability to
occur. Reference should also be made to preliminary attempts (Stern et al., 1982) to
investigate finite amplitude frontal waves by means of a long-wave approximation to
the shallow water equations. In summary, none of these one-layer theories seem to
furnish an acceptable starting point for explaining the interesting observations of
Griffiths and Linden (1982).

It will come as no surprise, with quasi-geostrophic theory as a well-known precedent
(Pedlosky, 1979) that a new and important ingredient will appear in the frontal
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dynamics when the two layers (Fig. I) have comparable vertical thickness. On the
other hand, we must emphasize the inapplicability of quasi-geostrophic theory to the
problem at hand. It is not only a question of exceeding the formal limits of validity (on
the Rossby number and on the variability of layer thickness). The central question is
the prediction of the lateral displacement of the front up to the (highly nonlinear) point
where cross-frontal mixing occurs via eddies which detach from their parent water
mass and cross over to the other side of the front. It seems to us that the nearest thing to
an acceptable frontal model is that of Orlanski (1968), but that has a bottom front and
a surface front.

We therefore propose to generalize the earlier work on a single front (Fig. I) by
considering the effect of finite total depth on the growth of small amplitude frontal
perturbations. A proper asymptotic expansion (in downstream wave number) of the
ageostrophic shallow water equations will show (Sections 4 and 5) that the equilibrium
in Figure 1 is unstable, regardless of the distribution of potential vorticity in the upper
layer. The most fundamental (and simplest) case of uniform potential vorticity is then
examined in detail by a numerical calculation for a range of wave numbers and for
various r. The wavelength of the fastest growing mode is compared to the Griffiths and
Linden experiment and is in excellent agreement. We also compute the ratio of the
release of kinetic energy to the release of potential energy, a number which may be
accessible in oceanic measurements of frontal currents (Lee and Atkinson, 1983).

Although this baroclinic instability mode is the fastest growing and must be
important for the synoptic scale, there is another mode (Section 3) which is
nondispersive at low frequencies, and which is of interest in connection with the annual
variation of the Loop Current in the Gulf of Mexico.

2. Formulation of the problem
Figure I is a vertical section through a geostrophic flow of a light fluid layer (density

PI) which overrides a layer of heavier fluid (density P2 > PI)' (This shows the oceanic
configuration; for atmospheric problems, invert the vertical axis and density ratio.)
The interface between the two layers intersects the surface at y = Yf (x, t), and its
depth approaches a constant dimensional value H as y - -00. The thickness of the
lower layer at Y - -00 is taken to be (r - l)H. The shallow water equations for each
of the layers are nondimensionalized by scaling the cross-stream coordinate (y) by the
radius of deformation R = (g(P2 - pl)Hp:;1)1/2/fand the downstream coordinate by
~-I R, ~« 1. (Analytically, ~will be small. Numerically, no such limit is made.) This
scaling anticipates that attention will be directed to the long wave limit ~- 0, where ~
will play the role of a downstream wavenumber. The time (t) is accordingly scaled by
(~f) I, the downstream velocity (u) is scaled by V ~ (g(P2 - PI)p:;lH)1/2, and the
smaller cross-stream velocity is scaled by iV. The depth of the interface (h) is scaled by
H, so that the nondimensional value of the depth of the interface at Y = -00 is 1, while
the lower layer thickness at -00 is (r - 1). Letting r = ~2vx - uy denote the relative
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vorticity and p the pressure (nondimensionalized by g(P2 - PI )H-1), the horizontal
momentum equations for either layer are:

(2.1 )

(2.2)

where i = 1,2 represents upper, lower layer respectively. Henceforth the upper layer
pressure will be denoted by 1>, the lower by p, to simplify notation. The continuity
equation in the upper layer is

while in the lower layer this equation becomes

a a a
-;- (r - h) + - (u2(r - h» + - (v2(r - h)) = O.
ot ax ay

(2.3)

(2.4)

The hydrostatic relation between the pressure in the upper and lower layers can be
written as:

'\7h(x,y, t) = '\7(1) - p). (2.5)

We recall that (2.]) to (2.4) imply the conservation in each layer of the potential
vorticity:

so that

== rl + 1QI h

Q = r2 + 1
2 - r-h

(2.6)

(2.7)

(:t + ui :x + Vi ; ) Qi ~ 0, i~1,2. (2.8)

We consider henceforth small perturbations to a mean state (the latter is denoted by
bars) in which there is no mean flow in the lower layer, and the upper layer is in
geostrophic balance. We choose a steady mean zonal geostrophic flow it (y) in the
upper layer so that

(2.9)

*The necessity for geostrophy comes from (2.2); the choice of zero for pis arbitrary as this has no effect on
the dynamics.
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The function h (y) is chosen so as to tend to unity as y --+ ~ 00, and h vanishes at y = 0,
so that the mean front Yroccurs at the origin. For y > 0, there is only lower layer fluid,
at rest in the mean state.

For the special case of uniform potential vorticity in the upper layer (Q, is a
constant, and the condition at infinity implies Qj = 1), hand U satisfy

h = 1 - eY (2.10)

(2.11 )

as seen from (2.6) and (2.9), together with h(O) = O.
We now assume the (x, t) structure of the small perturbations to be that of a normal

mode, here exp i(x - ct). The parameter f, as noted, plays the role of a wavenumber,
and because of the scaling already performed does not appear in the exponential.
Nonetheless, the unknown phase velocity c still carries the usual connotations: real c
implies stability, while complex c, with Im(c) positive, implies instability. In the latter
case, f 1m (c) is the growth rate.

The linear perturbations then satisfy

(U-c)Uj + (l-uy)ivi +ct>=0

f2(U - c)iv, + Uj + ct>y ~ 0
- -
hUj - (hivj)y + (u - c)h ~ 0

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

The lower-layer equations (2.15) to (2.17) may be combined to obtain a single
equation for p and h, by solving for U2' V2 from (2.15), (2.16). Upon substituting in
(2.17) we obtain

(2.18)

For the upper-layer equations we now drop the subscript on Uj, and set VI = -iV,
thereby obtaining

(U - c) U + (1 - uy) V + ct>= a

hu - (hV)y + (u - c)h ~ O.

(2.19)

(2.20)

(2.21)

Eqs. (2.18) to (2.21) need boundary conditions, and we first consider the region y >
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Yj' where there is only heavy fluid for which Ii = 0 = h = h. Eq. (2.18) reduces to

Pyy = t2p, so that p = Po exp( -ty), (2.22)

and we use this solution to determine a lower-layer boundary condition at the front y =

O. Since Py (as well as p) must be continuous across y = 0 in the lower layer, we get

dp(O)dY + tp(O) = 0, (2.23)

as the frontal boundary condition for the bottom pressure in the region y ~ O.At large
distances from the fronts in the light fluid, the boundary condition is

p( -00) = ¢( -00) = 0 (2.24)

and at the front we require that the solution to Eqs. (2.19) to (2.21) be well behaved
near y = O. If QJ (0) is finite for the mean state, then 1 - uy(O) = 0 and this combined'
with (2.19) yields

From (2.20) we get

(1i(0) - c)u = -¢,y = o. (2.25)

u = -¢y - t2(1i - c) V, y ~ 0

so that (2.25) becomes, whether or not the upper layer potential vorticity is finite,

(2.26)

3. The longwave limit for flow with nearly uniform potential vorticity
In this section we examine the simple longwave limit (t = 0) for QJ = 1, show that

only real values of c exist, and compute them as a function of r. As mentioned in
Section I, a different (and more important) mode with a more complicated t --+ 0 limit
will be considered later. We shall also consider herein small variations from QI = I,
and find the necessary condition on QJy in order that lm(c) be positive (instability).
Thus we now set t

2
~ 0 to get the upper-layer equations

u = -¢y

hu - (hV)y + (u - c)h = 0

and the lower-layer equation (2.18) becomes

- U
[(r - h)py]y + h + - P = 0

c

(3.1 )

(3.2)

(3.3)
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(3.4 )

(3.5)

The basic state potential vorticity in the upper layer is written following (2.6) as

l-u
~=QI(Y)

h

and we will focus on the limit QJ (y) ,., 1.
The boundary conditions (2.22), (2.23), (2.24) and (2.26) become for ~ = 0

dp(O) = O.
dy ,

d¢(O) ¢(O).
~ =u(O)-c'

p(-co)=0

¢( -co) = o.

(3.6a,b)

(3.7a,b)

The long-wave perturbation potential vorticity equation corresponding to (3.1) to
(3.3) may be derived from (2.19) to (2.21) as

_ du _ hQJ(Y) ~ Vh!!.QJ/dy
dy u - c

as this may be written as

(3.8)

where

S 1 == (Q I (y) - 1) (¢ - p)

SI == Vh~QJ/dy.
u-c

For subsequent work in solving (3.4), (3.8), it is helpful at this point to transform the
independent coordinate y into z = eY, thereby mapping the y = ( - co, 0) infinite domain
onto the z = (0, 1) finite interval. In terms of z, Eqs. (3.4), (3.8) and the boundary
conditions (3.6a,b), (3.7a,b) become

d ( - dP) ( ii)z - z (r - h) - - 1 - - P = - ¢
dz dz c

d ( d¢)z dz z dz - ¢ = - p + S 1 + So

(3.9)

(3.10)
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dp(l)
~=O; p(O) =0

d¢(l) ¢(l).
-d-z- - u(1) _ c' ¢(O) = 0

S, = (Ql(Z) - I) (¢ - p)

VzhdQ,jdz
So = _ .

u-c

[42,4

(3.1la,b)

(3.12a,b)

We now divide (3.9) and (3.10) by z and multiply them by p*, ¢* (the complex
conjugates of p, ¢) respectively. By integrating the resulting equations between z = 0
and z = I using the boundary conditions (3.lla,b), (3.12a,b), adding the equations,
and taking the imaginary part, we get

.{1¢(1)1
2

__ 1_['1 12d}=1 [1¢*(S,+So)d
c, 1 12 1 12 P z m z.I-c Coo z

Consider first the implications when

(3.13)

QI = I, S, = So = 0, U = z, h = I - z.

The general solution of (3.10) when S, = 0 = So can readily be obtained by the method
of Green's function, and the regular solution is

where the constant A as determined from (3.12a) is

1 - C[' 1 [' 2A = -- pdz - - (z - l)pdz.
co2 0

Then

1- C['¢(I) = -- p(z)dz
C 0

and substitution of this into (3.13) yields

(3.14)

(3.15)

By Schwartz's inequality the term in the brackets on the left-hand side of (3.15) is
negative for all nontrivial p =1= constant, and therefore we have proved that when Q, =
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I the only possible eigenvalues are those for which Ci = O. This stability result applies to
all r but not all wavenumbers, whereas Paldor (1983) has shown that all wavenumbers
are stable when r~ I = O.

We now briefly consider the case where Q, - 1 and c; are small. Since there exist
(see below) real eigenvalues, 0 < C < 1, when QI = I, the left-hand side of (3.13) is
small to order ci• On the right-hand side of (3.13), we note that the contribution of
Im(p*SI) is of order (Ql - I) . C; since <f>is real for QI = 1. The other term,lm(<f>*So)
in (3.13), or

(3.16)

will, as we shall see, be of a larger, O(c,), magnitude. The main contribution to the
integral in (3.16) comes from the critical layer, Yeo where Cr = Zc = exp(yc) = u(Yc). At
this critical layer the x momentum equation (3.1) implies for Ql "" 1

By using this to eliminate Vand by taking the principal part of (3.16), we get

1m 11hV<f>* dQ,/dz dz "" - 1m 1=:1 <f>12dQ,/dz dz
o z - c z: z - C

(3.17)

(3.18)

1 1
2dQI(zJ .

= - <f>(zc) dz' 1r SIgn (c,) (3.19)

where the calculus of residues has been used to obtain the last results. Equating (3.15)
and (3.19) we see that if Cj =1=0, then

(3.20)

(3.21)

i.e. the potential vorticity has to increase toward the front for the mode to amplify. We
now show that the nondispersive long waves exist for QI = I, and we shall discuss their
significance in Section 6.

We substitute <f>(z)from Eq. (3.9) into Eq. (3.10) (with Sl = So = 0) to get a single
O.D.E. for p(z). The resulting equation can be written in terms of q(z) = z dp/dz as

(r - I + Z)Z2qzzz + 3z(2z + r - l)qzz + (6Z + ~- I)qz + ~q = O.

The boundary conditions (3.lla,b) become q(I) = 0 = q(O). The points z = 0, -(r -
I) are regular singular points of equation (3.12), and the solution can be expressed as a
Frobenius series

00

q(z) = z" L anzn, ao =1=O.
n~O

(3.22)
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(3.23)

Figure 2. Phase speed c as a function of, for a front of uniform potential vorticity. The firm line
shows the exact result, derived by numerical integration and series summation. The dashed
line shows the large, asymptote c ~ 0.272 ,-1.

When (3.22) is substituted into (3.21), we find that the indicial equation for the index
a (by equating to zero the coefficients of Z,,-I) is:

a[(r - I)(a2 - I)-I] ~ 0

and the index a which yields a solution which satisfies q(O) = 0 is

a =[_r ]1/2.
r - I

By equating to zero the coefficient of zn+", we find the recursion relation for {an!

_ _ (n + a - I) (n + a) (n + a + 4) + (6 + ~) (n + a) + ~
an+l - an ----------------------

(r - 1) (n + a) «n + a)2 - I) + 3(r - 1)
(n +a) (n + a + 1) - (n + a + 1)

From (3.23) we see that Ian+1/an 1- (r - 1)-1 as n - 00 and the series (3.22) will
converge at z = I for r - I > I, i.e. when the lower layer is deeper than the upper layer.
The divergence for r - 1 < 1 is due to the additional singularity at z = - (r - 1) of
(3.21) and does not impede direct numerical integration of the equation between z = 0,
1.

By fixing r we can sweep over the value(s) of c for which the boundary condition
q(1) = 0 is satisfied. The resulting c(r) for the largest eigenvalue is given in Figure 2.
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These values were computed by direct integration of the equation (3.21) and for the
r> 2 (i.e. r - 1 > 1) region were checked against a summation of the Frobenius series
(3.22), i.e.

N

q( 1) = L an = O.
n~O

The r --. 00 asymptote of the c(r) curve in Figure 2 can be computed analytically by
taking the limit r » h in (3.9), viz.

r~(z dP) + l!. ~ ~¢.
dz dz c z

For P ~ O(I), the terms balance if c-1
~ r, r --. 00 and if ¢ and hare O(r). In this case

we define

to obtain

~ (z dP) + ;..2 P = ~¢.
dz dz 4 rz

(3.24)

Now, (3.10), (3.12a, b) have to leading order the trivial solution ¢ = Arz for some A.
Thus, the solution of (3.24) is

(3.25)

where Jo is the Bessel function of the first kind, of order zero. (A is determined from
(3.11 b) as A2/4.) The boundary condition (3.lla) implies

and therefore

4 1
c = -.-

n A~ r

(3.26)

(3.27)

where An is the nth zero of J1• The asymptote of c(r) in Figure 2 agrees well with the
formula

4 1 0.2724
co=-·-=--.

~ r r
(3.27a)

We may also derive a relation between the position of the front, (Yj), and a
fluctuating transport such as may be imposed at some upstream point (a narrow strait
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from which the frontal system emerges, for example). The transport between any two
points Yl = A, Y2 = B, in the upper and lower layer is

MAB =1B [uh + u2(r - h)]dy =1B h(u - u2)dy + r1B U2dy (3.28)

Since u ~ ~¢Y' U2 ~ -pY' h = ¢ - p, we get from (3.28)

B B
1 2MAB = -- h -rp
2

A A

(3.29)

If we compute the total transport between Y = - co and Y ~ ex; (where p is constant) and
h( -co) = 1, h(oo) = 0,

(3.30)

If, on the other hand, we compute the total transport to the left of the free streamline,
i.e. where there is only one layer of fluid, we get

1 2M = -- h
+ 2 -rp = rp(YJ) '" rp(O) (3.31)

where p(co) = 0 has been used. Therefore, the transport perturbation in this front to the
right of Yf(which involve both layers of fluid) M' = -M+ is

M' = -rp(O). (3.32)

Now consider the linearized position of the free streamline which can be computed
from

dho = h(YJ) = h'(O) + dy (0) • YJ = h'(O) - u(O)YJ

so that

h'(O)
Yf = u(O) = ¢(O) - p(O)

for u(O) = 1. Therefore

.!L = -(¢(O) - p(O» 1 - ¢(O)/p(O)
M' p(O) r r

(3.33)

(3.34)

The ratio on the right-hand side of (3.34) can be computed from the asymptotic
solutions for ¢, p as r --- ex; which were derived in (3.24) - (3.26),
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where A.o is the first zero of )). Therefore (3.34) becomes to order r-I

yj ~ A.~/4
M' ~ ---J.-o(-A.o-) ~ 2.6

and the numerical solutions show this asymptotic to hold for r ? 2.

(3.35)

4. More general instability considerations
The foregoing analysis pertains only to one type of long wave, which amplifies only

under very special circumstances, and we shall show that there are other dispersive
modes which amplify even when QI = I. The important general conclusion will be
reached that all fronts are unstable to long waves, subject only to a formal restriction
that the lower layer be sufficiently deep. Other considerations indicate that the
shallower the lower layer, the more rapid the instability.

The following asymptotic analysis is not only based on a small wavelength (f)
expansion of (2.18) to (2.21) but also on a large depth (r) value, i.e. let

K
r~-,€----O

€
(4.1)

where K is an arbitrary constant of order unity. The restriction to large values of r
represents a natural extension of earlier one-layer (r = (0) models, but the reason for
choosing the €-I dependence (4.1) is not obvious; we were led to this by prior numerical
experimentation. Be this as it may the reader can convince himself that an expansion in
€ only, with r arbitrary, will fail due to the singularity of Eq. (2.18) as r ---- I.

In seeking an expansion of the eigenfunctions in powers of € a problem arises in
connection with the lower-layer equation (2.18) at large y. Assuming that 1 fl 1---- 0
faster than O( 1 y 1- 2) as y ---- - 00 (the other cases can also be treated and yield the same
answer after rather more algebra), p satisfies

2Pyy = € p, Y ---- -00 (4.2)

similar to y > O. This demonstrates the necessity of an outer expansion for which a
stretched coordinate Y = €y is needed, so that (4.2) yields p C( exp( Y). This will modify
the boundary condition on p for y of order unity; the relevant boundary conditions are
derived in the Appendix and are quoted as necessary.

To proceed, we note that for € ~ 0,

h ~ u, u = - up V = fl, P = 0, c = 0 (4.3)
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(4.4 )

is a trivial solution (corresponding to a lateral shift by the front) which satisfies all the
boundary conditions. We use this as a basis for an expansion in small ~

h = u + ~hl+ ~2h2 + ...
P = ~PI+ ~2P2 + .
C = fC) + f

2
C2 + .

and similarly for u = - uy + ... and V = u + .... The suffices 1 and 2 here should not
be confused with the notation for upper and lower layer. Collecting terms O(f), 0(f2) for
the lower-layer equation (2.18), we get

O(~): KC1Plyy = - U(PI + c1) (4.5)

0(f2): KC2Plyy ~ hc1P,yy + KC1P2yy = -c\h1 - C2U - CIUqly - Uq2 (4.6)

with boundary conditions (see Appendix)

Ply = 0, y = 0

P2y=-PI,y=0

PI - constant, y - 00

P2y - PI> Y - -00.

(4.7)

(4.8)

(4.9)

(4.10)

Note that to leading order there is no interaction with the upper layer. A trivial solution
of (4.5) is

(4.11)

(There are other solutions in general, but these have CI determined at this order so that
the subsequent solvability condition (4.23) is not satisfied.)

To solve the top-layer equations to order ~\i= 1,2, ... ), we write them symboli-
cally

(4.12)

(4.13)

(4.14)

where Ai> Bi, Ci represent known functions of order fO, fl, ... fi-I, which will have been
evaluated already in the preceding step. (None are present for i = 0.) We write

Ui = Bj - cJ>iy

and substitute into (4.12) for v,:

A - "-. - uB + u"'·V = I '1', I 'l'IY

I 1 - uy

(4.15)

(4.16)
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(4.17)

and use both expressions in (4.14) to give

- - { h }hBi - h (Piy + hjy) - 1 _ Uy (Ai - 1>i - uBj + U1>iY)y + uhi = Cj•

Noting the terms in hi are a perfect differential, we may integrate from 0 to y and use
the well-beh~ved condition to give, after multiplication by (1 - UJii-l, and integration
by parts on hpjy,

[
1 - u] 1 -UCPiY- Uy 1>i = uBi - Ai - ToY (Ci - hB; - upJdy. (4.18)

Note that Pi occurs on both sides of (4.18).
To O(f), we have AI = cluy, BI = 0, C1 = CIU which together with (4.11) and a little

algebra, reduces to

uh1y - uyh! = 0

so that hi Q( U. By choosing the amplitude of h to be U(O), we have

hi == O.

(4.19)

(4.20)

This is to be expected, as the first ageostrophic terms do not enter in (2.20) until order
f2, and the geostrophic part of the solution is already contained in (4.3). The solution
(4.20) simplifies the lower-layer equation (4.6), which yields

(4.21)

together with conditions (4.8), (4.10). Fortunately it is not necessary to solve this
equation to proceed.

To obtain Ci> we examine the top layer at 0(f2). Following the previous procedures
giVes

so that after substitution in (4.18),

UCP2,v- Uy1>2= u3 + C2Uy- [1 ~ UY] [Y (C2U - hu2 - up2)dy. (4.22)

The first term in the integrand is an exact differential, by (4.5). In the third term, we
note that UP2 also appears in (4.21), so that (4.22) becomes, after integration of (4.21)
and use of (4.8),

(4.23)

where the very last term comes from the boundary condition on y ~ o.
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There is no need to solve this equation either, since the solvability condition will
determine c). For large values of y (but fly I still small), ¢2 and Ii tend to zero and
P2y -+ PI = -CI from (4.10), so that the sole surviving terms of (4.23) are

;:-oohli2dy - 2KcT

which must vanish in order for (4.23) to have solutions bounded at infinity. Hence

2 -1 JO -h-2dc) =- u y
2K -00

which is clearly negative, so that

or, using (4.1) to revert to r rather than k,

[ Jo li-2 d ]1/2
C "" ± i f -00 2r

u
y , f ---> 0, r not too small,

(4.24)

(4.25)

(4.26)

which is the fundamental result of this section. The positive root of (4.26) shows that
all isolated fronts (as we have defined them) are unstable, no matter what their shape
or potential vorticity distribution. In this connection we note that the lower-layer
potential vorticity is (r - h) -I, normally a monotonically decreasing function of y, and
the undisturbed structure of the upper layer may easily be chosen so as to have
potential vorticity also decreasing with y. The above results show that even this state is
unstable and that a change in sign of potential vorticity gradient is not a requirement
for instability when a front exists.

Since the mean state (denoted by a bar) contains kinetic as well as available
potential energy, the important question arises as to the sense of the transfer of each of
these terms to the perturbation (again denoted by a prime). To investigate this, one
takes the perturbation equations formed from (2.1), (2.2), (2.3), multiplies them by
hu', hv', h' respectively and adds the results for the two layers. With angle brackets
denoting a x average, and with numerical suffices now referring to the layer number,
we find that an expression for the total perturbation energy E satisfies

(4.27)

(4.28)
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Integration over y then gives

(4.29)

showing that energy changes are effected by the Reynolds stress term in the upper
layer, and the term depending on the phase difference between upper and lower-layer
pressure (NB. (h'xp') = (cjJ'xp'». In GKS, KS, and Killworth (1983), only the
Reynolds stress term appeared, as the lower layer was assumed infinitely deep at rest.
Now the possibility of vertical interactions permits true baroclinic effects between
layers.

We have, from the current work,

UI"" -uy + 0(~2)

VI "" - u + ~c, + 0(~2)

h ""u + 0(~2)

P "" ~c, + 0(~2),

so that the Reynolds stress is given by

(4.30)

(4.31)

where stars denote complex conjugates. This result is identical to those in the one-layer
papers. The vertical baroclinic term is given by

-~u
(h'xp') = IhRe(i h p*) = -2- Im(cl),

and by inserting these into (4.29), we have the neat result

:t 1~E dy ~ ~I~(Cl) {1:hu;dy + 1:u2 dY}.

(4.32)

(4.33)

For wide currents, the second (baroclinic) term dominates; for narrow currents, the
first (barotropic) term is dominant. In general, then, the instability is mixed. in that
both energy production mechanisms contribute to the instability.

As in Section 3, a convenient amplitude measure is the ratio of frontal displacement
yjto the perturbation mass flux, the latter being again defined as

M' = 1:{hu, + uh, + (r - h)U2} dy

Using (2.14), (2.17), we find after a little simplification

(4.34)

(4.35)
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Figure 3. The schematic relationship between the phases of the free streamline derivation and
perturbation mass fluxes on the two-layer side of the front (to the right in the diagram), for the
modes in Sections 3 and 4. In the latter case, both the long-wave limit and the fastest-growing
mode (for uniform potential vorticity) are shown.

But V2 = cYf/i at the free streamline (y '" 0) and therefore

;;,<-('~:"[1::U'dY]'" (,~)~~,i (4.36)

where the last result applies for uniform potential vorticity.
The waves discussed in Sections 3 and 4 are thus seen to be quite different. The

near-uniform potential vorticity instability has a perturbation mass flux in phase with
the meanders of the free streamline; the instability in this section has a perturbation
transport 1f/2 out of phase with the free streamline. Figure 3 shows a schematic of
these differences.

5. Numerical confirmation and comparisons
a. Numerical results. The analyses of the previous two sections, which are relevant
only for long waves, have been confirmed and extended numerically by direct solutions
of (2.12), (2.13), (2.14). Figure 4 shows c; and ECj for the uniform potential vorticity
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Figure 4. Imaginary parts of c, and growth rates f Ci, as a function of wavenumber f, for total
depths r = 2 (-), 5 (--), 10 (---- ) and 20 ( .... ). Also shown, for small f, are the asymptotics
of c; for small f given by (4.26).

mean flows (2.10), (2.11), for varying t and r. The unstable mode of Section 3 (for a
suitable mean profile) has been computed, but its growth rate is of order 10-5 and so
cannot be displayed on the diagram.

For small t, the solution lies very close to the asymptotic value of Section 4; this
asymptote is also shown on Figure 4. The error, as predicted, is 0(£), and the asymptote
remains excellent even for r as small as 2. (This is shown more clearly in Figure 5 for
values of r = 2, 5, 10, and 20.) The values of c" not shown for reasons of clarity,
increase as t for small £, as would be expected from the next term in the expansion.
Figure 5 shows that Cn like C;, decreases with lower-layer depth, qualitatively like the
mode in Section 3.

Solutions for the four values of r all display a high wavenumber cutoff, presumably
associated with the uniform potential vorticity used. GKS and KS both found high
wavenumber modes confined to the front in one-layer models, and these may well
persist in this two-layer model for other mean profiles.

The fastest-growing mode has c, ,., Ci. This alters the ratio of free streamline
displacementyfto perturbation mass flux M', so thatYfl M' ,.,exp( -i1r 14), as indicated
on Figure 3. A phase shift of 7r/4 is still likely to be distinguishable from one of zero in
observations, however.

b. Comparison with Phil/ips' (1954) quasi-geostrophic model. Much of this behavior
is qualitatively similar to Phillips' (1954) two-layer quasigeostrophic model, as
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Figure 5. c, and c; for f ~ 0.1, as functions of r; note the different scales. Shown dashed is the
asymptotic (4.26) for C;, whose error is uniformly OCt).

discussed in Griffiths and Linden (1982). The success of this model was quite
surprising, as it badly misrepresented the physics (Rossby numbers of order unity,
vanishing layer depths, etc.). It seems worthwhile to compare Phillips' model with our
new model to see why it fared so well and where it may break down.

To perform such a comparison, we scale the deformation radius on a mean depth H
of the lighter layer, apply a uniform mean flow in that layer of (g'H)I/2, (far beyond the
permissible limits of quasigeostrophy), and apply no mean flow in the lower layer. For
perturbations varying as exp i k(x - ct), where k is scaled on the deformation radius,
the Phillips model for a flow unbounded in y gives

c = ~2) {20 + e ± ~(e - 40)}2(1 + + 0
(5.1 )

where 0 is the ratio of layer depths (r ~ 1)~I. As this becomes small, we must have k =

0:01
/
4 for instability, where 0: is of order unity. This yields

(5.2)
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so that c" Cj are both 0(151
/
2
), and the growth rate

This has a high wavenumber cutoff for

kcut = 2'/2 (r - 0-1/4

and maximum growth at

(
4)1/4

kmax ="3 (r - 1)-1/4

which is

(k C;)max = 0.88 (r - 1) -3/4.

(5.3)

(5.4)

(5.5)

(5.6)

These predictions may be compared with the uniform potential vorticity solutions in
Figures 4 and 5, as summarized in Figure 6 (some points are approximate due to
numerical errors). The high wavenumber cutoff here appears to vary as (r - 1)-1/4,
but with a coefficient of order 1.6, a little higher than the Phillips prediction of 1.4.
However, the wavenumber of maximum growth varies as l.I5 (r - 1) -1/4, which is in
excellent agreement with the 1.08 predicted quasigeostrophically.

The main disagreement occurs for the growth rate (~c;)max' The scatter in Figure 6 is
a little higher than for ~alone, but a fit of 0.13 (r - 1) -3(4 is not too bad. This value is
almost seven times smaller than the Phillips' model yields, but this discrepancy could
probably be reduced by introducing rigid y-boundaries to simulate the natural frontal
confinement.

c. Comparison with experiments. The foregoing remarks may rationalize the surpris-
ing success of the Phillips (1954) model as applied to laboratory results by Griffiths
and Linden (1982). For fronts sufficiently far from any boundaries, they found
experimentally that (in our notation) the wavelength of the fastest-growing mode
scaled with 151

/
4 (i.e. scales on the geometric mean of the deformation radii of the two

layers) and that 151(4 ~ "" 1.1 ± 0.3 which was consistent with the Phillips' result of 1.08
mentioned above. It is also, of course, consistent with the 1.15 figure found in this
paper, although this prediction of wavelength seems a little small for Griffiths' and
Linden's isolated vortex instability (their Fig. 10). There is also excellent agreement
with the figure of 1.16 ± 0.27 found by Chia et ai. (1982).

We also note that our model predicts rather small values of c, even when r becomes
quite close to two, in good agreement with the experimental results which show almost
stationary perturbations (until nonlinear amplitudes are attained). For the case in
Griffiths' and Linden's Figure 11 (an isolated vortex), the Phillips' model predicts c, ""
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Figure 6. The approximate values of the cutoff wavenumber ~cut, the wavenumber of maximum
growth ~ma•• and the maximum growth rate (~ cj)ma •• for values of r = 2, 5, 10 and 20 and
uniform potential vorticity. The three power laws, fitted by eye, are, reading downward, 1.6
(r - 1)-1/\ 1.15 (r - 1)-1/4,0.31 (r - 1)-3/4.

0.66, whereas our model yields Cr < 0.1, an order of magnitude less. (However, the
geostrophic adjustment of two finite-depth layers in the Griffiths and Linden experi-
ment would produce a finite counterflow in the lower layer, so that the assumption of
our model having no mean flow in the lower layer would be questionable, and the
comparison is less than straightforward.)

Similarly, the overestimate of growth rate by the Phillips model yields it less relevant
for frontal simulations. For the same isolated vortex, the Phillips model predicts a
growth rate of 0.27 (growth by a factor of 30 in one rotation period) compared with the
model's prediction of order 0.1 (growth by 3.5 in one rotation period). Estimates of
growth rates from experiment are notoriously difficult to make, but Griffiths' and
Linden's Figure II would tend to support the lower of these values rather than the
higher.
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d. Comparison with oceanic observations. Application of a linear idealized model to
the complicated nonlinear dynamics of the real ocean is a more difficult task. Killworth
(1983) compared a one-layer frontal model with the Gulf Stream observations
summarized by Fofonoff (1981) and found reasonable agreement for predicted
wavelength and period, but far too small a predicted growth rate.

We may also examine the results of the two-layer model. Take f ""1O-4s-l,
deformation radius a "" 30 km, and H to be a typical depth of the 150 isotherm, say
600 m. With a depth of 4000 m, this gives r "" 7. The predictions from Figure 6 give, for
the fastest-growing wave, E "" 0.7, Ci "" Cr "" 0.043. This translates dimensionally to a
wavelength of 270 km, while Fofonoff quotes 140-365 km. This wide range, presum-
ably caused by slope and shelf effects, means that any prediction with a wave length of
order 211" deformation radii would give reasonable agreement.

The prediction for frequency is j(ECr), giving a period of 211"(jECr)-1 "" 24 days;
Fofonoff cites 10 to 37 days, so again the prediction is in the right range. Growth rates
are predicted to be of order f(EC/) "" 0.25 days-I, perhaps a little rapid compared with
the observed values of 0 to 0.2 days-I quoted. Finally, the phase speed is fa(c,) ""
13 cm s-I, which lies within the observed 9 to 17 cm s-I, with smaller values over the
deeper ocean. The wide spread of observed values means that all one can say is that
predicted wave parameters are in about the right range.

We have not attempted comparisons with shelf-slope observations (cf. Lee and
Atkinson, 1983), since the influence of bottom topography is clearly important, and
may lead to complete stabilization.

6. Discussion

This paper has demonstrated that two-layer fronts with the lower layer at rest in the
mean are always unstable to small perturbations. These perturbations have been
constructed analytically for long downstream wavelengths, and continued numerically
for smaller wavelengths. Two types have been found, the first a weak but nondispersive
long-wave instability, the second a strong but dispersive instability. The latter has
fastest growth for wavelengths of order the deformation radius, and is of a mixed
barotropic-baroclinic nature. The findings about this instability agree well with the
experimental findings of Griffiths and Linden (1982). The results are clearly relevant
to strong frontal systems like the Gulf Stream, even though the model needs
augmentation in various ways.

The theory developed at the end of Section 3 may be relevant to two oceanographic
puzzles: the curious seasonal behavior of the flow through the Florida Strait, and the
annual cycle of the Loop Current in the Gulf of Mexico.

First, observations of the transport of the Florida current show that it reaches its
maximum in June (Niiler and Richardson, 1973). The Sverdrup transport in the North
Atlantic subtropical gyre, which should be equal and opposite according to simple
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theory, has a marked peak in February (Evenson and Veronis, 1975; Leetmaa and
Bunker, 1978). Anderson and Corry (1983) have suggested that topography in the
subtropical gyre allows the interaction of barotropic and baroclinic waves producing
coastal Kelvin waves. Their results show much better agreement in phase between
predicted and observed signals than flat-bottom theory suggests.

Second, Maul (1977) showed how the flowof the Loop Current from the Yucatan to
the Florida Straits takes the shortest path during autumn and early winter. It is then
deflected continuously northward, increasing the length of its path and the depth of
water over which the path lies.

A possible explanation linking the phase lag and the deflection of the Loop Current
uses the nondispersive theory in Section 3. In the winter, the subtropical Sverdrup
transport is increasing, reaching a maximum in February. This deflects the Loop
Current northward: Eq. (3.35) gives the required relation. Thus the path length is
increased, and the path is forced to pass over deeper water because of the shelf slope.
From Figure 2, this depth increase decreases the phase speed c. The combination of
longer path and slower speed can easily account for a tenfold increase in travel time of
the transport signal, which in turn will affect the flow in the Florida Strait. Maul's
(1977; Fig. 4) data strongly support this suggestion, which is also not in disagreement
with Anderson and Corry's (1983) results.
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APPENDIX
The outer solution

Writing Y ~ f yin (4.2) gives

pyy = P

for very large I y I. The expansion (4.4) then gives

PI = a eY (A2)

P2 = (3eY (A3)

for some constants a, (3,which are to be matched to the inner layer where y = 0(1). To
leading order,

PI (inner) - a, Iy 1- 00 (A4)

so that PI becomes a constant for large I y I. To next order, the outer P resembles

P "" f PI + f2p2 "" fa (1 + Y) + f2 (3 (AS)

for small 1 Y I. Hence the inner p must behave as

P "" f PI + f2 P2 "" fa + f2(a y + (3), Iy 1- 00. (A6)
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So the condition on P2 is

P2 (inner) - YPI + {3,IY 1- 00. (A7)
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