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On the equivalence of nonlocal and radial-diffusion models
for porewater irrigation

by Bernard P. Boudreaul

Aller (1977, 1978, 1980) and Aller and Yingst (1978) have demonstrated that the
presence of well-irrigated worm-tubes and other animal burrows in sediments can
significantly alter the rate of exchange of solutes between porewater and the overlying
waters. Specifically, the burrows modify the geometry of the porewater system such
that solutes can diffuse toward or away from either the sediment-water interface or the
burrow. The burrow constitutes an additional boundary source or sink.

To assess this effect quantitatively in marine sediments, Aller (1978, 1980) has
utilized a mathematical model wherein the sediment is idealized as a collection of
regularly packed annulli, all of length L. Each annulus has a vertical hollow region
corresponding to the burrow or tube and an outer solid region of sediment extending to
the half-distance between burrows. Both the radius of the hollow region, rl, and the
outer radius of the solid region, r2, must be determined from observation. In addition,
the model assumes that the only processes affecting a solute are molecular diffusion,
advection due to burial and chemical reaction, and that the fluid in the burrow is
maintained at the overlying concentration by pumping. The governing conservation
equation is of the form:

ac a2c ac Ds a ac
- ~ D - - u - + - - r - + k( C - C) + Rat s ax2 ax r ar ar eq

where t ~ time
x = vertical distance in the sediment
r = radial distance from the center of a burrow
C = C(x, r, t) ~ pointwise concentration

Ds = solute molecular diffusion coefficient corrected for tortuosity
k = first order rate constant

Ceq = equilibrium concentration
R = R(x, r, t) = an inhomogeneous reaction term

(1)
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In writing Eq. (1), we have assumed constant porosity. This is not however a crucial
postulate and the results presented here are equally true if porosity is variable. The
forms of the reaction terms are not the most general, but certainly allow for a large
number of possible phenomena of interest. Furthermore, any diffusive impedance from
the burrow linings (Aller, 1983) is ignored. The appropriate boundary conditions are
(Aller, 1980)

C= Co x=O (2a)

C= Co r = r1 (2b)

ac = 0 r = r2 (2c)ar
ac

(2d)-=B x=Lax
where B is a given flux. Furthermore, an initial condition is given if steady-state is not
assumed.

Eq. (1) is linear and can be solved (in theory) by the standard methods of
mathematical physics (i.e., separation of variables, etc.). However, in order to preserve
the simplicity of the one space-dimension approach, and to avoid the necessity of
making measurements of rio r2 and L, an alternative model for burrow-induced
irrigation has been proposed (e.g., Emerson et al. this issue). This model suggests that
irrigation can be accounted for by a source/sink term that permits the exchange of
porewater from any depth with the overlying water. This is not an advective process as
envisioned by Hammond and Fuller (1979) or Grundmanis and Murray (1977) but,
rather, a nonlocal exchange as defined by Imboden (1981). In this case, the governing
conservation equation for a solute is

- 2- -ac a c ac - - -
- = D - - u - - a(C - Co) + k(C - C) + Rat s ax2 ax eq

where C = C(x, t) = laterally averaged concentration
a = a(x, t) = fraction exchanged per unit time
R = R(x, t) = laterally averaged inhomogeneous reaction term

(3)

The irrigation effects of the burrows are incorporated in the third term on the right
hand side of Eq. (3). The exchange parameter a(x, t) must be determined empirical-
ly.

It is the aim of this note to show that the radial-diffusion model (Eq. 1) and the
non local model (Eq. 3) are equivalent under a relatively unrestrictive condition.
Specifically, we assert that Eq. (3) is simply the radially integrated form of Eq. (I).
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(4)

To begin the proof, we note that the laterally averaged concentration is simply the
radial average over the outer zone of an annulus, i.e.

211' J'2 rC dr
C == 'I

211' J'2 r dr
'I

211' J'2rCdr
'I

= 2 (2 2)11' r2 - r]

To obtain the conservation equation for C from Eq. (1), we begin by multiplying
each term of Eq. (1) by r/r* ""r/(d - d). This quantity can enter the derivatives
with respect to x and t to produce,

!..rC = D ~rC _ u~rC + DS~raC + k(rCeq _ rc) + rR. (5)
at r* Sax2 r* ax r* r* ar ar r* r* r*

Next, we integrate each term of Eq. (5) from rl to r2, inverting the order of
differentiation and integration for those terms involving derivatives of x and t. Finally,
we apply the definition given by Eq. (4) to arrive at

ac a2c ac D [ ac] '2 --
- = D - - u - + ~ r - + k( Ce - C) + R.at Sax2 ax r* ar q,]

(6)

The elimination of the remaining derivative in r is a two-step procedure. First, using
boundary condition (2c), we obtain

[
ac] '2 ac Ir- - -r -
ar 'I - 1ar '-'I'

(7)

The value of the radial gradient at the burrow wall, i.e. r = riomust now be evaluated in
terms of either known parameters and/or C(x, t). To accomplish this task, we make
use of the Mean Value Theorem for integrals which states (Pearson, 1974):

if C(x, r, t) is continuous on the closed interval rl to r2' then the mean value,
i.e., C(x, t), occurs at a point r within this interval, i.e. rl < r < r2'

Given this fact, it is reasonable to believe that the linear gradient between the burrow
concentration, Co, and the average value C(x, t) may adequately approximate the
actual gradient at r = rl' A formal derivation of this approximation begins by
expressing C(x, t) as a Taylor Series expansion of C(x, r, t) about the point r = rio

(8)
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If and only if the second and higher order terms in the series given by Eq. (8) are
neglected, can the desired approximation be obtained

ac I C - Co
ar '_'1 "" (r - r]) .

Substitution of Eq. (7) and Eq. (9) into Eq. (6) produces:

(9)

ac a2c ac Dsr( - - --a = Ds-a 2 - u-a - *C ) (C - Co) + k(Ceq - C) + R. (10)t x x r r - r1

Comparing Eqs. (3) and (10), we see that these equations (and models) are identical if
we simply write the equality

(11)

The radial-diffusion model for porewater irrigation can be reduced to a nonlocal
transport model under the restriction imposed by Eq. (9). This conversion is not simply
academic but affords a dramatic mathematical simplification when steady-state is
operative (e.g., Emerson et al .• this issue). The validity of the approximation given by
Eq. (9) will prove difficult to establish conclusively without an extensive and
demanding sampling program; however, it is the opinion of this author that Eq. (9) will
prove to be surprisingly robust.

Finally, we note that although the radial-diffusion model can be reduced to a
nonlocal transport model, not all nonlocal models are equivalent to radial-diffusion
models. A large class of possible transport phenomena can be represented by nonlocal
models.
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