
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



Journal of Marine Research, 42, 319-358, 1984

Forced double Kelvin waves in a stratified ocean

by Andrew J. Willmottl,2

ABSTRACT
This paper examines the linear response of a two-layer uniformly rotating ocean of infinite

horizontal extent with a discontinuity in depth to a divergence-free transient wind stress.
Initially the ocean is at rest and the wind stress is directed perpendicular to the escarpment. A
rig~d lid is employed to filter out the external double Kelvin wave and an analytic solution is
derived, using transform techniques, for the forced internal double Kelvin wave which is trapped
along the depth discontinuity. Parameter values are chosen which most accurately model the
Mendocino escarpment oriented almost zonally off the northern California coast.

Soon after the wind stress is applied a single large wave is generated in the neighborhood of
the wind stress curl origin. The wave has a maximum amplitude of 3 m, a phase speed of
approximately 2.2 km day-l and a wavelength in the order of 200 km. Furthermore the forced
double Kelvin wave is found to exhibit a 6 day oscillation which is independent of the e-folding
time scale of the wind stress. At any fixed location along the escarpment the solution also
displays amplitude modulation. An investigation of how sensitive the solutions are to the upper
layer depth and stratification is presented, A brief discussion of the response produced by a
time-periodic spatially independent wind stress directed parallel to the escarpment and suddenly
applied to a quiescent ocean, is also presented. It is suggested that double Kelvin waves may
perhaps be detected from deep-sea buoy measurements.

I. Introduction
Satellite infrared imagery off the California coast reveals the presence of thermal

intrusions (perhaps thermal streamers is a better term) which originate in the coastal
upwelling zone over the continental shelf and shelf break. These cold water intrusions
can have an offshore scale of the order of 500 km and they frequently appear to
originate from the vicinity of coastal capes, where upwelling is expected to be enhanced
(see Clarke, 1977). The infrared satellite image shown in Figure 1 clearly reveals a
cold thermal intrusion (lighter colored regions) extending westward from Cape
Mendocino. However, an examination of the bottom topography off the central
California coast (see Fig. 2) shows that the Mendocino escarpment centered at 40N
and extending westward for nearly 3000 km is likely to be a more important feature
than Cape Mendocino for controlling the circulation in this region.
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2. Present address: Department of Mathematics, University of Exeter, North Park Road, Exeter,

England, EX4 4QE.
319



320 Journal of Marine Research [42,2

Figure 1. Satellite infrared image of the northern California coast on 16 October 1981. The
presence of a cold water plume (lighter shaded region) originating from the enhanced
upwelling zone around Cape Mendocino is clearly visible. The surface thermal pattern
offshore from Cape Mendocino suggests that the presence of the underwater escarpment may
be influencing the flow field in this region.
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Figure 2. The bottom bathymetry off the northern California coast between 36N to 44N and
122W to 133W. The Mendocino escarpment is clearly visible, although numerous seamounts
interrupt the steplike nature of the seascarp.

At the present time there are no data available for determining the depth of
penetration of the cold water intrusions extending westward from Cape Mendocino.
Breaker (1982, private communication) suggests that the cold water intrusions off
Cape Mendocino are more persistent features than those occurring off other California
headlands. This observation suggests that the flow field and thermal structure of the
ocean off Cape Mendocino may be influenced by the presence of the undersea
escarpment and the purpose of this paper is to elucidate upon such a coupling
mechanism.

It is well known that a discontinuity in depth in a rotating ocean can act as a wave
guide (see Longuet-Higgins, 1968a). In particular the subinertial double Kelvin wave
exists over an abrupt single-step escarpment with phase propagating with shallow
water on the right in the Northern Hemisphere. LeBlond and Mysak (1978) present an
account of the propagation characteristics of the unforced double Kelvin wave in a
homogeneous ocean. Mysak (1969) also considers the generation of a double Kelvin
wave in a homogeneous ocean along an infinite escarpment by wind stress directed
normal to the escarpment. In this study Mysak (1969) finds that when a nondivergent
wind stress is suddenly applied to a quiescent ocean, the response consists of double
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Kelvin waves which travel away from the forcing region with a maximum wavelength
of about 104 km and an amplitude of about 1.5 cm. Mysak notes that the wavelength is
unrealistically long and it is doubtful that the associated sea-surface elevation
produced by these waves is measurable in the ocean. The purpose of this paper is to
extend the model of Mysak (1969) to include the effects of stratification on the waves,
by considering the response of a two-layer ocean to a nondivergent wind stress acting
normal to a step escarpment of infinite extent. Rhines (1977) considers freely
propagating double Kelvin waves over a step escarpment in a two-layer ocean.
However there appears to be no treatment in the literature of the generation of double
Kelvin waves in a two-layer ocean with a step-escarpment.

In Section 2 the normal mode equations in a wind forced two-layer ocean with a rigid
upper surface are developed. The basic equations are reformulated in nondimensional
form in Section 3. In Section 4 the dispersion relation for freely propagating double
Kelvin waves is derived. A discussion of the free wave propagation characteristics as a
function of the upper layer depth is presented. In Section 5 the partial differential
equation governing the interfacial displacement is solved using transform techniques
when a transient wind stress which has a step-function spatial dependence is suddenly
applied to a quiescent ocean. Plots of the interfacial displacement along the escarpment
as a function of time are presented in Section 6. The plots are obtained by numerically
inverting the transform solution of Section 5. The dependence of the forced wave
response over the escarpment on wind stress orientation is briefly discussed in Section
7. A spatially independent time-periodic wind stress is used in Section 7. Finally in
Section 8 the shortcomings of the model and the direction for future research are
discussed.

2. Basic equations

A right-handed cartesian coordinate system is chosen with the step escarpment lying
vertically beneath the x-axis (see Fig. 3). In the case of Mendocino escarpment,
shallow water lies to the north of the depth discontinuity and corresponds to the region
y < 0 in Figure 3. The forced linearized two-layer long wave equations for a constant
depth upper layer and variable depth lower layer H2(y) are given by

(2.1)

(2.2)

(2.3)

(2.4)
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Figure 3. Schematic representation of the orientation of the coordinate system with respect to
the step escarpment of infinite horizontal extent.

v2t + fU2 = - g''YI2y - g'/7ly,

H2U2x + (H2V2)y + 'YI2t = 0,

(2.5)

(2.6)

(2.7)

where (Ul> VI) (U2, V2) are the velocities in the upper and lower layers respectively; 'YIh 'YI2

are the surface and interfacial displacements; -r, rY are the components of wind stress
in the x and y directions; HI>H2 are the undisturbed depths of the upper and lower fluid
layers which are taken as constant except for a step discontinuity in H2 corresponding
to the escarpment; g is the acceleration due to gravity and g' = f.Lg denotes reduced
gravity where f.L = (I - pd P2) « 1. The system of equations (2.1) to (2.6) are discussed
in some detail by Wright and Mysak (1977) and it will suffice to say that terms of
relative magnitude f.L have been neglected in (2.4) and (2.5). Also in (2.3) the rigid lid
approximation has been made which eliminates all surface gravity waves and the
external Kelvin wave from the system.

The step escarpment of infinite horizontal extent is described by

{
H (N) fory < 0

H
_ 2 , ,

2- H2(S), for y > 0,

where H2(N) < HP) and the superscripts (N) and (8) are used to distinguish variables
to the north and to the south of the Mendocino escarpment respectively. Since the
depth of the ocean in the regions y < 0 and y > 0 is constant, it is convenient to follow
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the analysis technique adopted by Allen (1975) and Wright and Mysak (1977) in
which the normal mode equations for a two-layer fluid on an.f-plane are derived. For
completeness a brief derivation of the normal mode equations is presented in this
section. In the derivation the superscripts (N) and (8) are omitted on all dependent
variables with the understanding that the analysis applies on either side of the
escarpment.

When (2.3) and (2.6) are added, it is clear that a mass transport stream function 1/;
exists in which

1/;x = Hlvl + H2v2,

1/;y = - (Hlul + H2U2)'
(2.8)

For a constant depth two-layer ocean, system (2.1) to (2.6) can be reduced to two
decoupled (normal mode) equations for 1/; and 112 (see Allen, 1975 and Wright and
Mysak, 1977) in the following manner. When the system of Eqs. (2.1), (2.2), (2.4),
(2.5) and (2.8) is solved for (Uh VI) and (U2' V2) in terms of 1/;, 112 and (TX

, r") the
following expressions are obtained:

(2.9a)

(2.9b)

(2.9c)

(2.9d)

where H = HI + H2 and L == atl +p. Cross-differentiating (2.1) and (2.2) and using
(2.3) yields the upper layer vorticity equation

(2.10)

A similar operation on (2.4), (2.5) and (2.6) yields the lower layer vorticity equation

(2.11 )

Adding (2.10) and (2.11) and employing (2.8) yields the first of the normal mode
equations for 1/;, namely

2 1\lH 1/;, ~ - k . curl T
PI

(2.12)
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Eq. (2.12) describes the behavior of the barotropic part of the flow and describes a
forced transient response. To derive the second normal mode equation for 712' (2.10) is
subtracted from (2.11) to give

(2.13)

The velocity components in the upper and lower layers appearing in (2.13) are
eliminated in favor of if; and 712 by operating on (2.13) by L and employing (2.9). When
L is approximated by f2 (the internal double Kelvin waves have periods of several days)
the final equation for Tl2 is

2 I
\1H 712/ - -2 Tl2/ = F,

rj2

where

is the internal Rossby radius of deformation in a two-layer ocean and

(2.14a)

(2.14b)

(2.14c)F=- _f_k. curlr - _1_(\1. r)/.
PIgHI PlgHI

The boundary conditions associated with (2.12) and (2.14) are that if; and Tl2 must
remain bounded as Iy 1--+ 00. At the escarpment y = 0 the sea surface and interfacial
displacements TIl and Tl2 must be continuous:

(2.15)

The continuity condition on TIl must be expressed in terms of if; and Tl2' Clearly Tllx must
also be continuous aty = 0, which from (2.1) implies that

[Ull - fvd = 0 at y = O. (2.16)

The matching condition (2.16) can straightforwardly be rewritten in terms of 1/1 /lnd Tl2

using (2.9) and approximating L by12 to give

(2.17)

At the escarpment the condition of continuous normal mass transport in each layer
must also be imposed, which requires

(2.18)
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Adding together the transport normal to the escarpment in each layer gives, with the
aid of (2.8)

(2.19)

To obtain the fourth matching condition at y = 0 the transport in the upper layer only is
considered. Using (2.9c), the first of the matching conditions in (2.18) can be
expressed as

3. Nondimensional equations
It is convenient to recast the governing equations in Section 2 into a nondimensional

form by defining the dimensionless variables (denoted by an asterisk)

(x,y) = L(x*,y*), t = O'O-lt*,

112 = 11011f, I/; = 1/;01/;*
(3.1)

where 110 = ToL/(Plg HI), 1/;0 = ToL/(PIO'O) and L, 0'0-
1 and TOare the length, time and

stress magnitude scales which appear in the wind stress forcing. In rewriting the
equations in Section 2 in dimensionless form it is convenient to introduce the
nondimensional parameters

= (I + D.N) > I
l' 1 + D.s '

o=O'o/f< 1.

(3.2a)

(3.2b)

(3.2c)

Furthermore, the governing dimensionless equations on either side of the escarpment
will be stated separately, without the asterisks. When (3.1) is used to nondimensional-
ize (2.12) it is found that

The dimensionless form of (2.14) is

..,. 2 (N) (N) I
v H 112/ - f'Y112/ = - bF,

..,. 2 (S) (S) 1F
v H 112/ - f112/ = - - .o

(3.3)

(3.4a)

(3.4b)
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where € = [Ljr''2(S)]2, [rj2(S)]2 = gH\H2(S) j(H(S)P) and

F = k . curl T + 15(\7 • T)/. (3.4c)

The second of the jump conditions (2.15) and jump condition (2.19) remain the same
in dimensionless form, namely

712(N) = 712(S) at y = 0,

tf;x(N) = tf;)S) at y = o.
(3.5a)

(3.5b)

(3.6a)

However, when (2.17) is recast into dimensionless form the jump condition becomes

rstf;Y/(N) - rNtf;y/S) = - ~(tf;x + G712x) - r at y = 0

where

H(S) H(N)

rs = (H
2
(S) _ H}N), rN = (H

2
(S) _ H

2
(N) •

Clearly the dimensionless parameters rs and rN satisfy

(3.6b)

(3.6c)

(3.7a)

On the right-hand side of (3.6a) the superscripts have been omitted because tf;x and 712x

are both continuous across y = O. Finally the dimensionless form of jump condition
(2.20) is

rN (S) rs (N) 1 y 1
tJ.

s
712YI - tJ.

N
712y/ = r; (tf;x + G712x) - T/ +"5 r at y = O.

where the continuity of tf;x, 712x and T/ has been exploited to allow the superscripts to be
omitted on the right-hand side of (3.7a). It is useful to note that

(3.7b)

(3.7c)

and

rS 1
tJ.N ('Y - 1) .

The subsequent analysis is simplified by working with an alternative form of the jump
condition (3.7a). If (3.6a) is multiplied by 15-1 and added to (3.7a) and the result then
integrated once with respect to time, making use of (3.7b) and (3.7c), the following
jump condition is obtained:

('Y - I) [r .t, (N) _ r .t, (S)] + 'V., (S) _., (N)
15 s't'y N't'y I '/2y '/2y

= (-y - I)(TY 1/-0 - TY) at y = O. (3.8)
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In deriving (3.8) it is further assumed that the ocean is at rest for t :s; O.
To determine the flow field associated with forced double Kelvin waves, the

nondimensional form of (2.9) is derived. The horizontal velocity components in both
layers are nondimensionalized by ro/(PluoH1), which then allows the dimensionless
form of (2.9) to be written as

H H(N,S)
U (N,S) = 1_ .1, (N,S) + 0 _2 _ {o." (N,S) +." (N,S) + or x + rY}

] BIN,S) 'I" Y H(N,S) 2x1 2y I

H B(N.s)
v (N,S) = __ 1_ .1, (N,S) + 0 _2 _ {o." (N,S) _." (N,S) + or Y - ~}

1 H(N,S) 'I" x H(N.S) 2yI 2x t

H
U (N,S) = 1_ {.I, (N.s) + 02." (N,S) + 0." (N,S) + o2r x + orY}

2 H(N,S) 'l"y 2x1 2y I

H
V (N,S) = __ 1_ {.I, (N,S) _ 02." (N,S) +.l;_ (N.S) _ o2rY + .-X}

2 H(N,S) 'l"x 2yl v,/2x T

(3.9a)

(3.9b)

(3.9c)

(3.9d)

To summarize, the final nondimensional problem to be solved is given by Eqs. (3.3)
to (3.6) and (3.8) when a wind stress is suddenly applied at t = 0, thereby making the
problem an initial value type.

4. The free-wave properties

As a precursor to understanding the response of atmospherically forced internal
double Kelvin waves, a discussion of the free-waves properties will be presented in this
section.

The dispersion relation for double Kelvin waves in a two-layer ocean over a step
discontinuity can be derived from the unforced version of (2.1) to (2.6), following the
approach of Wright and Mysak (1977). Appendix A presents a brief outline of the
derivation of the free wave dispersion relation. In dimensional form the dispersion
relation is given by

where

)..(N) = (k2 + l/ri2(N)2)1/2

)..(S) = (k2 + l/ri2(S)2)1/2

(4.1a)

(4.lb)

(4.1c)

and w, k are the angular frequency and along-escarpment wavenumber respectively.
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It is convenient to recast (4.1) into dimensionless form by introducing a dimension-
less wavenumber K = ri2(S)k and frequency (1 = wi!, in which case

I { (I' - I)KR} (4.2a)
(1 = R 1 + (f2 + 'Yfl)

where

f] = (K2 + 1)1/2, (4.2b)

f2 = (K2 + 1')1/2, (4.2c)

R = r, + rN, (4.2d)

and rs, TN and I' are defined in Section 3. The dimensionless phase speed c = (1IK and
group speed cg = d(1ldK are easily obtained from (4.2). Dispersion relation (4.2) is
derived by Rhines (1977).

In Figure 4a, a plot of the dispersion relation (4.2a) with upper depth HI as a
variable parameter, is presented. The values H(N) = 3500 m and H(S) = 4500 mare
used and are representative for the Mendocino escarpment. Also displayed in Figure 4
are plots of the dimensionless phase speed cp and group speed cg, with HI as a
parameter. As HI decreases (or the wavelength increases) the system exhibits
barotropic double Kelvin wave behavior in which the frequency (1 is almost indepen-
dent of the wavenumber K and the group speed cg vanishes almost everywhere (see Fig.
4c). The vanishing of cg in the homogeneous limit (or equivalently, the long wavelength
regime) is a consequence of the surface rigid-lid approximation.

For intermediate values of the stratification (or the wavelength), the group speed is
significantly nonzero and (1 varies with wavelength. As the wavelength decreases
(K -. 00) the waves become increasingly confined to the lower layer and the interfacial
displacement acts as a rigid-lid. These bottom-intensified waves are noted by Rhines
(1977). It can be seen from (4.2a) that

1 1'-1
(1-- + -- as K-OO.

R 1'+1

Figure 5a displays the dispersion relation (4.2a) when HI = 500 m, ErN) = 3500 m,
ErS) = 4500 m, g = 0.5 X 10-2 m S-2 and! = 0.937 x 10-4 S-I (corresponding to a
latitude of 40N). These parameter values are representative of the Mendocino
escarpment and are discussed further in Section 6. Also displayed on Figure 5a are the
dimensional wavelength and wave period. Figures 5b and c show the corresponding
dimensional phase and group speed as a function of dimensional wavelength respec-
tively.
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Figure 4. (a) Free wave dispersion curves with the upper layer depth HI as a parameter; (b)
Free wave phase speed cp plotted against dimensionless wavenumber K with the upper layer
depth HI as a parameter; (c) Free wave group speed cg plotted against dimensionless
wavenumber /(with the upper layer depth HI as a parameter.

5. Response to a transient wind stress
The internal double Kelvin wave response generated by the sudden intensification

and gradual decay of a large anticyclonic weather system centered over the escarpment
will be calculated in this section. Following Mysak (1969), a wind stress of this form
can be modelled by

(5.1)

where 0"0' TO > 0 and H is the Heaviside step function. When nondimensionalizing, the
time scale 0"0-1 and the stress scale TO must clearly be used. However, Mysak (1969)
points out that (5.1) has no specific length scale L. It is natural to choose L = ri2(S) (the
natural trapping scale for wave motions over a topographic feature in a two-layer
ocean), in which case f: = I. In dimensionless form (4.1) becomes

(5.2)
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Figure 5. (a) Free wave dispersion curve with HI = 500 m; (b) Free wave phase speed cp plotted

as a function of dimensionless wavenumber with HI = 500 m; (c) Free wave group speed cg

plotted as a function of dimensionless wavenumber K with HI = 500 m.

when the asterisks are omitted. The corresponding wind stress curl is given by

k . curl T = H(t)~(x)e-t, (5.3)

however, the wind stress (5.2) is divergence-free.
To solve the problem stated in Section 3 a Laplace transform in time and a Fourier

transform in x (along the escarpment) is employed. For any function g(x, y, t) for
which both these transforms exist, define

g(k, y, t) = 1:g(x,y, t)e-ikxdx,

and

g(k, y, s) = [~ g(k, y, t)e-S/dt.

Assuming that 172' 1/1, 172x and 1/Ix - 0 as Ix 1- 00 the transformed forms of (3.3) and
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(3.4) become

where

Journal of Marine Research

- - 1
y.,yy - k2y., = s(s + 1) ,

- (S) 2- (S) - 1
1/2yy - Kl 1/2 = S(S + 1)0'

- (N) 2- (N) - 1
1/2yy - K2 1/2 = s(s + 1)0'

[42,2

(5.4)

(5.5a)

(5.5b)

(5.5c)

and (5.4) is valid for both ~(N) and ~(S). The bounded solutions to (5.4) on either side of
the escarpment which satisfy the transformed jump condition (3.5b) are given by

~(N) = - 1 + Atik1Y y < 0,
s(s + 1)e '

~(S) = -1 + Ae-1k1y y > 0,
s(s + 1)k2

'

(5.6a)

(5.6b)

. where A is an arbitrary constant of integration, to be determined. Similarly, the
bounded solutions to (5.5) are given by

- (N) 1 B K,y 0
1/2 = s(s + l)oK/ + 2e , y < , (5.7a)

(5.7b)

(5.8)

(5.9)

- (S) I B -KlY 0
1/2 = s(s + 1)oK12 + Ie , y> ,

where BI and B2 are constants to be determined. When the transformed form of jump
condition (3.5a) is applied to (5.7) it is found that

(1' - 1)
B2 - BI = s(s + 1)oKI2K/'

Furthermore, the transformed form of (3.6a) becomes

rs~/N) - rN~/S) = - ~~ (~ + (112)' at y = O.

On employing (5.6) and (5.7) in (5.9) a second equation relating A, BI and B2 is found,
namely

(5.10)



1984] Willmott: Double Kelvin waves 335

(5.11)

where R is defined in (4.2d). The third equation relating A, BI and B2 is found by first
transforming (3.8) to obtain

(1' - 1) ( -:;:(N) _ -:;: (S) + - (S) _ - (N) _ h- 1) G(k)o rs'Yy rN'Yy 'Y112y 112y - s(s + 1) ,

where G(k) = (ik)-I + '/roCk) and represents the complex Fourier transform of the
Heaviside step function (see Lighthill, 1958, Ch. 3) that appears in rY• On substituting
(5.6) and (5.7) into (5.11) it is found that

(5.12)

The system of Eqs. (5.8), (5.10) and (5.12) allows A, BI and B2 to be determined.
Since the focus of this paper is to examine the behavior of the forced double internal

Kelvin wave, attention will be focused on the solution for 112' In particular the
amplitude of the Kelvin wave response will be largest in the neighborhood of the
escarpment itself and therefore the details of the solution 112(X, 0, t) will be calculated.
Clearly

(5.13)

where the superscript has been omitted in (5.13) because of the continuity of;;2 across
the escarpment. When (5.8), (5.10) and (5.12) are solved for BI it is found that

where

BI = TERM l/TERM 2 (5.14)

TERM 1 == h - 1)

[
iR R i oRG iG]

• s(s + 1)okK1
2 - (s + 1)K1

2K2 - s(s + 1)oK/K2 - (s + 1) - s(s + 1)

and

TERM 2 == i('Y - 1)kR + (i + soR)(K2 + 'YKI)'

In the absence of the escarpment, l' = 1, and BI = 0 which implies that 112will not
exhibit wavelike behavior along the escarpment.

The Laplace transform inversion of (5.13) is formally obtained by evaluating the
s-plane integral

ih(k, 0, t) = -21.1u+i~ 112 (k, 0, s)e'tds.
1r1 u-;oo

(5.15)

An examination of (5.14) shows that in the s-plane the only singularities of the



336 Journal of Marine Research [42,2

integrand in (5.15) are the simple poles at s = -1,0 and -iw(k) where

w(k) = _1 [1 + (" - l)kR],
oR (K2 + "KI)

(5.16)

and therefore the evaluation of (5.15) is straightforward. For t > 0 it is found that
(5.15) is comprised of the sum of a steady state contribution 17/, a transient component
17/, and wavelike terms 172w, where

17/= -e-I {~[1 + (')'- I) {iR + oR _ !-.}] + (" - I)G(k) (oR - o},
oK( D( k K2 K2 D(

_ W -;w(k)1 { 1 (R I) R . ( R I )}
712 = -(')' - l)e oK/D] k - K2 + K/K2D4 + G(k) D4 - D] ,

and

DJ = (i - oR)(K2 + "K() + i(-y - l)kR,

D2 = K2 + "KJ + (" - l)kR,

D] = w(1-iw)oR(K2 + "K(),

D4 = (1 - iw)oR(K2 + "KJ)'

(5.17a)

(5.17b)

(5.17c)

Before proceeding with the inversion of (5.17) it is worth noting what happens when
there is no escarpment. In the absence of an escarpment, "y = 1, and all the wavelike
terms (5.17c) vanish. Furthermore the coefficients A, BI and B2 are zero and therefore
(5.6) and (5.7) reduce to

112(k,y, s) = s(s + 1I)OK/ '

- -1
1/;(k, y, s) = s(s + I)K2 .

The inversion of (5.18) is straightforward and yields

1 -I -Ixl712(X,y,t)=2o(1-e )e , t~O

(5.18a)

(5.18b)

(5.19a)

(5.19b)

It can be seen from (5.19) that the y-dependence of the problem vanishes and that
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(5.20)

(5.21)

when the forcing is essentially zero (t -+ 00) a steady-state response is set up in which

1 ]
'" (x t) = - e-1xl
·,2, 25 '

-00 < y < 00

H1v1 + H2V2 = Vtx= - ~ sgn (x),

Solution (5.20) describes a tentlike elevation for 112> the axis of which passes through
the origin of the delta function curl and is parallel to the wind stress direction. The total
transport parallel to the y-axis is clearly

1
H1v1 + H2V2 = Vtx= - 2 sgn(x),

on employing (5.20). The final steady state flow is in geostrophic balance, and the work
done by the transient wind stress goes into displacing the interface 112'

The inversion of (5.17) cannot be performed analytically. To proceed using a
numerical approach, the integral

'12(X, 0, t) = L1:ih(k, 0, t)eikxdx,

must be evaluated. However when (5.17) is substituted into (5.21) certain resulting
integrals contain integrands which have a factor k-1 and behave like Cauchy Principal
Value (CPV) integrals. To avoid the complications associated with numerically
evaluating CPV integrals it is useful to utilize the fact that

1:112x(X,0, t)e-ikxdx = ikih(k, 0, t).

The solution given by (5.17) is multiplied by (ik) (thereby removing the k-1 factor in
some terms on the right-hand side of (5.17)) which then gives the transform of 8172 (x,
0, t)jx. This expression can be inverted numerically to give 8172(X,0, t)jiJx. Further-
more, for any fixed time to the function 8172(X,0, to)jiJx can be numerically integrated
with respect to x to yield 112(X, 0, to). The arbitrary constant of integration is
determined by imposing the condition that 112 -+ 0 as x -+ 00. The accurate numerical
evaluation of Fourier integrals is difficult and in Appendix B a brief discussion of the
numerical technique used to evaluate 8172(X,0, t)jiJx is presented.

Finally it is worth noting that (5.16) is essentially the dispersion relation for
free-propagating double Kelvin waves, which has been derived more generally in
Section 4.

6. Results
From Section 5, it is clear that the solution for 'l72 consists of the superposition of

steady state, transient and wavelike terms corresponding to the contribution to the
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total solution from the poles at s = 0, - I and -iw(k) respectively. The steady state
and wavelike parts of the solution for 112 will be displayed separately. Furthermore the
contribution to the solution from the transient terms is small after the first unit of
dimensionless time has elapsed from when the wind stress is applied and will not be
displayed. Each of the three contributions to the total solution decay to zero
independently as x - 00.

In all the model runs presented the total depth (HI + H2(N» of the ocean on the
poleward side of the escarpment is chosen to be 3500 m while on the equatorward side
the total depth (HI + H2(S» is 4500 m. This results in an average height for the
Mendocino escarpment of 1000 m. Table 1 presents a summary of the parameter
values chosen in five model runs. The parameter values assigned in Experiments I and
2 are likely to best model the wind-driven response over Mendocino escarpment. The
values of HI = 500 m and g' = 0.5 X 10-2 m S-2 were found by Mysak (1977) to be
suitable for the Northeast Pacific at a latitude of 49N. Throughout the parameter
study the wind stress scaling factor r* ~ 3 x 10-1 kg m-I S-2. Only the solution in the
region x > 0 will be displayed, although there is a nonzero response in the region x < o.
However, for x < 0 the solution decays exponentially with increasing values of -x (in a
manner similar to that described by Mysak, 1969). The region x> 0 corresponds to the
model ocean domain, where a nonzero wind stress acts normal to the escarpment.

Experiment 1. In this case a 500 m upper layer depth is chosen, which corresponds to
the depth at which the pycnocline is most pronounced, and consequently will be the
region where internal double Kelvin wave dynamics should be most important. In
Figure 6 the steady parts of and ax and 1/2 are plotted as a function of distance along
the escarpment from the wind stress curl origin. As expected the interface is upwelled
by approximately 16 m at the origin of the delta function wind stress curl. At a distance
of 95.4 m (6 units) along the escarpment, the steady state response is essentially zero.
Within the first 32 km from the origin (2 units) the steady state contribution does in
fact dominate the contribution from the wavelike terms in the solution for 1/2 and
a7Jdax. This is clearly seen in Figures 7 and 8. In Figure 7 the function ~dax is
plotted against distance along the escarpment at nine distinct times indicated in the
figure. Plots of a7Jdax are presented because the wavelike behavior of the solution is
particularly well exhibited by this quantity.

After the wind stress is first applied a large wave is generated in the neighborhood of
the wind stress curl origin (See Fig. 7a), the phase of which propagates with shallow
water on the right. At later times, Figure 7b, c show that smaller amplitude dispersive
waves are successively generated at the origin and propagate in the wake of the
primary wave. Mysak (1969) noted analogous behavior for the forced external double
Kelvin wave. At each of the times displayed in Figure 7, the function ~dax is
numerically integrated with respectto x to calculate the corresponding behavior of 1/2

along the escarpment and the results are displayed in Figure 8. During the first 10
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Table 1. Parameter values assigned in the fivenumerical experiments. In all the experiments the
escarpment is located at 40N and the scaling factor used for the wind stress T* is given by T* _
3 X 10-1 kg m-I S-2.

Parameter Upper e-folding Internal Scale factor of
study layer Reduced time scale of Rossby the interfacial

experiment depth gravity the wind stress radius Ti2(S) displacement
number H,(m) g'(ms-2) {j = (fO!-1 (fo-I (days) (km) 71o(m)

I 500 .5 X 10-2 .05 2.4 15.9 1.91
2 500 .5 X 10-2 .10 1.2 15.9 1.91
3 500 2 X 10-2 .05 2.4 31.8 0.95
4 100 .5 X 10-2 .05 2.4 7.1 4.27
5 100 2 X 10-2 .05 2.4 14.2 2.13

units of time after the wind stress is applied the wavelike behavior of 112 is dominated by
the steady state contribution to 112' However, as time evolves the primary wave
propagates further along the escarpment into the region where the steady state
response almost vanishes (see Fig. 7b). Figure 7c shows the later development of 112 as a
function of distance along the escarpment. In Figure 8c, the amplitude of the
oscillation of 112 is approximately 1.5 units for the primary wave at t = 30. In

steady Terms
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Figure 6. Plot of the steady state contribution to the total solution for ihJdiJx and 712over the
escarpment for x 2: O.The parameter values chosen are given in Table I under Experiment I.
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Figure 7. Plot of the wave contribution to the total solution for m,2/iJX over the escarpment for
x ~ O.The wavelike terms are plotted with dimensionless time t as a parameter: (a) t = 1.0,
S.O,10.0; (b) t = IS.O,20.0, 2S.0; (c) t = 30.0,60.0,90.0. The parameter values chosen are the
same as those in Figure 6.

dimensional units this means that 72 days after the sudden intensification and decay of
the wind stress directed normal to the escarpment the amplitude of the primary wave
generated is approximately 2.97 m at a distance of 80 km from the wind stress and
origin. The total interfacial excursion will almost be 6 m at that time.

For large times it is found numerically that the wave response dies away. This
perhaps is not surprising because the waves generated by the transient forcing are
dispersive. The free wave dispersion curves calculated in Section 4 do not describe the
large time response when the forcing has vanished. The asymptotic (K-I1) pair does not
lie on the dispersion curve in Figure Sa implying that the waves must therefore decay.
For values of K > 4, Figure Sc shows that the group velocity of the free waves is
essentially zero. If double Kelvin waves are impulsively excited and then at a later time
the forcing is removed, a large time response can be achieved in which the waves will
not die away. In this case the waves will have a dimensionless wavenumber satisfying
the condition K > 4.

It is difficult to assign a value for the wavelength associated with the forced primary
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Figure 8. As in Figure 7, except the wave contribution to the total solution for 712 is plotted as a
function of x over the escarpment with dimensionless time as a parameter.

wave in the solution for 172 because of the complicated oscillatory behavior along the
escarpment at any fixed time. However the distance along the escarpment from where
172 is essentially zero to where ihJdiJx first vanishes appears to be a suitable choice for
the wavelength. In Figure 8c this distance is approximately 15 units which corresponds
to 238.5 lan. As expected the wavelength and phase speed ofthe forced internal double
Kelvin waves are less than the corresponding quantities associated with the homoge-
neous wave solutions examined by Mysak (1969). The phase speed of the forced
primary wave associated with '1/2 varies with location along the escarpment. An average
value for the phase speed calculated from Figure 8c is 2 km day-I.

To facilitate understanding the temporal behavior of the waves, a plot of iJ'l/d ax as a
function of time at 32 km and 159 lan from the origin is displayed in Figure 9. The
plots displayed in Figure 9 are also representative of the temporal behavior of 172 and
show that both amplitude and phase modulation occurs. It is easy to explain why
amplitude modulation occurs by examining typical integrals in the Fourier inversion of
(5.17). Consider

1= 100F(k) cos [kx - w(k)t] dk

where F(k) - 0 as Ik 1- ex> and w(k) is given by (5.16). After some algebra it is found



344

0.5

0.4

0.3

0.2

x 0.1

~ 0.0

rS
-0.1

-0.2

-0.3

-0.4

-0.5
0

Journal of Marine Research

x = 2, Hl = 500m, 0 = .05

~ ~ ~ 00 m w ~ ~ ~ ~
Time

[42,2

x = 10, Hl = 500m, 0=.05
0.5

0.4

0.3

0.2

x 0.1

~ 0.0

rS
-0.1

-0.2

-0.3

-0.4

-0.5
0 10 20 30 40 50 60 70 80 90 100 110 120

Time
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I = cos (o~)100

[F(k) + F( -k)] cos [kx - {}(k)t]dk

+ sin (o~)100

[F(k) - F( -k)] sin [kx - {}(k)t]dk
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(6.1a)

(6.1b){}(k) = (1' - l)k .
o(K2 + 'YKI)

The "rapid" 6 day period oscillation comes from the terms cos (tjoR) and sin (tjoR).
The packets arise from the Fourier inversion of terms involving cos [kx - {}(k )t] and
sin [kx - {}(k)t]. Phase modulation occurs because the frequency {}depends on k. The
period of the primary wave packet at x = lOis approximately 50 days and the period of
subsequent wave packets is approximately 24 days. Notice that the 6 day rapid
oscillation remains unchanged as time evolves. It is interesting to note that {}(k) is
identical in form to the frequency w(k) in the study of Mysak (1969). However, the
parameter l' in the Mysak (1969) study is simply the ratio of the depth on the deeper
side to that on the shallow side of the escarpment, and is consequently larger than the
value of 'Yin this study. Therefore {}(k) can be interpreted as the equivalent frequency
for a homogeneous system with a small step.

Eqs. (3.9) can be used to calculate the flow field in each layer on either side of the
step. The wavelength exhibited by the primary internal double Kelvin wave is of the
order of 200 km. If this wave propagated as a free wave then the associated flow field
would be near barotropic (see Section 4). However, free waves with wavelength shorter
than ri2(S) will become increasingly confined to the lower layer. Using (3.9), the
velocity components are calculated during the first 25 units of time after the forcing is
applied, to examine the distribution of the flow field within the two layers. In Figure 10
the velocity vectors in the upper and lower layers along the lines y - ±0.1 are plotted
with time as a parameter. The velocity calculations are performed close to the step
because the flow field will decay exponentially with increasing distance measured
normal to the escarpment. Points closer to the escarpment will have larger velocities.
From an examination of (3.9) it is clear that if all partial derivatives of 1/t and 1/2 are
order one quantities, then the velocity components will be small. This is confirmed by
the numerical evaluation of (3.9). For the Mendocino escarpment parameters, the
scaling factor Toj(PIUoHl) for the velocity components is 12.8 cm S-I.

The following observations should be noted about the velocity vectors in Figure 10:

(i) the velocity component normal to the step is larger than that parallel to the
step in both layers.

(ii) as x --+ 00 the velocity field decays to zero in each layer.
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(iii) at the times displayed, the largest velocities occur within one Rossby radius of
the wind stress curl origin and are produced by the permanently upwelled
interface. The maximum velocity in Figure 10 is approximately 2 cm S-I.

(iv) on the equatorward side of the step the upper layer velocities are larger than
those in the lower layer in a region which increases in size at the rate of the
phase speed of the primary wave. Ahead of this region the lower layer
velocities exceed those in the upper layer.

(v) on the poleward side of the escarpment the upper layer velocities also exceed
those in the lower layer within the first 5 to 6 units measured in the positive
x-direction. This region does not appear to propagate.

(vi) in general, the velocity component parallel to the escarpment is directed in the
positive x-direction on the poleward side of the step, while that on the
equatorward side is directed in the negative x-direction. In terms of the
Mendocino escarpment, the flow on the equatorward side will therefore tend to
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be equatorward and onshore, while that on the poleward side of the step will
also be equatorward and offshore. It must be stressed that these flow field
directions occur within the first 25 units (60 days) after the wind stress is
applied.

(vii) the departure from lower layer intensification is a consequence of the
propagation characteristics of the forced wave and the steady state response.

Experiment 2. In this case, the only parameter altered from Experiment 1 is the
e-folding time scale of the wind stress. A value of 1.2 days is assigned to 110-1, thereby
producing a more rapid decay of the wind stress than in the previous case. Notice in
Experiment 1 that the work done by the wind stress goes into permanently upwelling
the interface, generating Kelvin waves and exciting a transient response. If the wind
stress decays more rapidly the work done by the stress on the ocean will be less and
therefore the steady state upwelling response should be smaller. This is confirmed
numerically.

The two important results found in this case are (a) slightly smaller wave amplitudes
are generated because less work is done by the wind stress on the ocean and (b) the time
period of the oscillations of aTld ax and Tl2about the axis of zero displacement, as well
as the wave packet periods, remain unaltered. Figure 11 clearly supports conclusion (b)
by displaying aTld ax as a function of time at x = 2 and x = 10. In fact, provided that
the layer depths remain fixed the temporal variability of the waves is independent of
the time scale of the transient wind stress (see (6.1)).

The reduction of the work done by the wind stress on the ocean compared with
Experiment I also manifests itself in the steady state response. Figure 12 displays the
steady state contribution to both aTldax and Tl2 and shows a greatly diminished
response compared with the corresponding figure in Experiment 1. Qualitatively the
evolution in time of the wave part of Tl2 is identical to that displayed in Figures 7 and 8
and therefore no plots will be displayed. However the phase speed of the primary wave
in the early stages of development (the first 12 days after the wind stress is applied) is
approximately 5 km day-I. The total interfacial excursion is approximately two thirds
of that in Experiment I-namely 4 m.

Experiment 3. Additional numerical calculations are not required if reduced gravity is
altered because this quantity does not appear in the inversion integral. The effect on
the solutions of increasing the value of g' to 2 X 10-2 m S-2 can be seen in Table 1. As
expected the scale parameter of the interfacial displacement is reduced (because
increased buoyancy inhibits vertical motion) when g' is increased. Furthermore a
corresponding increase in the horizontal length scale occurs. Therefore if the solutions
in Experiment 1 are reanalyzed when g' = 2 X 10-2 m S-2, the amplitude of the
response will be halved and the wavelength along the step will be doubled.
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Figure II. As in Figure 9, except the parameter values chosen are given in Table I under
Experiment 2.
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Experiment 4. In this case the fundamental parameter values employed in Experiment
1 are used, with the exception of the upper layer depth HI, which is reduced to 100 m.
Although this upper layer depth is too shallow for typical stratification found over the
Mendocino escarpment, it is nevertheless instructive to examine the forced response for
a range of layer depths.

The steady state contribution to 712 plotted as a function of x is identical to Figure 6.
However, since the scaling factor for the interfacial displacement 710 is now 4.27 m, the
amplitude of the steady state response ranges from 35.5 m at x = 0 to almost zero at a
distance of 44.4 km from the origin.

Once again the wave contribution to 712 evolves in time in a manner identical to the
previous cases. The maximum interfacial excursion is now only 2 m and the phase
speed of the primary wave is reduced to 0.13 km day-l. In Figure 13 the temporal
behavior of a71dax at x = 2 and x = 10 is displayed. At x = 2 the period of the
oscillations is 6 days and the primary wave packet has a period in excess of 240 days.
The slow growth of the primary wave packet in Figure 13b is consistent with the
greatly reduced phase speed.

Experiment 5. All parameter values prescribed are identical to the previous case with
the exception of g' which has a value of 2 x 10-2 m S-2. Table 1 shows the
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Figure 13. As in Figure 9, except the parameter values chosen are given in Table 1 under
Experiment 4.
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(7.1)

characteristic length scale (internal Rossby radius) increases to 14.2 km while the
scale factor for the interfacial displacement is reduced to 2.13 m. This results in
unreasonably small amplitude waves which would be impossible to detect in an ocean
environment and therefore no further discussion will be presented for this case.

7. Response to a time-periodic wind stress

In this section the dependence of the Kelvin wave response with the wind stress
orientation is considered. To simplify the analysis the wind stress chosen is spatially
constant.

The first example presented in this section examines the Kelvin wave response
generated by a time-periodic wind stress directed parallel to the escarpment. Following
the method outlined in Section 5, it is found that when

T
X

~ -TO H(t) cos (uot), TY = 0

the nondimensional interfacial displacement is given by

772{t) = 21r(-y1/2(: ~)~i~o2R2) [sin(o~) - oRsint].

Solution (7.1) exhibits the following important properties:

(i) a resonant response occurs when 0 = R-1• For typical Mendocino escarpment
parameters resonance occurs when 0 "" 0.125 which corresponds to a wind
stress period of approximately 6.2 days. As oR - 1 the solution (7.1) in fact
becomes

(')'-I)R .
772(t) = 4 (1/2 ) [t cos t + sm t]

11'')' +')'

and grows linearly with time.

(ii) The interfacial displacement does not have a travelling wave form.

(iii) Two periods are exhibited by 712' The second term on the right-hand side of
(7.1) exhibits the period of the wind stress forcing, while the first term exhibits
the period of a freely propagating internal double Kelvin wave of infinitely long
wavelength (see Section 4).

In the second example the wind stress is now rotated counterclockwise through 90°
so that

T
X

= 0, TY = -To H{t) cos (uot).

For this case the dimensionless interfacial displacement becomes

I (-y - 1)
772{t) = -2 (1/2 ) [1 - cos t].

11'')' +')'
(7.2)
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The most striking difference between (7.2) and (7.1) is that the former does not exhibit
resonance. Only the forcing period appears in (7.2). The absence ofthe internal Kelvin
wave oscillation can be explained in terms of wind-driven Ekman transport. When the
spatially constant stress is directed normal to the escarpment the mass transport is
parallel to the step and therefore there is no wave generating mechanism.

8. Concluding remarks
A model for a two-layer uniformly rotating ocean of infinite horizontal extent in the

presence of a step discontinuity in depth subject to a divergence-free wind stress
applied normal to the escarpment, is presented. The response of the interface consists
of the superposition of steady state, transient and wavelike terms when a wind stress
curl of delta function form is applied. For parameter values suitable for the Mendocino
escarpment it is found that the wavelike contribution to the solution for the interfacial
displacement can exhibit a 6 m vertical excursion. The 6 m vertical excursion is
obtained when a 500 m upper layer depth is chosen. A deeper upper layer will produce
larger vertical excursions. Furthermore the 6 m vertical excursion occurs 80 km along
the escarpment (in the direction of phase propagation) from the point where the delta
function wind stress curl operates. Qualitatively the double Kelvin wave response
resembles the forced external wave solutions obtained by Mysak (1969). However the
wavelength of the primary forced wave obtained in this study is of the order of 200 km,
rather than 104 km obtained by Mysak (1969) for the homogeneous model.

Wind stress orientation is also addressed in this study by examining the response
produced by a spatially independent time-periodic stress aligned either normal or
parallel to the escarpment. In each case travelling waves are not generated. When the
stress is directed parallel to the escarpment resonance can occur at parameter values
which are not unreasonable for the Mendocino escarpment region (wind stress period
of 6.2 days). The interface oscillates harmonically in time with two periods; the forcing
period and the barotropic double Kelvin wave period. Rotating the same wind stress
through 90° produces a response in which the Kelvin wave term is absent. All the wind
stresses prescribed in this paper have no intrinsic length scale. The solutions obtained
therefore exhibit, in some sense, the natural length scale for the problem.

This study suggests that approximately one month after the sudden intensification
and subsequent decay of a large anticyclonic weather system along the central
California coast, a measurable displacement of the isotherms within the pycnocline
will occur as the primary forced double Kelvin wave propagates along the escarpment.
The detection of internal double Kelvin waves should be possible. An ideal data base to
use would be a one year time series of isotherm displacements within the thermocline at
various locations over the escarpment. The theoretical 6 day oscillation should be a
dominant signal in any spectra computed from such a record. Of course, the ocean
response will be complicated because over a one month period, more than one storm
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event can occur, which will give rise to the superposition of forced waves generated at
different locations and times over the escarpment.

Further studies of forced waves over oceanic escarpments are clearly required
because the model presented here is deficient in three important areas. Firstly, the
presence of the California coast (a boundary normal to the escarpment) has been
neglected. A future study will report on the generation of double Kelvin waves in a
homogeneous ocean along a semi-infinite escarpment. The inclusion of stratification in
a linear forced wave model with a semi-infinite escarpment presents a challenging
problem, which will probably require a numerical approach. As an aid to understand-
ing the low frequency varia bility of the California Current System this problem should
be addressed however.

The second problem with the model presented here is the approximation of the
Mendocino escarpment by a step. A seascarp with a continuous and monotonic depth
profile which is asymptotic to the uniform depths HI + H2(N) and HI + H2(S) would be
more realistic. Longuet-Higgins (l968b) has considered trapped free waves over such
an escarpment. In Figure 2 the presence of large seamounts located along the
escarpment are observed. Seamounts will tend to scatter energy associated with
trapped waves over the escarpment, thereby reducing the effectiveness of this natural
oceanic waveguide.

Finally Chapman (1982) has conducted an extensive comparison of trapped free
wave dispersion properties over a discontinuity in depth in a homogeneous ocean and a
continuously stratified ocean. Only at the long wavelength, low frequency limit does
the homogeneous model predict dispersion characteristics that are in agreement with
those exhibited by the continuously stratified model. Chapman (1982) also finds that
even at the long wavelength, low frequency limit of the free waves the phase and group
velocities differ substantially between the two models. As yet a comparison between
the unforced internal double Kelvin wave solution in a two-layer model with the
unforced baroclinic waves in a continuously stratified ocean over a depth discontinuity
remains to be made. Furthermore the differences in the propagation characteristics of
forced trapped (or leaky) wave solutions in homogeneous, discrete density layered and
continuously stratified oceans is still open to debate. It seems reasonably safe to say
that in the light of the study by Chapman (1982), the magnitude of the phase speeds
predicted by the model presented in this paper will differ by as much as 40% from the
corresponding phase speed in an ocean with continuous (realistic) stratification.
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APPENDIX A
Derivation of the free-wave dispersion relation

The derivation of the dispersion relation follows the method described by Wright
and Mysak (1977) for obtaining the dispersion relation for long coastal trapped waves
of subinertial frequency over a single-step continental shelf in a two-layer fluid.

In the absence of wind stress forcing, the dependent variables in (2.I) to (2.6) are
written in the form r(x, y, t) = Re{t(x, y)e-iW1

}. Expressions analogous to (2.9) for Ut.

VI and u2, V2 in terms of 771 and 772 are then obtained in the manner described in Section
2. These equations are used in deriving the governing equation for 772 and in the
matching conditions across the escarpment.

The equations analogous to (2.12) and (2.14) are

and

"il2y; = 0,

2 1
"il 172 - -2 772 ~ 0,

Ti2

(AI)

(A2)

and are obtained following the approach described in Section 2. However, in (AI) and
(A2) the quantities y; and 772 are functions of x and y only.

At the escarpment y = 0, the continuity of the sea surface and interfacial
displacement requires

(A3a)

(A3b)

The mass transport normal to the escarpment is also continuous in each layer, and
therefore

(A4a)
(A4b)

Upon combining Eqs. (A4a, b) it is clear that

(A5)

For trapped waves that propagate along the escarpment, solutions of the form

(A6)

(A7)

are examined. When (A6) and (A7) are substituted into (AI) and (A2) respectively, it
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cf>yy - k2cf> = 0, (A8)

Hyy - )...2 H = 0, (A9)

where )...2 = k2 + l/rl/' Upon solving (A8) and (A9) and applying the trapping
condition, (A5) and (A3b), it is found that

t/I(N) = AlelklYelkx,

t/I(S) = Ate-lkIYelkx,

Tl2(N) = A2 exp (X(N)y) exp (ikx),

TIP) = A2 exp (-X (S)y) exp (ikx),

(AIDa)

(A lOb)

(Alla)

(Allb)

(Bl)

where X(N)= (k2 + 1/rI2(N)2)1/2,Xes) = (k2 + 1/ri2(S)2)1/2 and AI> A2 are arbitrary
constants. Finally, the application of (A3a) and (A4b), using (AlO) and (All), gives
two homogeneous equations for Al and A2, namely

A + g A2 {fH + w [H (N)H(S)X(N) + H (S)H(N)X(Sl]} = 0 (AI2)
I f2 I k(H2(S) _ H2(N») 2 2 ,

gHI(H2(S) - H2(N»)A2
At + [w(IfS) + IfN») + f(H2(S) _ H2(N»)] = O. (A13)

Upon setting the determinant of the coefficients of (A12) and (A13) to zero, the
dispersion relation (4.1) is obtained.

APPENDIX B

Numerical evaluation of Fourier integrals
The inversion of the expression i k ih(k, 0, t) which appears in Section 5 gives rise to

Fourier integrals of the type

1~ {cosI(x, t) = f(k, t) . (kx) dk.
o sin

Integrals of the type (Bl) are difficult to evaluate accurately because (a) for large k
the integrand oscillates rapidly thereby producing extremely strong cancellation of the
positive and negative contributions to I and (b) whenfdecays slowly to zero as k --+ 00

the problem stated in (a) is accentuated. Blakemore et al. (1976) discuss a number of
related methods for the evaluation of (Bl). The approach adopted in this paper is to
integrate between successive zeros of cos (kx) (or sin (kx)), thus converting the
integral (Bl) to an infinite summation. Following Blakemore et al. (1976) it can be
shown that if

Ic(x, t) = J:~f(k, t) cos (kx) dk, (B2)
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then (B2) may be expressed as

where

(B3)

u.(x, t) = (_1)"+1 X-I [" f[(p + mr + 1r/2)x-l, t] sinp dp. (B4)

Similarly, if

I.(x, t) = [00 f(k, t) sin (kx) dk,

then (B5) may be expressed as
00

I.(x, t) = I:: v.(x, t)
.-0

where

(B5)

(B6)

(B7)v.(x,t) = (-I)"x-1 ["f[(p + n1r)x-l,t] sinpdp.

The finite range integrals appearing in (B3), (B4) and (B7) are evaluated using a
cautious adaptive Romberg extrapolation scheme. To accelerate the convergence of
the alternating infinite series appearing in (B3) and (B6) a variation of the Shanks
transform technique is employed (see Shanks, 1955). Blakemore et al. (1976) discuss a
number of accelerator techniques for the evaluation of slowly converging alternating
infinite series. The basic idea of these algorithms is to accelerate the convergence of the
sequences {A.} (n = 0,1,2, ... ) of partial sums given by

•
A = 'u.• L... J

j-O

In this paper the accelerator chosen is the numerically stable E-algorithm (see
Blakemore et al., 1976) defined by

E.(-I) ~ 0; E.(O)= A. )
E (p) ~ E (p-2) + [E (p~l) - E (P-I)]-I
n n+ 1 n+ 1 n

(B8)

The recurrence relations defined in (B8) are used to calculate EO(2k)(k = 1,2, ... ). For
fixed k, the first (2k + 1) partial sums are required to calculate EO(2k). Furthermore the
value of Ea(2k) is a more accurate approximation to the value of the sum of the altering
infinite series than A2k+]' The integrals in Section 5 are approximated by the value of
Ea(lO)(corresponding to a value of k = 5).
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