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Equatorial beams

by Julian P. McCreary, Jr.'

ABSTRACT

A linear stratified model is used to study the response of the equatorial ocean to forcing by the
wind at periods from one month to one year. Solutions are represented as double sums of vertical
modes (designated by the index n) and of the various types of waves associated with each mode
(designated by the index £). Waves associated with a considerable number of vertical modes
contribute to the solutions. They superpose in such a way that energy and phase propagate
vertically as well as horizontally.

It is useful to isolate the individual contributions of various pieces of the complete solution.
One way to do this isolates the response of individual vertical modes (that is, specifies a value for
n, but carries out the summation over £). Pieces of the solution defined in this way tend to focus
energy at specific points on the equator. These focal points, however, are not at all visible in the
complete solution. Another way isolates the response due to waves of a particular type (that is,
fixes a value of £, but carries out the summation over n). These pieces of the solution form
well-defined beams that carry energy into the deep ocean at slopes predicted by inviscid ray
theory, and they are visible in the complete solution.

Solutions for zonal winds are complicated. A Kelvin beam directly forced by the wind reflects
from the eastern boundary of the oceanasasetof € = 1, 3, 5, . . . Rossby beams. These beams, in
turn, refiect from the western boundary as Kelvin beams. All of them reflect efficiently from the
ocean surface and bottom. It is the multiple reflection of these beams from basin boundaries that
makes the response so complicated. The most visible beams in the solutions are the wind-driven
Kelvin beam and a reflected £ = 1 Rossby beam. The response is strong at frequencies of the
order of 2 years™' (or lower), and weakens considerably at higher frequencies.

Solutions for meridional winds are much simpler. At a frequency of 27 months™' a beam of
Rossby-gravity waves directly forced by the wind reflects entirely poleward along the eastern
boundary as a packet of coastal Kelvin waves, since there are no Rossby waves available for this
reflection. The response is strong at frequencies of the order of 2r months™', and weakens
markedly at lower frequencies.

1. Introduction

Luyten and Swallow (1976) drew attention to the fact that the deep flow along the
equator is remarkably complex. They report a set of velocity profiles taken in the
western Indian Ocean during May and June of 1976. The currents were characterized
by small vertical scales throughout the water column, and were trapped within a few
degrees of the equator. In addition, all the profiles were similar, suggesting that the
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predominant time scales of the deep currents were longer than one month. Deep
currents have now been observed again in the Indian Ocean (Luyten et al., 1980;
Eriksen, 1980; Luyten, 1982), in the Atlantic Ocean (Weisberg and Horigan, 1981),
and in the Pacific Ocean (Eriksen, 1981; Hayes and Powell, 1980; Hayes, 1981;
Leetmaa and Spain, 1981; Lukas and Firing, 1984). Linear equatorial wave theory has
been used with some success to interpret various aspects of the observations. In
particular, there are several instances where the currents appear to be vertically
propagating equatorial waves. At the present time there are only a few theoretical
studies that are relevant to the phenomenon.

a. Theoretical background. Lighthill (1969) popularized the use of a linear, continu-
ously stratified ocean model that has proven to be a valuable tool for studying
wind-driven tropical circulation. He dropped nearly all nonlinear terms from the
governing equations, retaining only the effects of the vertical advection of density by
linearizing that term about a background density field. Wind stress entered the ocean
as a body force spread uniformly throughout a surface fixed layer, rather than as a
surface boundary condition, and the deeper ocean was inviscid. These simplifications
allowed solutions to be found analytically in two different ways. One approach, used by
Lighthill, represents solutions as expansions of vertical modes that propagate horizon-
tally. A second approach represents them as expansions of meridional modes, and
solves a vertical structure equation to determine how each mode propagates vertically.
Philander (1978) contrasted both methods in some detail.

Several studies have considered the response of a single, vertical mode to low-
frequency forcing by the wind (Schopf et al., 1981; Cane and Sarachik, 1981; Cane
and Moore, 1982). Equatorial Kelvin waves, generated by the wind field over the
interior ocean, reflect from the eastern ocean boundary as a packet of Rossby waves.
Surprisingly, energy associated with this packet does not propagate entirely westward,
but approximately focusses back on the equator at discrete distances from the
boundary. The complete response of a continuously stratified ocean model, however, is
a superposition of solutions associated with many different vertical modes. None of the
above studies carry out this superposition.

Wunsch (1977) studied the response of an equatorial ocean model that was
dynamically very similar to Lighthill’s. Forcing in the model was a surface distribution
of vertical velocity (presumably driven by the wind), and had the form of a
westward-propagating sinusoidal wave with a period of one year. The ocean basin was
assumed to be infinitely deep and horizontally unbounded (although at the end of his
paper Wunsch reported effects introduced by a western ocean boundary). He
represented solutions as expansions of meridional modes, and solved the resulting
vertical structure equation by matching the vertical velocity field associated with each
mode to the specified surface distribution and by requiring each mode to exhibit
upward phase propagation at depth (a radiation condition). In qualitative agreement
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with the observations, solutions had a rich vertical structure that was narrowly
confined to the equator.

There have been two studies using numerical models that discuss deep equatorial
currents. Philander and Pacanowski (1981) forced a numerical model with zonal winds
at various frequencies, and discussed the response in the deep ocean at a period of 200
days. Cox (1980) forced a similar numerical model with a realistic representation of
the annual cycle of the Pacific trades. At the time of the year when the surface currents
were most intense, they became unstable and began to meander with a wavelength of
1000 km and a period of 1.1 months. The region of unstable currents then acted as a
forcing region for waves propagating into the deep ocean. Cox noted the presence of
Rossby-gravity waves near a depth of 2000 m at a position 20° east of the forcing
region. The amplitude of the meridional velocity field there was about 10 cm/sec.

b. The present approach. This paper continues the effort to relate the presence of deep
equatorial currents to time-dependent forcing by the wind. The model ocean is
essentially an extension of the Lighthill model that includes both horizontal and
vertical mixing in the deep ocean, although the important dynamics of most solutions
are inviscid. The ocean is forced by a patch of zonal or meridional wind that oscillates
at fixed periods in a range from one month to one year. Solutions are found in both
bounded and unbounded basins.

Solutions are represented as expansions of vertical modes, but it is not possible to
identify the contributions of individual modes in the complete solution; in particular,
equatorial focal points are not evident. Instead, equatorially trapped waves of a specific
type (i.c., Kelvin waves, Rossby-gravity waves and westward-propagating Rossby
waves) superpose to generate well-defined beams that carry energy into the deep ocean
along ray paths, and there is vertical phase propagation across each beam. Dominant
features in the solutions are consistent with some observations of deep equatorial
currents.

The model is similar to the ones mentioned above. It can be regarded as an extension
of the models involving a single vertical mode that includes contributions from all the
modes. It can also be regarded as a generalization of the Wunsch study to a spatially
limited forcing region and to a bounded ocean basin. Aspects of the present solutions
also appear in the numerical solutions of Philander and Pacanowski and of Cox.
Solutions are compared to those in these previous studies at several points in the

paper.

2. The model ocean

In a state of no motion the model ocean has a stably stratified background density
structure p,(z) and an associated Viisild frequency N,(z). The model equations of
motion are the familiar set that is linearized about this background state.
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Under suitable conditions it is possible to represent solutions as expansions of the
vertical normal modes of the system (see McCreary, 1980a, 1981a or McCreary et al.,
1984). These eigenfunctions, i, satisfy

N; -
‘)bnz: _c_zb‘/_-Dwndz! (1)
subject to the boundary condition
1 o
o[z -0, 2)

where z = 0, —D are the depths of the ocean surface and bottom, and they are
normalized so that y,,(0) = 1. It is convenient to order them so that the eigenvalues ¢,
decrease monotonically. The n = 0 eigenfunction is unique in that ¢, = ; this
eigenfunction is the barotropic mode of the system. The remaining eigenfunctions form
an infinite set of baroclinic modes.

The solutions for the zonal and meridional velocity fields and the pressure field are
then given by

N N N
u=Zu,,¢,,, V=ZV,,¢,,, p=zlpn¢m (3)

n=1

where the expansion coefficients are functions only of x, y and ¢. It is easy to verify that
the barotropic response is dominated by the baroclinic response obtained here, and so
that mode is not included in the expansions (3). In addition, the sums over the infinite
number of baroclinic modes are necessarily truncated at a finite value, N. Solutions
converge rapidly enough with » that N need not be too large.
The equations governing the expansion coefficients are

(at + A/Ci)u,, _fvn + Prx = Fns

@ + A/ci)v,, +fun + Py = Go + ViVices

(at + A/Ci)pn/cﬁ + Uy + vny =0. (4)

The forcing of each mode is

F,,=~r"/f0x//,2,dz, G,,=~ry/f0¢3dz, (5)
-D -D

where 7* and 7 are the zonal and meridional components of the surface wind stress.
The equatorial §-plane is adopted throughout, so that the Coriolis parameter is given
by f = By. Coefficients of vertical eddy viscosity and diffusivity are

v =x = A/N}, (6)

resulting in the terms proportional to A4/c2. Horizontal mixing has the simple form
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V4V, in Order that solutions can be represented as expansions of Hermite functions, as
in (10).

Neither vertical nor horizontal mixing are significantly involved in the dynamics of
the solutions found here. For most of the solutions there is no vertical mixing at all in
the deep ocean (the solutions of Figures 10 and 11 are the sole exceptions). Horizontal
mixing only acts to damp short-wavelength Rossby waves that reflect from the western
ocean boundary, and has virtually no effect on the radiation field in the interior
ocean.

Solutions are found for bounded, as well as unbounded, oceans. When boundaries
exist they are vertical barriers located at the positions x = x,, x,, and there are no
northern or southern boundaries. No-slip conditions are adopted at these barriers, so
that basin boundary conditions are

u,=v,=0 at x=x,x,. @)

3. The solution
In this paper solutions to Eqs. (4) are found when the wind stress fields have the
separable form

e = X () V() ®)

The coupling coefficients are then given by

F,= G, =1 X(x)Y(y)e™™ / f° ¥ dz
= 1. X (x) Y(y)e™™, ©)

where 7,, is defined in the obvious manner. Here X(x) and Y(y) are arbitrary
functions, in which ¥ (y) weakens away from the equator, and X(x) is nonzero only in a
region of finite extent; hence, the model is forced by a patch of wind confined to the
ocean interior.

The method of solution is essentially the same as that in McCreary (1980a, 1981a),
although the algebra involved is somewhat more complicated due to the presence of
horizontal mixing. For this reason, details of the derivation are not presented here. (A
more detailed description of the derivation is available from the author on request.)

a. The unbounded solution. Most quantities in the following should be labelled with
the subscript n (the exceptions are f, ¢, X, ¥ and 8). For notational simplicity, this
subscript is subsequently deleted unless confusion might result from its absence.
Because f = By, and because horizontal mixing has such a simple form, solutions can
be expressed as expansions of Hermite functions, ¢,(n), where n = (8/c)'*y. The



400 Journal of Marine Research [42,2

solutions are

L L L
U, = Z Uy g, V, = Z Voo, Pn= and’h (10)
a1 2-1 =1

where the expansion coefficients are only functions of x and ¢. Just as in the sum over
vertical modes, in principle, an infinite number of Hermite functions contribute to the
sums (10). In practice, the upper limit must be truncated at a finite value, L. For
realistic choices of Y{(y), solutions converge rapidly enough with £ so that L need not be
too large.

For purely zonal winds, v, is

4
ve(x) =i >_ P} [ exp [~ikix] Xdx exp [ik}x — iot] (11)
Jj=1 i
where k} is one of the four roots of the quartic equation
Vh 4 twu,, /3 , o’
LIPS PR PR —[a0(29+1)——2- _o, (12)
iw w ¢

and

pr_ i (1/)[nYTe + (KY/w)[V,];

5T T R kD (kT — KLk — kD) (13)

with j, j*, /“ and j" all having different values. The expressions [nY], and [Y,], are the
Hermite expansion coefficients of Y and Y,, respectively, w = ¢ + i A/c?, and o =
(8/c)'/2. The lower limits on the integrals are chosen to satisfy appropriate radiation
conditions [see the discussion of Egs. (18)].

Again for zonal winds, 1, is

1 1
Uy (x) = E(Q + DR+ 7 228 4+ {5,T}

exp [ik*'x — iot]

ll+l
- 12 i 0+1
= \/_ao(2+1) E KT L w/c [f exp[—ik;" x] Xdx

1 4 2-1
+—‘[—§ao Q'/zzkgf—/[f exp [ ik} 1x]de]c:)nnp [ik§"'x — iat]
J=1 %]

& X —i{wfc)x i(w/c)x—iat 14
+ 18 e Yo[ ./L: e X dx]e , (14)

where 8y is the Kronecker §, and R, S and T are defined in the obvious manner. The
corresponding expression for p, is

1 1/2 1 172
pg(x)=c[—ﬁ(52+ 1)/R+—\EQ/S+{6,0T}. (15)
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The solution for purely meridional winds is the same as that for zonal winds except
that

¢ Ton (kjl)Z - wz/cz
Pj:V_(ke——kE)(kQ—kQ)(kQ—k’l)
LAY FINR JINR i

Y (16)

and the terms in curly brackets are not present in Eqs. (14) and (15). Y, is the Hermite
expansion of Y ().

b. Egquatorial waves. Let k be any of the five quantities k; or w/c. Then, each term in
(11), (14) and (15) has the form

X —ikx ikx—igt
|C"fL, e Xa'x]e . (17
This expression describes a wave with wavenumber k, and amplitude given by the
expression in curly brackets. The wave with wavenumber w/c is an equatorially
trapped Kelvin wave that is damped toward the east by vertical mixing, and the four
waves with wavenumbers &} satisfy the quartic dispersion relation, (12).

When horizontal mixing is weak (as it is here) the roots of (12) separate into two
distinct types. Two of them still exist when », — 0. In this limit (12) reduces to the
familiar quadratic dispersion relation for equatorially trapped Rossby and gravity
waves, and it is therefore appropriate to refer to these two waves as Rossby or gravity
waves. The two roots, labelled here k% and k%, correspond to waves with westward and
eastward group velocities, respectively. They are damped both by vertical and
horizontal mixing in the direction of their group velocity. The other two roots, labelled
here k3 and k%, decay rapidly to the west and east, respectively, with an e-folding scale
of the order of 100 km. These highly damped waves are important only in boundary
layers at the edges of the wind patch and at basin boundaries.

Because the amplitude in (17) is proportional to an integral of X, rather than to X
itself, the amplitude is not necessarily zero outside the wind forced region. The choice
of lower limit in these integrals thus governs whether radiation appears to the east, the
west, or on both sides of the wind patch. Waves with eastward (westward) group
velocity, or equivalently waves that decay eastward (westward) can only appear east
(west) of the patch. The choices

Li=L,= +ow, Li=L,= —o, (18)

satisfy these requirements.

As we shall see, two types of waves that can be significantly excited by the wind are
equatorially trapped Kelvin waves and Rossby-gravity waves (the waves that corre-
spond to the indices = 0, j = 3). Kelvin waves appear only in the last terms of (14)
and (15), and so are generated only by zonal winds. Rossby-gravity waves can couple
very efficiently to meridional winds. According to (13), they can also be generated by
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zonal winds, but only by a component that is antisymmetric about the equator. Since
the antisymmetric component is typically weak, Rossby-gravity waves do not couple
efficiently to zonal winds.

¢. Boundary effects. The unbounded solution (10) does not satisfy the constraints (7).
It is necessary to add to it packets of free waves excited at ocean boundaries. Moore
(1968) showed how to choose the amplitudes of these waves to ensure that u, = 0 at
meridional barriers, and his method has been used extensively by others [see for
example, Anderson and Rowlands (1976), Cane and Sarachik (1977), McCreary
(1980a, 1981a)]. The present approach is an extension of Moore’s method.

Waves generated at western boundaries, designated by a prime, must have either
eastward group velocities or decay to the east. These waves are

2 Q 1/2
i |90 — &(—“‘) dg_1]| eXp [ikf(x - x)l,

P bi\R + 1
, i< af 2 il
Vy— ” > —————Ajd;Jz exp [ik;(x — xo)],
0 j=3 ‘\/_(Q + 1)[/2

12 Q a} Q i 18

Pir= CZ Aj[¢2+1 + a1 be-1| exp [ik;(x — x)], (19a)
j=3 J + 1
where € =0,1,2,...,a} = ck} — , b} = ck} + w, and 45 and A; are, as yet, arbitrary

amplitudes. An additional eastward propagating wave, labelled the ¢ = —1, j = 3
wave, is the equatorially trapped Kelvin wave,

Wy = A5 o €O ot = cu |,V =0, (19b)

but there is no = —1 damped wave.
Waves generated at eastern boundaries, designated by a double prime, must have
westward group velocities. The appropriate waves are

4+ 1\
ZAQ[a (%) ¢9+1_¢q—1
oLy

Cag j-1 QI/Z

\/5
e+ 1\12
ZAQ[ ( hs ) Pp1 + ey

exp [ik$(x — x,)]

Af je €Xp [lkg(x - x1)],

exp [iki(x — x))], (20a)

where € = 1,2, 3, ..., and 4% and 4% are arbitrary amplitudes. When £ = 0 an
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additional westward decaying wave is

” 0 bo ¢ . ” ”
ug = A a—g,T'zexp [ik3(x — x))],  p§ = cug,

= o BA% exp [iK(x — 3], (205)
but the £ = 0 Rossby wave does not exist.

At a western ocean boundary 4% and 4% are chosen to cancel all components of zonal
flow proportional to ¢, and all components of meridional flow proportional to ¢,. For
2 > 0 this choice results in two equations for A3 and A% that involve the amplitudes
A+ A2 A% and A1+?, and also the forcing terms ug,,(x,) and v,(x,) from (14) and
(11). For = —1, there is only a single equation for 45" since there is no 8 ~ —1
damped wave. Similarly, at an eastern ocean boundary 4% and A3 are fixed to cancel all
components of zonal flow proportional to ¢, , and all components of meridional flow
proportional to ¢,. For £ = 1 this choice results in two equations for 4] and A4 that
involve the amplitudes 4% =2, 4372, 4% and 4%~% as well as u,_,(x;) and vy(x,). For = 0
there is only a single equation for 43, since the 2 = 0 Rossby wave does not exist.

In principle, the number of boundary waves needed is infinite. In practice, only a
finite number, L, are used. It is possible to eliminate the coefficients 4% and 4% from
equation pairs. The resulting set of equations forms a system of 2L + 2 equations in the
2L + 2 unknowns, A;',..., A5 A,. .., At. They can be written down in the form of a
highly banded matrix equation, which can be efficiently solved on a computer. It is
easy to modify this approach to find the boundary response in an ocean with only a
single ocean boundary.

4. Dynamics

The radiation field in the equatorial ocean is a complex superposition of many
different equatorially trapped waves. The three parts of this section discuss important
properties of this radiation field. The first part points out that at the low frequencies of
interest here waves associated with a large number of baroclinic modes are strongly
excited by the wind. The second part shows that these waves necessarily superpose to
carry energy vertically as well as horizontally along ray paths. Finally, the third part
defines pieces of the complete solution that exhibit either equatorial focal points or
equatorial beams.

a. The importance of high-order modes. Recall that the amplitude of a particular
wave is given by the expression in curly brackets in (17), and so depends both on C, and
the value of the integral. A measure of the amplitude of the integral in the far field is
the absolute value of the integral taken across the entire wind patch, that is, the
absolute value of the Fourier transform of the wind, | X (k) |. This subsection discusses



404 Journal of Marine Research [42,2

how each of these factors depends on n. As we shall see, it is | X (k) | rather than C, that
primarily determines which vertical modes appear in the solution.

For all waves in the model C, is proportional to the coupling coefficient 7,,. If the
background density state has a strong near-surface pycnocline, like the curved profile
in Figure 2, then 7,, decreases rapidly with n. This property suggests, and has often
been used to argue, that only low-order modes will significantly contribute to the
solution. C,, however, usually depends on ¢ as well as 7,, and for this reason can be a
slowly varying function of n. For example, according to (14), C, is proportional to 7q,/c
for the u-field associated with a Kelvin wave. For the linear profile in Figure 2, 7,/c
actually increases with n for the first ten modes or so before beginning a gradual
decrease, whereas for the curved profile it decreases slowly for all values of n. Thus C,
is not a very sensitive measure of wave amplitude.

There is one exception to the preceding conclusion. For the Rossby and gravity
waves C, contains the factor [(k; — k;) (k; — k;) (k; — k;)]17'. The amplitude of the
radiation field can be significant when this factor is large, even if | X(k) | is not large.
This property occurs near resonance points, where k; = k;. (Two gravity-wave
resonance points are indicated by crosses in the right panel of Fig. 1). At the low
frequencies of interest here gravity-wave resonances occur only for large mode
numbers {#n ~ 37 and n ~ 61 in Fig. 1), and small amounts of vertical mixing act to
eliminate these resonances. Rossby-wave resonances occur for sufficiently large
east-west wavenumbers that they are weakened considerably by the horizontal mixing
in the model. Resonant excitation of Rossby and gravity waves will not be considered
further in this paper.

| X (k) |is a very sensitive measure of wave amplitude. For the X(x) defined in (31)

~ | rar  TX _ 2m | cos kAx/2
| X(k)| = ‘fm cos e B | Fae - k| (21)
so that the strongly excited waves must satisfy the inequality
| k| = (kK + k2)'* < 2z /Ax. (22)

Thus, only waves with wavelengths (27/k,) and decay scales (k;') longer than the
width of the wind patch couple efficiently to the wind.

The two panels of Figure 1 illustrate graphically which waves in the present model
satisfy (22) at periods of one year and one month. As mentioned in the last section, the
waves that are present in the interior ocean are weakly affected by horizontal mixing
and for most solutions found in this paper there is no vertical mixing in the deep ocean.
To a good approximation, then, these waves satisfy the familiar, inviscid, disperions
relations. The curves in Figure 1 show these dispersion relations for all the baroclinic
modes; only the scale factors, o and ¢, = « ¢, differ for each mode. Let the values of
and g, correspond to those of the linear density profile in Figure 2. Then, the thin
horizontal lines indicate where ¢ = 2w /year for the n = 1, 5, 15, and 25 modes (left
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Figure 1. Dispersion curves for inviscid, equatorially trapped waves. The left panel shows the
curves for the Kelvin wave and the £ = 1, 3 and 5 Rossby waves; the right panel also includes
the curve for the Rossby—gravity wave and the = 1 and 2 gravity waves. Note the change in
vertical scale between the two panels. The shaded areas indicate the regions, A, for the n =
20 mode (left panel) and for the n = 10 mode (right panel). The thin horizontal lines indicate
where ¢ = 2 years™' for the n = 1, 5, 15 and 25 modes (left panel), and where ¢ = 27
months~! for the n = 1, 10, 15, 37 and 61 modes (right panel). The crosses indicate resonance
points for the gravity waves.

panel), and where ¢ = 2w /month for the n = 1, 10, 15, 37 and 61 modes (right panel).
The intersections of the nth line with the dispersion curves give the wavenumbers of the
possible waves associated with the nth mode.

For each mode inequality (22) defines in Figure 1 a different region, A,, given by
| k/ao| < 27 [ (aAx). Values of 2w /(ayAx) are .53, .24, .17, .14, .12, and .11 for the n =
1,5, 10, 15, 20 and 25 modes, respectively, and the shaded areas in the figure illustrate
the regions A, (left panel) and A, (right panel). A graphical interpretation of
requirement (22) is that only if the nth line intersects a dispersion curve inside the
region A, will the wave corresponding to that intersection by significantly excited by
the wind.

The left panel of Figure 1 indicates that at the annual frequency the above criterion
is satisfied for all the Kelvin waves associated with the n < 20 modes (only the
intersection of the n = 25 frequency line with the Kelvin-wave dispersion curve lies
clearly outside A ;;). On the other hand, the criterion is satisfied for a much smaller
number of Rossby waves. For example, the n = 5 frequency line does intersect the
dispersion curve for the £ = 1 Rossby wave inside A5 but does not do so for the £ = 3 or
2 = 5 Rossby waves; for the n = 10 mode none of the Rossby wave intersections lie
inside the shaded region, »4,,. Thus, a wind patch oscillating at the annual period
efficiently generates Kelvin waves associated with a large number of vertical modes
(provided that the wind is zonal), but excites Rossby waves to a lesser degree.
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The right panel of Figure 1 indicates that at the monthly frequency only the gravest
mode Kelvin waves, and no Rossby waves at all, are significantly excited by the wind.
On the other hand, Rossby-gravity waves associated with the modes 10 < n < 15, the
€ = 1 gravity wave for the n ~ 37 modes, and the £ = 2 gravity wave for the n ~ 61
modes all couple efficiently to the wind. The gravity waves, however, occur for such
large mode numbers that even a small amount of vertical mixing virtually eliminates
them, and so gravity waves are not an important part of any of the solutions found in
this paper (see the discussion of Fig. 11). Thus, a wind patch oscillating at a period of
one month efficiently generates only Rossby-gravity waves (provided that the wind is
meridional).

b. Vertical propagation. 1t is not obvious that waves associated with several baroclinic
modes must superpose to exhibit vertical propagation of phase and energy. One method
of demonstrating this property is to avoid entirely the expansion into vertical modes by
representing solutions as expansions of meridional modes (Philander, 1978). In
contrast, the method discussed in the following modifies the solution found in Section 3
by representing solutions as expansions of a continuous, rather than discrete, set of
vertical modes.

According to WKB theory (Bender and Orszag, 1978), approximate solutions to (1)
and (2) have the form

U.(z) = A(z) cos ( I mdz), (23)

where A(z) = Nj/%, m = N,/c is a local vertical wavenumber, and ¢™' = nr -/: ;Nbdz = ¢
Let b = N,/N,, measure the vertical scale of V,(z). Then the WKB solution is valid to
order (mb)~2. Since the cosine in (23) can be written as the sum of two complex
exponentials, it is apparent that each vertical mode consists of one wave with phase
propagating upward and another with phase propagating downward.

To determine where energy associated with superpositions of these waves goes, it is
useful to write the solution in an integral form that does not involve sums over a
discrete set of vertical modes. Suppose that the depth of the ocean increases, and that

N, approaches a constant value in the deep ocean. Then, since /: (:,N,,dz increases with
D, the allowed values of ¢ become ever more densely packed, and in the limit D — «
they become continuously distributed (Morse and Feshbach, 1953). The mathematical
development in the previous section can be easily modified to describe this situation.
The important difference is that in (3) the discrete sums over n are replaced by
integrals over the continuous variable £. (A finite-depth ocean bottom can be included
in this new formulation by using the method of images. In that case, both the discrete
and integral representations produce identical solutions.) It is now possible to utilize
the method of stationary phase (or similar technique) to determine where the solution
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is large in the far field (Lighthill, 1978). It follows that waves of a specific type (that is,
for a given value of 8) superpose to carry energy along ra'y paths.

The ray paths are determined by the dispersion relations of the various waves. With
the replacement ¢ = N,/m the dispersion relation for inviscid, equatorially trapped
Kelvin waves becomes

o = kN,/m. (24)

Similarly, according to (12), the dispersion relation for inviscid, Rossby-gravity waves
becomes

k=aom/N, — 8/c (25)

and that for low-frequency, low-wavenumber, inviscid Rossby waves [for which the k2
and «’® terms in (12) are negligible] becomes

Ny/m

T I (26)

5=
for® = 1,2,3,. .. Let the zonal and vertical components of group velocity be c,, and c,,.
The slope of ray paths is tan 6, — ¢, /c,, = +0,,/0;, where the upper (lower) sign holds
for waves with upward (downward) phase propagation. Values of tan 6, obtained from
(24), (25), and (26) are ¥6/N,, $d/N,, and = (22 + 1) ¢/N,, respectively. Thus,
when phase propagates upward, energy propagates downward to the east for Kelvin
and Rossby-gravity waves and downward to the west for Rossby waves. The slopes are
quite small. With N, = .0045 sec™' (the value corresponding to the linear density
distribution of Fig. 2) and at the annual frequency, o/N, = 45 m/1000 km; at the
monthly frequency, /N, = 530 m/1000 km.

An oscillating wind patch in the ocean interior excites waves with both upward and
downward phase propagation. Wave packets with upward phase propagation carry
energy directly away from the wind patch down into the deep ocean. Wave packets
with downward phase propagation, however, carry energy toward the ocean surface.
They subsequently reflect from the surface as a packet of waves that carry energy
downward. Consequently, the only waves that appear in the deep ocean (outside the
region of direct influence by the wind and before they reflect from the ocean bottom)
are waves with upward phase propagation.

By definition, lines of constant phase in the x-z plane have the slope tan 6, = —c,/
¢, = ¥k/m. For Kelvin waves and the Rossby waves that satisfy (26) it is easy to verify
that 6, = .. Thus, for these waves lines of constant phase are everywhere parallel to the
direction of energy propagation. A very different property holds for Rossby-gravity
waves. Because the Rossby-gravity waves that are significantly excited by the wind
patch are large-scale (k < 2w /Ax « 3/0), k is negligible in (25). For these large-scale
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waves, then,
m = N, B/d". (27)

It also follows that 8, ~ 0, so that lines of constant phase are essentially horizontal.
When there is a sharp pycnocline, so that b becomes a small number, the WKB
approximation is not valid for low-order vertical modes. The effect is that some energy
can reflect off the pycnocline (Philander, 1978), rather than propagate along ray paths
through it. Surprisingly, for the pycnocline structure used here ray theory appears to
work very well (see the discussion of Figs. 8 and 11). Rothstein (private communica-
tion) is currently studying the reflection of energy from various pycnoclines in detail.

¢. Focal points and beams. Let q be any of the fields u, v or p. Then the complete
solution can be summarized as

N L L L
=2 |2 atiln) + 2 i+ 2 qi | ¥aa), (28)
where the g, are defined in (11), (14) and (15), the g; in (19) and the g7 in (20). Eq.
(28) is complicated, and it is useful to separate out the individual contributions of less
complex pieces of (28). Since the solution is a double sum over n and &, this separation
can proceed conveniently in two very different ways.

One way considers the response of an individual baroclinic mode, that is, specifies a
value of n and carries out the summation over all values of 2. As discussed in the
introduction, several studies have already considered the response of a single mode to
low-frequency forcing, and have found that Rossby waves reflected from the eastern
boundary tend to focus energy back to the equator at specific points. Currents are large
in the vicinity of these focal points, but are small elsewhere. One might expect that near
these focal points a particular baroclinic mode will stand out above all the others in the
complete solution. As we shall see, however, such a dominance is not at all apparent in
the solutions found in the next section.

The other way specifies the value of £ and carries out the summation over all values
of n. For example, the contribution of = A Rossby waves generated at the eastern
boundary is

o= 2 4 ¥(2), (29)

and the contribution of Kelvin waves generated at the western boundary is

g = Z] g ¥ul2). (30)

Pieces of the solution calculated in this manner form well-defined beams of energy
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that exhibit all the properties discussed in the previous subsection, and they are visible
in the complete solution (see the discussion in Section 5¢). They are, in fact, analogous
to the vertically propagating meridional modes in Wunsch’s model.

5. Results

The model was used to study the response of the ocean to a zonal and meridional
wind patch with a simple, but geophysically relevant, structure. The wind field has the
form (8) with 7, = .125 dyne/cm?,

cos (rx/Ax), |x|=<Ax/2
X(x) = 0, |x|> Ax/2 31
and
Y(p) = (1 + */ayY) eI, (32)

where Ax = 5000 km and Ay = 1000 km. For y < Ay, Y(y) is virtually constant, and
none of the results discussed below depend on the structure of Y{y). The shaded region
of Figure 3 indicates the extent of the wind patch, and the thin line its zonal profile. For
zonal winds almost always ¢ = 27 years™!, the sole exceptions being the solutions
shown in Figure 7. For meridional winds usually ¢ = 2 months™', the exceptions being
the solutions in Figure 10.

Figure 2 shows the two profiles of background density structure, p,(z), assumed
here. Both profiles have a surface mixed layer of thickness H = 75 m. Unless stated
otherwise, the choice of density profile is always the one that varies linearly with depth
beneath the mixed layer. The linear profile has the advantage that ray paths are
straight lines and therefore it is easier to interpret the response in the deep ocean. The
curved profile is described by

Po, Z= —-H
po + Ap [1 — e C+/0]
+ Apy[l — e~ C+/02] 7 « _H, (33)

pe(z) = [

where b, = 200 m, b, = 1000 m, p, = 1 gm/cm’, Ap, = .003 gm/cm’, Ap, = .002
gm/cm’. This profile has a strong near-surface pycnocline, typical of the density
structure in the central tropical Pacific.

Unless stated otherwise, the model ocean has both eastern and western boundaries at
X = — 5000 km and x, = 5000 km. The positions of the boundaries are indicated in
Figure 3. The depth of the ocean is D = 2500 m. The value of horizontal eddy viscosity
is », = 10" cm?/sec. Usually 4 = 0 so that there is no vertical mixing beneath the
surface mixed layer, the exceptions being the solutions in Figures 10 and 11. It is
necessary to choose sufficiently large values of NV and L in the sums of (3) and (10).
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Figure 2. Profiles of background density structure, p,(z). One profile has a constant gradient
below a surface mixed layer 75 m thick. The other profile has a strong near-surface pycnocline
typical of the tropical oceans, and is described by Eq. (33). Most results correspond to the
linear profile.

The choices N = 50 and L = 75 adopted here ensure that solutions are well
converged.

a. Solutions for zonal winds. Three velocity sections describe the three-dimensional
flow field. Figure 3 shows the positions of these sections relative to the equator and to
ocean boundaries. Figures 4a and 4b show zonal and meridional circulation patterns
corresponding to Sections 1-3 of Figure 3 at time ¢ = 0. There is considerable energy in
the deep ocean. Considering the small amplitude of the wind, the strength of the
response is surprising.
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Figure 3. A schematic diagram showing the locations of Sections 1-4, the position of ocean
boundaries, and the structure of the wind field. The shaded region indicates the extent of the
wind field, and the thin line its zonal profile. Its meridional profile is very nearly latitude-
independent. The wind stress varies sinusoidally reaching an eastward or northward
maximum at ¢ = 0, and has a maximum amplitude of .125 dyn/cm? in the center of the ocean
basin. The structure of the wind is described more precisely in Egs. (31) and (32).

The flow field in Figure 4 is complicated. The most prominent feature in the
equatorial section is the presence of a band of energy that descends from a depth of
250 m at the eastern boundary to a depth of 1700 m at the western boundary. There are
also two regions where energy appears to be bottom trapped: near x = — 1500 km and
near x = 2500 km. The meridional sections illustrate that currents are highly trapped
to the equator. Along Section 2 the strongest currents occur between 1300 m and
2000 m, and are to a large degree associated with the band of energy evident in Figure
4a. Along Section 3 the flow field has a remarkable honeycomb structure, with more
cells appearing deeper in the water column,

The response of each of the baroclinic modes that contributes to Figure 4 has distinct
focal points at the expected positions along the equator. Curiously, these focal points
are not at all evident in Figure 4a, where the contributions from all the modes are
summed. For example, there are no regions where a single vertical mode visually
dominates the solution. This fact suggests that it is not particularly useful to separate
the solution into a set of contributions from individual baroclinic modes. On the other
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Figure 4a. A section of zonal velocity along the equator, when the ocean is forced by a patch of
zonal wind that oscillates at the annual frequency. The contour interval is 20 cm/sec, there is
no zero contour line, and shaded regions indicate westward (negative) flow. Dashed contour
lines are +10 cm/sec, and are included only if they help to identify prominent features of the
flow field. The section is taken at # = 0, the time of maximum eastward wind. There is
considerable energy in the deep ocean.

hand, vertical phase propagation occurs virtually everywhere along the equator. There
are regions where phase propagates upward, and also many places where phase
propagates downward. This property suggests that it is useful to interpret the solutions
as being a superposition of equatorial beams, and the rest of this section pursues this
interpretation.

i. The effect of boundaries. How important are ocean boundaries for the generation of
energy in the deep ocean? Figure 5 shows three sections of zonal velocity that are
comparable to Figure 4a except that the ocean is unbounded, has only a western
boundary, and has only an eastern boundary in the upper, middle and lower panels,
respectively.

Without ocean boundaries there are no strong currents anywhere in the deep ocean.
Energy goes into the deep ocean primarily along two beams that propagate east and
west of the wind patch with specific slopes. To the east of the wind patch the beam has
the slope —o /N, and so is composed of Kelvin waves. To the west of the wind patch the
beam has the slope 30/ Ny, and so is composed of € = 1 Rossby waves. Phase propagates
upward and there is a 2x-phase shift across each beam. The presence of a western
boundary only slightly modifies the unbounded response. The £ = 1 Rossby beam
reflects from the western boundary as a Kelvin beam that is visible at a depth of about
1000 m in the middle panel, but there is very little energy in this reflected beam. The
presence of the eastern boundary has a dramatic effect on the unbounded response.
The Kelvin beam reflects from the eastern boundary as a collection of beams of Rossby
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Figure 4b. As in Figure 4a, except showing sections of zonal and meridional velocity along
Section 2 (upper panels) and Section 3 (lower panels) of Figure 3. The shaded regions indicate
westward or southward (negative) flow. The contour interval for zonal velocity (left panels) is
10 cm/sec, and the dashed contours are +5 cm/sec. The contour interval for meridional
velocity (right panels) is 2.5 cm/sec and the dashed contours are +1.25 cm/sec. The currents
have a distinct cellular structure that is trapped to the equator; this property is especially
evident along Section 3.

waves that propagate energy into the deep ocean. Note that the prominent band of
energy in Figure 4a is evident in the lower panel. Clearly an eastern ocean boundary is
required in order to get significant radiation into the deep ocean.

In apparent contrast to the present study, the Wunsch (1977) model produced a
great deal of energy in the deep ocean even though the ocean basin was unbounded.
The important difference between the two models is that the forcing in Wunsch’s
model was not limited zonally. The analog of Wunsch’s solution in the present model
occurs when X(x) in (31) is replaced by X(x) = cos (xx/Ax) for all x. So, the flow field



-2500

-2500

-2500

-5000 5000
km

Figure 5. As in Figure 4a, except that the ocean basin is unbounded in the upper panel, lacks an
castern boundary in the middle panel, and lacks a western boundary in the lower panel. The
contour interval in the upper and middle panels is 10 cm/sec, and the dashed contours are
+5 cm/sec. The contour interval in the lower panel is 20 cm/sec, and the dashed contour lines
are +10 cm/sec. A strong beam of Kelvin waves, generated by the wind, is evident in all the
panels. It propagates into the eastern ocean with the slope —g/N,. Only when the ocean has
an eastern boundary does significant energy get into the deep ocean.
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in the upper panel of Figure 5, u(x,z) say, results from only one piece of this sinusoidal
forcing, the piece contained in the region| x| < A x/2. The analog solution is therefore
Z (—=1)"u(x — nAx, z). In this solution, then, radiation will appear in the deep

A= -

ocean near x = 0, but it will have been produced by a remote part of the forcing (for
which | n|» 1). The same conclusion holds for the Wunsch solution.

ii. Equatorial beams. Figure 6 shows the contribution of various boundary-generated
waves to the flow field of Figure 4. The three panels of Figure 6a show the
contributions of the € = 1, 3, and 5 Rossby waves, as defined in (29), that are generated
at the eastern boundary. Figure 6b shows the contributions of Kelvin waves, as defined
in (30), that are generated at the western boundary. Figure 6¢ shows meridional
sections of each of these contributions along Section 3 of Figure 3.

In each case the waves superpose to form well-defined beams of energy that
propagate along the equator at the slopes predicted by ray theory, that is, at the slopes
+g /N, for the Kelvin beam, and +3¢/N,, +7¢/N,, +11a/N, for the ¢ = 1, 3 and 5
Rossby beams, respectively. Phase lines are everywhere paralle] to beam paths. Phase
propagates upward across Rossby (Kelvin) beams that slope downward to the west
(east), whereas phase propagates downward across upward-sloping beams, and there is
a 2w-phase shift across each of the beams. Beams readily reflect from the ocean bottom
and surface. Wherever such a reflection occurs downward and upward beams interfere
to produce locally a bottom or surface trapped structure that resembles a standing
wave. Phase propagates through this structure westward (eastward) for Rossby
(Kelvin) beam reflections. The meridional structures of the beams have more current
reversals and are less equatorially irapped as R increases. This property is expected,
since as f increases they are composed of higher-order Hermite functions.

Figure 6 illustrates that the amplitudes of the Rossby beams decrease markedly with
£, so that higher-order Rossby beams (2 > 7) contribute very little to the equatorial
currents. To a good approximation, then, the flow field of Figure 4a is the superposition
of the upper panel of Figure 5 with Figures 6a and 6b. With the aid of these figures it is
now possible to identify the contributions of individual beams in Figure 4a. In
particular, the prominent band of energy is an £ = 1 Rossby beam. The two regions of
bottom—trapped energy are identified as places where an € = 1 Rossby beam and an
2 = 3 Rossby beam reflect from the ocean bottom. Regions of downward phase
propagation occur whenever a beam has reflected from the ocean bottom. Similarly,
the lower left panel of Figure 4b is approximately a superposition of all the panels of
Figure 6¢ with the near-surface Kelvin beam directly driven by the wind (see the upper
panel of Fig. 5). The honeycomb structure in this panel occurs because the contributing
equatorial beams all appear at different depths, with the Kelvin beam most shallow
and the 2 = 1, 3 and 5 Rossby beams at ever increasing depths.

There are three Rossby beams evident in each of the panels of Figure 6a. They
originate at the eastern boundary near the ocean surface at a depth of about 250 m, and
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Figure 6a. As in Figure 4a, except that only the contributions of Rossby waves generated at the
eastern boundary are shown. The figure shows the 2 = 1 Rossby waves in the upper panel, the
£ = 3 Rossby waves in the middle panel, and the 2 = 5 Rossby waves in the lower panel. The
contour intervals are 20, 10 and 5 cm/sec 'and dashed contour lines are +10, +5, and
+2.5 cm/sec in the upper, middle and lower panels, respectively. Beams of Rossby waves
propagate from the eastern boundary with the slopes +(22 + 1) o/ N,. There are three obvious
sources of these beams at depths of about 250 m, 1200 m and 2200 m.
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Figure 6b. As in Figure 4a, except that only the contributions of Kelvin waves generated at the
western boundary are shown. The contour interval is 5 cm/sec, and the dashed contour lines
are +2.5 cm/sec. Beams of Kelvin waves propagate from the western boundary with the slopes
+0/N,. The sources of the two strongest beams, one sloping downward toward the east and
the other sloping upward occur at depths of 1700 m and 1500 m, respectively.

much deeper at depths of about 2200 m and 1200 m. It is convenient for the discussion
in the following paragraph to label the three 2 = 1 Rossby beams R1, R2 and R3,
respectively. There are also three Kelvin beams prominent in Figure 6b. A downward-
sloping Kelvin beam originates at the western boundary near a depth of 1700, and an
upward-sloping one begins at 1500 m. The third beam originates at a depth of 250 m.
These beams are labelled K1, K2 and K3, respectively.

This collection of beams is the result of multiple reflections of Kelvin and £ = 1
Rossby beams between ocean boundaries in the following way. The Kelvin beam
directly generated by the wind (see the upper panel of Fig. 5) reflects from the eastern
boundary at a depth of about 250 m predominantly as R1 (although & = 3, 5, ...,
Rossby beams are also generated by this reflection). R1 reflects from the western
boundary at a depth of 1700 m as K1. K1, in turn, reflects from the eastern boundary
at a depth of 2200 m predominantly as R2. R2 reflects first from the ocean bottom and
then from the western boundary at 1500 m as the Kelvin beam, K2. K2 reflects from
the eastern boundary at 1000 m as R3, and R3 reflects first from the ocean surface and
then from the western boundary at 250 m to generate K3.

iii. The dependence on model parameters. 1t is important to know how the response of
the model varies with the choice of free parameters. Since », does not significantly
affect the deep flow, the important parameters are ¢, p,(z) and A.

Figure 7 shows two sections of zonal velocity comparable to Figure 4a except that
o = 47 years™' and o = 8= years™' in the upper and lower panels, respectively. In both
panels it is easy to identify the wind-driven Kelvin beam and one reflected = 1 Rossby



418 Journal of Marine Research [42,2

-2500

-400 400 -400 400
km km

“Figure 6¢c. Similar to Figure 4b, except that only the contributions of waves generated at ocean
boundaries are shown, and the sections are all taken along Section 3 of Figure 3. The figure
shows € = 1 Rossby waves in the upper left panel, £ = 3 Rossby waves in the upper right panel,
2 = 5 Rossby waves in the lower left panel, and Kelvin waves in the lower right panel. The
contour intervals are 10, 5, 2.5 and 2.5 cm/sec in the upper left, upper right, lower left and
lower right panels, respectively. The meridional structures of individual beams have mor.
current reversals as £ increases.

beam (equivalent to R1 in Fig. 6a), but other equatorial beams are not as readily
apparent. As expected, in the upper panel beam slopes are twice as large as they are in
Figure 4a, and in the lower panel they are four times as large. Note that the amplitude
of the deep ocean response decreases markedly as o increases. The reason for this
decrease is that at higher frequencies fewer Kelvin waves can couple efficiently to the
wind field (see the discussion in Section 4a), and so the wind-driven Kelvin beam itself
is much weaker.

Figure 8 shows a section of zonal flow that is comparable to Figure 4a except that
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Figure 7. Asin Figure 4a, except that the wind oscillates with a period of 6 months in the upper
panel, and with a period of 3 months in the lower panel. The contour interval in the upper
panel is 10 cm/sec, and dashed contour lines are +5 cm/sec. The contour interval in the lower
panel is 2.5 cm/sec, and dashed contour lines are +1.25 cm/sec. The wind-driven Kelvin beam
and the £ = 1 Rossby beam are evident in each panel. The amplitude of the currents weakens
markedly as frequency increases.

py(2) is now the depth-varying profile in Figure 2. Because V, is not constant, beam
paths are no longer straight; they slope more steeply in the deep ocean where N, is
smaller. Note that the beams readily pass through the pycnocline, so that the
pycnocline does not act to trap the flow field near the ocean surface. One effect of this
steepening is that beams broaden considerably as they propagate into the deep ocean.
Several equatorial beams are visible in the figure. Again, the wind-driven Kelvin beam
and the reflected £ = 1 Rossby beam (equivalent to R1) are most prominent. An £ = 3
Rossby beam can also be seen leaving the eastern boundary at a depth near 200 m,
reflecting from the ocean bottom near x = 0, and returning almost to the surface at the
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Figure 8. As in Figure 4a, except that N, varies with depth in a realistic manner. The contour
interval is 20 cm/sec, and the dashed contours are + 10 cm/sec. Beams are still evident in the
flow field, but their paths are now curved. The £ = 1 Rossby beam is most evident. The £ = 3
Rossby beam reflects from the ocean bottom and returns near to the surface in the western
ocean.

western boundary. Another 2 = 1 Rossby beam (equivalent to R2) leaves the eastern
boundary near a depth of 2000 m, propagates upward and arrives near the surface at
the western boundary. The source of this deep beam is a Kelvin beam (equivalent to
K1) that leaves the western boundary near a depth of 1500 m, reflects from the ocean
bottom near x = 2000 km, and reaches the eastern boundary near a depth of 2000 m.

Vertical mixing acts to weaken equatorial beams in their direction of propagation,
and to broaden them both vertically and meridionally. This broadening occurs because
waves associated with higher-order vertical modes are preferentially damped out of the
beam. In spite of these effects energy still propagates along ray paths, in agreement
with inviscid theory. McCreary (1980b, 1981b) showed a solution comparable to the
one in Figure 4, except that 4 was set so that v = .55 cm?/sec. The broadening of
equatorial beams is evident in that solution. In particular, the vertical extent of the
prominent £ = 1 Rossby beam in the central and western ocean increases to 750—
1000 m.

iv. Comparison with a numerical model. As mentioned in the introduction, Philander
and Pacanowski (1981) describe the response of their model in the deep ocean when the
wind stress has a period close to the semi-annual (200 days). Beneath a sharp
pycnocline confined above 200 m, their initial density state was weakly stratified with a
constant value of N, = 1.8 x 10 *sec™. The value of N, for the linear profile of Figure
2is N, = 4.5 x 107 sec™". Thus, beam slopes in this model are about 2.5 times steeper
than they are in the upper panel of Figure 7, and so have about the slope that they do in
the lower panel of the figure.
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Figure 9a. As in Figure 4a, except that a patch of meridional wind oscillating at the monthly
frequency forces the ocean. The shaded region indicates southward flow, and the contour
interval is 5 cm/sec. A beam of Rossby-gravity waves propagates into the ocean with the slope
—a6/N,. There are no Rossby waves available to reflect this beam from the eastern boundary,
and so the beam reflects entirely poleward as a beam of coastal Kelvin waves,

Their figures suggest that the deep flow in their model is similar to that developed in
this one. In particular, their deep flow appears to be dominated by a wind-driven
Kelvin beam and the primary, reflected £ = 1 Rossby beam (equivalent to R1 in Fig.
6a). In the central ocean above 750 m and below the pycnocline the flow field exhibits
upward propagation of phase (their Fig. 6), consistent with the presence of a Kelvin
beam. At a position 1600 km from the eastern boundary the flow is concentrated above
1500 m and again exhibits upward phase propagation (their Fig. 16), consistent with
the presence of the Kelvin beam and a reflected = 1 Rossby beam. At a position
3200 km from the boundary, a region of deep flow (distinct from the near-surface
currents) extends from a depth of 1000 m to the ocean bottom; although there is clear
evidence of upward phase propagation, the vertical structure of this flow also has some
characteristics of a standing wave (their Fig. 16). Bottom currents are strongest in a
region 20004000 km from the eastern boundary, and they exhibit westward phase
propagation (their Fig. 15). The meridional structure of the zonal velocity field near
the bottom is strongly trapped to the equator with a single weak current reversal
somewhat off the equator. All these properties are consistent with the presence of an
2 = 1 Rossby beam that reflects from the ocean bottom at a position centered about
3000 km from the eastern boundary.

b. Solutions for meridional winds. Figures 9a,b show zonal and meridional circulation
patterns corresponding to Sections 1 and 4 of Figure 3 at time ¢ = 0. A beam of energy,
highly trapped to the equator, descends into the deep ocean at the slope —a/N,. Phase
lines are not parallel to the beam path, but rather are horizontal. Finally, the vertical
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Figure 9b. As in Figure 9a, except showing sections of zonal velocity (left panel) and of
meridional velocity (right panel) along Section 4 of Figure 3. The shaded regions indicate the
presence of westward or southward (negative) flow, and the contour interval in both panels is
2.5 cm/sec. Currents are highly trapped to the equator.

wavelength of the beams is exactly that predicted by (27). These properties indicate
that the beam is composed of Rossby-gravity waves. Considering the small amplitude
of the wind, the strength of the response is again surprising.

In contrast to Figure 4, the solution of Figure 9 has a very simple structure. The
complex response of Figure 4 is entirely due to the fact that at low frequencies Rossby
waves reflect a considerable amount of energy back into the interior ocean. At a period
of one month, however, there are no Rossby waves available for this reflection. (A
graphical interpretation of this property is that none of the horizontal lines in the right
panel of Figure 1 ever intersect any of the dispersion curves for £ > 2 Rossby waves.)
Instead, the Rossby-gravity beam reflects entirely poleward via 3-plane Kelvin waves
as discussed by Moore (1968) (also see McCreary, 1980a).

Figure 10 shows the model response at a somewhat lower frequency, ¢ = 2w/ V2
months™'. In the upper panel 4 = 0, so that there is no mixing in the deep ocean,
whereas in the lower panel A is set so that » = .25 cm*/sec there. Consistent with (27),
the vertical wavelength of the response decreases by a factor of 2. Without vertical
mixing the Rossby-gravity beam descends into the deep ocean, just as in Figure 9. With
vertical mixing, however, the Rossby-gravity beam decays markedly away from the
ocean surface. At even lower frequencies this decay is much more severe because the
vertical wavelength decreases so rapidly with ¢. As a result, the deep response of the
model to this meridional wind patch at periods greater than one month is negligible.

Figure 11 shows a section of meridional flow that is comparable to that in Figure 9
except that p,(z) is now the depth-varying profile in Figure 2, and there is vertical
mixing in the deep ocean. According to (6), since N,(z) is not constant, mixing
coefficients vary with depth. Just beneath the mixed layer N, attains a maximum
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Figure 10. As in Figure 9a, except that the frequency of the wind is decreased by a factor of /2.
In the upper panel there is no vertical mixing, whereas in the lower panel » = .25 cm?/sec. The
contour interval in both panels is 10 cm/sec. The vertical wavelength of the beam decreases by
a factor of 2. Vertical mixing acts to weaken severely Rossby-gravity beams at lower
frequencies.

value, and so» and x reach a minimum value, v;,. 4 is set so that v, = .25 cm®/sec. As
in Figure 8, beam paths are no longer straight, but slope more steeply in the deeper
ocean, becoming nearly vertical there. As a result, the Rossby-gravity beam reflects
first from the ocean bottom near x = 3500 km before it reflects from the eastern
boundary. The radiation in the deep eastern ocean is a combination of downward and
upward propagating Rossby-gravity beams and so forms a standing wave pattern with
no vertical propagation.

As discussed in Section 4a gravity waves associated with very high-order vertical
modes can be generated by the wind patch. For the depth-varying density profile of
Figure 2, = 2 gravity waves for the n ~ 48 modes couple efficiently to the wind
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Figure 11. As in Figure 9a, except that N, varies with depth in a more realistic manner and
Vmin = -25 cm?/sec. The contour interval is 5 cm/sec. The Rossby-gravity beam now follows a
curved path, reflects from the ocean bottom, and begins to return near the surface in the far
eastern ocean. The response in the deep eastern ocean is a standing wave pattern, because it is
the result of interference between downward and upward propagating beams.

(rather than for the #n ~ 61 modes as in Fig. 10). Without vertical mixing these waves
are a source of short vertical-wavelength noise that is comparable in amplitude to the
Rossby-gravity beam itself. With »,;, = .25 cm®/sec this noise is completely eliminated,
and the structure of the Rossby-gravity beam is hardly affected at all.

The Cox model generated a Rossby-gravity beam similar to the one in Figure 11. A
difference between the two cases is that his surface forcing propagated westward with
a specific zonal wavenumber, k. So, the analog of Cox’s solution in the present model
occurs when X(x) in (31) is replaced by X(x)e*™, so that the wind has the form of an
amplitude-modulated travelling wave. The Fourier transform of this wind field is
peaked about k = k; rather than k = 0. Thus, the strongly excited Rossby-gravity
waves necessarily have zonal wavenumbers near k,. The major effect on the deep flow
is that phase propagates horizontally as well as vertically; phase lines are no longer
horizontal, but have a slope approximately given by tan 6, = (6/Np)ko/ (ko + B/0).
The slope of the beam is still tan §, = —(g/N,). Similar properties hold for the Cox
solution.

c. Comparison with observations. For zonal winds the most visible aspect of the
solutions are the Kelvin beam directly generated by the wind, and the 2 = 1 Rossby
beam excited by the reflection of the Kelvin beam at the eastern ocean boundary, as in
Figure 8. For meridional winds the dominant feature is a Rossby-gravity beam, as in
Figure 11. The two important characteristics of these signals are that phase propagates
vertically and that energy propagates along ray paths. Is it possible to observe such
signals in the real ocean? One observational difficulty is that to identify a beam in its
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entirety requires a long time series of observations that extend throughout the water
column and that are widely separated zonally. Another is that forcing by the wind is
not generally peaked about a single frequency as assumed here, with the possible
exception being the annual cycle and its harmonics. Finally, the zonal structure of the
real wind does not have a form as simple as that assumed here. As a result, at the
present time an observational base does not exist that can prove or disprove the
existence of beam-like signals in the equatorial ocean. There are some observations,
however, that are consistent with such an interpretation.

The best evidence for the existence of an € = 1 Rossby beam is that presented by
Lukas and Firing (1984). Monthly hydrographic sections were taken at one-degree
intervals across the equator in the central Pacific (at 150W, 153W and 158W) for a
16-month period during the NORPAX Hawaii-to Tahiti shuttle experiment. Lukas
and Firing extracted the annual cycle from this data set, thereby determining the
amplitude and phase of the temperature signal as a function of latitude and depth. The
amplitude had two relative maxima roughly symmetric about the equator and located
at a depth of 450 m near 2N and 2S. Upward phase propagation was evident in the
signal from a depth of 900 m to the near-surface pycnocline (near 150 m). By
extrapolating the signal deeper into the ocean they inferred that a vertical wavelength
(2#-phase shift) of 2200 m was associated with the signal. Eriksen (1981) reported an
annual signal in the deep equatorial zonal current somewhat farther west (at 175E);
the amplitude of the signal at a depth of 1200 m and 1400 m was 5-10 cm/sec. Lukas
and Firing suggested that this signal was related to the one they observed. They
interpreted both to be due to the presence of an £ = 1 Rossby beam, originating either
at the eastern boundary (as in Fig. 8) or directly forced by the wind (as is evident in the
upper panel of Fig. 5).

In a similar analysis, Lukas (1981) formed bimonthly averages of all available
hydrographic data from the eastern tropical Pacific. He extracted both the annual and
semiannual cycles from this data at two locations on the equator (at 82W and 92W).
There was a clear upward propagation of phase in the semi-annual signal at both
longitudes in a depth range from 500 m to 100 m, with an inferred vertical wavelength
of about 800 m. This property is good evidence that this signal is remotely forced, and
so is likely to be a combination of an incoming Kelvin beam and a reflected £ = 1
Rossby beam. Upward phase propagation was not as apparent for the annual cycle.

There is indirect evidence of an annual, equatorial Kelvin beam in the Atlantic.
Picaut (1983) observed upward phase propagation of the annual upwelling event in a
depth range from 300 m to 50 m just off the coast of Africa at SN near Abidjan (4W).
He concluded that this signal was a beam of coastal Kelvin waves that was remotely
generated by the reflection of an equatorial Kelvin beam from the coast of Africa.
McCreary et al. (1984) modelled this reflection process in a study similar to the
present one. An equatorial Kelvin beam generated by zonal winds in the western
Atlantic reflected primarily not only as an = 1 Rossby beam, but also as a beam of
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coastal Kelvin waves along the coast at SN, in good agreement with Picaut’s
observations.

Luyten and Roemmich (1982) discussed current records taken in the western Indian
Ocean (47E-59W) from April, 1979 to June, 1980. Current meters were situated at
depths of 200 m, 500 m and 750 m. In the Indian Ocean a semi-annual oscillation
dominates the zonal component of the wind. The semi-annual oscillation also
dominated the zonal component of the flow for all the current meters, but was absent in
the meridional component. There was no detectable phase lag of this signal between
instruments separated horizontally. Cross-correlation of records from instruments
separated vertically, however, showed upward propagation of phase with an inferred
vertical wavelength of about 2800 m. Current records from the same location but
several years earlier (Luyten, 1982) showed a weak semi-annual signal at 1500 m and
virtually none at greater depths. All these observations are consistent with the presence
of an € = 1 Rossby beam that is confined in the upper ocean. The reflected beam in the
upper panel of Figure 7 slopes rapidly into the deep ocean. It is therefore more likely
that their signal is the result of an £ = 1 Rossby beam that is directly generated by the
wind, rather than one that has reflected from the eastern boundary.

McPhaden (1982) discussed a two-year time series of current profiles collected
every week in the central Indian Ocean (73E) in a depth range from 200 m to the
surface. As expected the zonal currents had a strong semi-annual component. In the
surface mixed layer the flow was in-phase with the wind. Beneath the mixed layer the
amplitude of the signal decreased markedly with depth. In addition, phase decreased
with depth, indicating that phase propagates upward in time. These properties are
consistent with the presence of a wind-driven Kelvin beam (or an £ = 1 Rossby beam)
just beneath the well-mixed upper layer.

Weisberg and Horigan (1981) describe current records taken in the eastern,
equatorial Atlantic (4W) from June, 1976 to May, 1978. From August to December
an oscillation with a period of one month appeared in the meridional component of the
flow, but not in the zonal component. There was clear upward propagation of phase
with a vertical wavelength of about 1000 km. Weisberg and Horigan interpreted this
signal to be a beam of Rossby-gravity waves, and with the aid of the dispersion relation
for these waves [Eq. (25)] estimated a horizontal wavelength of 1200 km. They
concluded that their signal must be forced by unstable surface currents, as in the Cox
model. The present results support this conclusion. The fact that the data are
associated with a short horizontal wavelength indicates that the source is not a
large-scale oscillating wind patch, as for the solution in Figure 11. If it is generated by
the wind it must be due to a periodic, westward-propagating disturbance with a
wavelength of 1000 km, and there is no observational evidence that such a wind field
exists.

O’Neill (1982) analyzed in detail the velocity profiles first reported by Luyten and
Swallow (1976). She found evidence for the presence of two Rossby-gravity waves in the
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data. One of them had a period of 57 days, was associated with upward phase
propagation, had a vertical wavelength of 450 m and an estimated horizontal wavelength
of 730 km. The other, and more prominent one, had a period of 72 days, a vertical
wavelength of 1200 m, and an estimated horizontal wavelength of 300400 km.
Remarkably, phase propagates downward for this signal indicating upward energy
propagation. The origin of either of these waves is unknown.

6. Summary and discussion

A linear, continuously stratified model is forced by a patch of zonal or meridional
wind that oscillates at periods from one month to one year. Solutions are represented as
sums over vertical modes and also over the various types of waves associated with each
mode, as in (28). Typically, the responses associated with a considerable number of
vertical modes contribute to the solution. This property is a bit surprising since wave
amplitudes, C,, are proportional to ,,, and 7,, typically decreases rapidly with n.
However, wave amplitudes depend on ¢, as well as 7,,. For example, the zonal velocity
field corresponding to a Kelvin wave is proportional to 7,,/c, and this quantity
decreases slowly (or even increases) with n. Wave amplitudes are also determined by
the Fourier transform of the wind field, X (k), and this factor is a very sensitive
measure of C,. Essentially, all waves will be strongly excited that have wavenumbers
for which | X (k) |is large, regardless of which vertical mode they are associated with.

Because the solution is represented as a discrete sum of vertical modes, it is not
obvious that energy must propagate vertically as well as horizontally. By letting the
ocean bottom become infinitely deep, discrete sums are replaced by integrals. It is then
possible to use various mathematical techniques (like the method of stationary phase)
to determine where the solution will appear in the far field. It follows that waves of a
given type propagate energy along their respective ray paths.

Pieces of the solution corresponding to a particular vertical mode [for a fixed value
of nin (28)] focus energy back on the equator at distinct points. Focal points, however,
are not at all visible in the complete solution. Pieces of the solution that correspond to
waves of a particular type [for a fixed value of £ in (28), as in (29) and (30)] form
well-defined beams that carry energy into the deep ocean along ray paths. There is a
2x-phase shift across each beam, and they readily reflect from basin boundaries.
Beams are visible in the complete solution.

Zonal winds efficiently generate a Kelvin beam that reflects from the eastern
boundary as a set of Rossby beams. The resulting flow field is very complex. There are
many features having a short vertical scale. There are regions where phase propagates
upward, where phase propagates downward, and also regions of apparent bottom-
trapped flow. Little energy appears in the deep ocean when the basin has no eastern
boundary, indicating that reflected Rossby waves play a crucial role in the dynamics of
deep, low-frequency currents in the model. The model response is strongest when the
wind has a period of one year, and weakens markedly at higher frequencies.
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Meridional winds efficiently generate a beam of Rossby-gravity waves. At a period
of one month this beam reflects entirely poleward along the eastern boundary as a
packet of coastal Kelvin waves, since there are no Rossby waves available for the
reflection. The resulting flow field is much simpler than that for zonal winds. Energy
descends into the deep ocean with a small vertical scale, and there is upward
propagation of phase. The reflection of the Rossby-gravity beam from the ocean
bottom produces a standing-wave pattern.

The best evidence for the presence of beams comes from observations of vertically
propagating, equatorially trapped signals. Observations discussed by Lukas (1981),
McPhaden (1982) and Picaut (1983) are consistent with the presence of a wind-driven
Kelvin beam. The observations of Lukas and Firing (1984) and of Luyten and
Roemmich (1982) suggest the existence of an £ = 1 Rossby beam. Variability in the
deep ocean discussed by Weisberg and Horrigan (1981) and by O’Neill (1982) appear
to be Rossby-gravity waves. Because the estimated horizontal wavelength of these
waves is short, however, they cannot be generated by a large-scale oscillating wind
patch, as in Figure 11.

The important result of this paper is that it provides a theoretical picture of the deep
ocean currents that are generated by low-frequency winds. Although these flows can be
quite complex they simplify considerably when viewed as superpositions of equatorial
beams. It is hoped that the ideas discussed in this paper will facilitate the understand-
ing of more comprehensive, numerical models of the deep, equatorial ocean. More
importantly, it is hoped that the notion of equatorial beams will provide a useful way of
interpreting some of the observations of deep currents.
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