YALE PEABODY MUSEUM

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU

JOURNAL OF MARINE RESEARCH

The *Journal of Marine Research*, one of the oldest journals in American marine science, published important peer-reviewed original research on a broad array of topics in physical, biological, and chemical oceanography vital to the academic oceanographic community in the long and rich tradition of the Sears Foundation for Marine Research at Yale University.

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar, a digital platform for scholarly publishing provided by Yale University Library at https://elischolar.library.yale.edu/.

Requests for permission to clear rights for use of this content should be directed to the authors, their estates, or other representatives. The *Journal of Marine Research* has no contact information beyond the affiliations listed in the published articles. We ask that you provide attribution to the *Journal of Marine Research*.

Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/

Variations in primary production and particulate carbon flux through the base of the euphotic zone at the site of the Sediment Trap Intercomparison Experiment (Panama Basin)

by James K. B. Bishop¹ and John Marra¹

ABSTRACT

¹⁴C primary production data collected during the deployment and recovery cruises of STIE in 1979 showed a simple relationship with light and nutrient concentrations in the euophotic zone. A simple empirical relationship, calibrated using these data, was derived so that weekly averaged observations of fractional cloudiness, sea-surface temperature and mixed layer depth could be used to estimate primary production on a weekly basis for the years 1976–1979. ¹⁵N-uptake measurements, which estimate new production, were combined with the ¹⁴C data to estimate particulate carbon fluxes from the euphotic zone.

Results of calculations showed that production may vary by a factor of three and particulate carbon flux by a factor of ten on a week to week basis with peak values corresponding to times when the mixed layer became enriched in nutrients. Mean euphotic zone production and particulate carbon flux estimated for the STIE deployment cruise were 286 and 138 mg C m⁻² d⁻¹, respectively; they were 174 and 59 mg C m⁻² d⁻¹ for the recovery cruise. Mean production and flux values were 261 and 122 mg C m⁻² d⁻¹, respectively for the duration of STIE. Three high production and particle sedimentation events may have occurred during STIE in September and October 1979. 1979 appeared to be a year of lower than average primary production compared with 1976 and 1977.

1. Introduction

The Sediment Trap Intercomparison Experiment (STIE) took place at 5N 82W in the Panama Basin between July and December 1979. During that time sediment traps of various designs were deployed on several moorings between depths of 600 and 3800 m to measure the vertical mass flux of particulate matter. Some moored traps had the ability to take sequential samples over time intervals of two and four weeks. Surface-tethered sediment traps were also deployed for 12 and 24 hour periods in the upper 300 m on both the trap deployment (*Knorr* 73-17) and recovery (*Gilliss* 7904/3) cruises. In addition, Large Volume *in situ* Filtration System (LVFS) profiles of particulate matter were obtained within the upper 1300 m over several day periods on both cruises. A major objective of STIE was to compare particle flux data derived from the collections of traps of different design and estimated indirectly from LVFS data.

1. Lamont Doherty Geological Observatory of Columbia University, Palisades, New York, 10964, U.S.A.

Location	January–April	May-December
Panama Bight		370
May '52		
Fixed Station 8°45'N, 79°23'W	750	370
Nov '54–June '59		
Panama Bight ACENTO	550-650	100–290
May '65–Feb '67		
Panama Bight EASTROPAC 77 Jan-Feb '68	900	

Table 1. Estimates of primary production in the Panama Bight*: mg C m⁻² d⁻¹.

*From Forsbergh (1969, Table 28).

The Composition Flux and Transfer Experiments $(C-FATE^2)$ occurred on the same cruises as STIE and were designed to complement STIE by providing a biological and suspended particulate matter data set which would augment our understanding of the linkage among the physical environment, biological processes, and particle sedimentation. Since the particle flux in the Panama Basin at 1N, 86W may vary substantially over weekly to seasonal time scales (Bishop *et al.*, 1980), an additional goal of C-FATE was to provide a basis for comparison of particle flux measurements made during different periods of time during STIE.

Few primary production data exist for the STIE area. This area, however, lies west of the Panama Bight (defined as the eastern equatorial Pacific between 1 and 9N and east of 81W) where Forsbergh (1969) has provided a summary of the climatology, oceanography, and fisheries. Hydrographic data collected within the Bight, indicate that upwelling activity and shallow mixed layer occur from January to March, after which the mixed layer deepens through the rest of the year. Chlorophyll *a* and primary production (Table 1) in the Bight respond to the upwelling, so that peak values, occurring in March, may be double the annual average values. Zooplankton populations, lagging the phytoplankton, double by March and increase a further 50% by May to June. Abundances fall off gradually through November. Fish harvest generally follows that of zooplankton abundance. We assume that the STIE area, by its proximity, will be influenced, but at a reduced level, by the major upwelling events in the Panama Bight as described by Forsbergh.

In this paper, we intend to extend Forsbergh's work and provide a history of the variability of primary production at 5N, 82W from 1976–1979 and, we hope, a better understanding of one of the major factors governing the vertical flux of particulate

2. (P. E. Biscaye, J. K. B. Bishop, W. D. Gardner, J. Marra, A Bé at L-DGO and P. Wiebe W.H.O.I)

matter into sediment traps during STIE. Toward this end, rather than constructing a complicated primary production model such as, for example, described in Platt *et al.* (1977), we formulate a simple empirical relationship, calibrated against C-FATE data, to predict primary production as a function of photosynthetically active radiation (*PAR*), seasurface temperature (*SST*), and depth of the mixed layer (*DML*). As we shall show, the latter two variables provide indications of the nutrient content of the euphotic zone. Since weekly averages of cloudiness (*C*), *SST* and *DML* are available for the STIE area from NOAA/NMFS (La Jolla) the relationship can be used to estimate production during the periods for which ship data are not available. In the discussion below, we draw on the concepts of "new" (upwelled or entrained) and "regenerated" (recycled) nutrients supporting production (Dugdale and Goering, 1967) and of new production being equal to particulate carbon flux through the base of the euphotic zone (Eppley and Peterson, 1979).

2. Derivation of the empirical primary production relationship

Primary production (PP) occurs as a direct consequence of the availability of sunlight and of nutrient supply. While solar radiation attenuates with depth, nutrients are supplied from the deep by processes of upwelling or turbulent entrainment of the mixed layer. As the processes that supply nutrients to the mixed layer also tend to reduce SST, we shall derive, in this section, a relationship between PP and PAR, SST and DML which were available or estimable from ship board measurements during C-FATE.

The water in the euphotic zone of the STIE area is divisible into two major layers. The upper layer, or the mixed layer, represents a nutrient-limited regime (except when enriched by nutrients due to entrainment and/or upwelling) while the lower layer, or the upper thermocline, represents a region where production is limited by light rather than by nutrients. During STIE, the mixed layer had typical properties of 27°C, 32 parts per thousand salinity (% S), and 0.04, 0.02, <.1, 0.19, and 1.5 μ mol kg⁻¹ of nitrate (NO₃), nitrite (NO₂), ammonia (NH₃), phosphate (PO₄), and silicate (Si), respectively. The lower layer was characterized by marked gradients in which 15°C, 35% S, and 27, 2.0 and 18 μ mol kg⁻¹ values of NO₃, PO₄, and Si were reached by 70 m. Maxima in NO₂ and NH₃ of 0.7 and 0.3 μ mol kg⁻¹ were found several meters below the base of the mixed layer and decreased to undetectable levels by 70 m (Bishop and Spencer, unpublished data). The deepest limit of the second layer (70 m) was chosen because it corresponded approximately to the depth of 1% of *PAR* at the surface and thereby defines the lower limit of the euphotic zone. This distribution of environmental variables resulted in a subsurface maximum in production a few meters below the base of the mixed layer (Marra et al., 1983).

PP values at various depths come from the dark bottle-corrected ¹⁴C measurements described by Marra *et al.* (1983). The total ¹⁴C production in the euphotic zone is

Figure 1. Integrated primary production in the euphotic zone for both *Knorr* and *Gilliss* cruises (bars) compared with mean day-time cloudiness data obtained from ship's logs (*).

plotted together with estimates of cloudiness (Fig. 1) and demonstrates the importance of light availability as a controlling factor of *PP*.

The PP in the second layer attenuates with depth, as to be expected from its dependence on PAR. In order to estimate PAR as a function of depth we assume:

1) The relationship between cloud cover (C) and solar radiation incident at the sea surface, I_i , is described by that given in Johnson *et al.* (1965),

$$I_i = I_s(1 - 0.4^*C - 0.38^*C^2) \tag{1}$$

where I_s is solar radiation on a cloud-free day. This is one of several quantitative relationships that are commonly used. Monthly average I_s values at 5N 82W range between 590 (Dec) and 670 Ly d⁻¹ (Mar, Apr, and Sept) with a mean of 645 Ly d⁻¹ (Ivanoff, 1977) and are listed in Table 2. Values were 650 and 605 Ly d⁻¹ (1 Ly d⁻¹ = 0.484 Watts m⁻²) for the *Knorr* and *Gilliss* cruises respectively.

2) Photosynthetically active radiation (*PAR*), or the blue-green portion of solar radiation absorbed at the sea surface, I_o , is given by Strickland (1958),

$$I_o = 0.5^* I_i \tag{2}$$

3) *PAR* decreases exponentially with depth (Ivanoff, 1977) so that *PAR* at some depth z, I_z , is related to its surface value by:

$$I_z = I_0 e^{-kz} \tag{3}$$

where k is the mean extinction coefficient for light. To estimate k, Secchi disk measurements were made on the *Knorr* and *Gilliss* cruises. Secchi depths obtained were 24.7 \pm 2.0 m and 22.0 \pm 2.3 m (σ) respectively giving a mean of 23.5 m. Assuming that three times the secchi depth (or 70 m) is equal to the 1% light level (Eppley *et al.*, 1979), k is computed to be 0.066 m⁻¹ for the euphotic zone.

									FLUX/
Day	SST	DML	I_s	С	ТРР	xsPP _{ml}	FLUX	xsFLUX	TPP
			Mod	lel result	s based on	NOAA da	ita		
7	26.5	30.4	610	0.59	200.5		78.4		0.391
14	27.0	15.2	610	0.59	308.9		153.9		0.498
21	25.7	14.0	610	0.59	550.4	966.0	302.7	531.3	0.550
28	27.0	22.9	610	0.59	238.9		107.4		0.449
35	25.0	22.9	650	0.48	609.7	2394.9	335.4	1317.2	0.550
42	29.0	15.2	650	0.48	351.6		177.4		0.505
49	28.0	15.2	650	0.48	351.6		177.4		0.505
56	28.0	15.2	650	0.48	351.6		177.4		0.505
62	27.0	22.9	670	0.48	272.2		125.7		0.462
69	27.0	14.6	670	0.48	367.2		186.6		0.508
76	26.5	15.2	670	0.48	358.8		181.4		0.506
83	27.0	14.3	670	0.48	371.5		189.3		0.510
98	26.5	14.6	670	0.63	324.0		162.9		0.503
106	27.5	15.2	670	0.63	316.7		158.2		0.500
113	28.2	15.2	670	0.63	316.7		158.2		0.500
120	28.5	15.2	670	0.63	316.7		158.2		0.500
128	29.0	38.1	650	0.75	173.5		55.4		0.319
135	27.8	38.1	650	0.75	173.5		55.4		0.319
142	28.5	36.5	650	0.75	174.8		57.8		0.331
149	28.7	33.5	650	0.75	178.7		63.1		0.353
154	27.5	47.0	640	0.80	168.5		44.5		0.264
161	28.0	38.0	640	0.50	191.1		65.2		0.341
168	27.8	31.0	640	0.70	189.2		71.5		0.378
1/5	26.7	23.0	640	0.80	200.8	()()	86.3	244.5	0.430
100	20.2	14.0	640	0.05	238.0	020.4	296.3	344.5	0.550
100	20.0	30.0	640	0.05	170.4		62.2		0.303
190	27.5	32.0	640	0.80	1/4.5		02.2		0.357
203 *200	27.0	23.0	640	0.80	192.5		128 1		0.414
*217	27.5	20.0	660	0.00	205.5		867		0.404
225	27.5	12.0	660	0.00	263.3		132.2		0.400
225	27.5	30.0	660	0.05	167.3		60.5	•	0.362
230	27.0	30.0	660	0.75	187.4		71.6		0.382
244	26.5	38.0	670	0.88	163.1		49.8		0.302
251	26.0	38.0	670	0.75	499.0	2355.6	274.5	1295.6	0.505
259	25.5	31.0	670	0.85	428.8	2688.4	235.8	1478.6	0.550
266	26.6	24.0	670	0.80	200.9	2000.1	85.3	1470.0	0.330
273	26.3	24.0	670	0.70	527.6	1034.6	290.2	569.0	0.550
280	26.5	27.0	660	0.80	188.1	100 110	75.1	50710	0.399
287	26.5	26.0	660	0.75	201.2		83.4		0.414
294	27.1	32.0	660	0.85	169.2		59.5		0.351
301	26.2	28.0	660	0.80	461.7	1423.5	253.9	782.9	0.550
308	26.8	21.0	620	0.70	231.5	·	105.3		0.455

Table 2. Primary production and particle flux estimates for 1979 ($T_{crit} = 26.5$).

193

FIIIY/

									TLUN/
Day	SST	DML	I_s	С	TPP	xsPP _{ml}	FLUX	xsFLUX	TPP
			Mod	el results	based on	NOAA da	ta		
315	26.5	32.0	620	0.85	166.1		57.7		0.348
322	27.0	28.0	620	0.75	188.5		74.3		0.394
*329	27.8	26.0	620	0.75	195.4		80.2		0.410
*336	26.5	18.0	590	0.80	218.4		101.2		0.463
343	27.5	21.0	590	0.60	246.0		113.3		0.460
	Model	results ba	ased on 1	mean of (C-FATE	observation	is of SST,	DML and C	
213	27.0	18.0	640	0.60	285.5		138.1		0.484
333	27.0	35.0	620	0.75	174.1		59.0		0.339
day-	Julian da	ау							

Table 2. (Continued)

*---weeks where C-FATE data collected at sea.

Eqs. 1 to 3 allow us to estimate I_z , the *PAR* at some depth z as a function of cloudiness C. Exact values of C are traditionally difficult to ascertain. We have assigned C = 0, 0.50, 0.75 and 1.00 on days having clear, broken cloud, overcast, and overcast with rain conditions respectively. Mean daily fractional C values were calculated by averaging ship's log entries made at three times per daylight period and interpolating to the above scale.

Figure 2 shows C-FATE *PP* data from depths below the mixed layer plotted against I_z . We assume that the response of primary production to *PAR* in the absence of nutrient limitation can be approximated by a parabolic fit to these data. The correlation coefficient for this fit to the data averaged over 5 Ly d⁻¹ intervals (large symbols, Fig. 2) was 0.87. It must be noted that a linear fit to the data (correlation coefficient 0.86) is equally satisfactory statistically. The parabolic fit would predict rising production to a maximum of 21 mg C m⁻³ d⁻¹ as I_z increases to 164 Ly d⁻¹ and then a drop off in production at higher light levels. We assume that production is constant at 21 mg C m⁻³ d⁻¹ for $I_z > 164$ Ly d⁻¹. This threshold light value for maximal photosynthetic production in the absence of nutrient limitation is consistent with that found, for example, by Yentsch and Lee (1966), Dunstan (1973) and Kiefer (1973). Therefore, we adopt the parabolic fit to the data with the addition of the above constraint in favor of the linear fit,

$$PP_{\text{L.lim.}} = a + bI_z + cI_z^2, I_z < 164 \text{ Ly } d^{-1} \text{ mg C } m^{-3} d^{-1}$$

= 21, $I_z \ge 164 \text{ Ly } d^{-1}$ (4)

where a = 0.536, b = 0.252, and c = -0.00077. Although this formulation is not typical of that found in primary production models based on irradiance (eg. Jassby and Platt, 1976), it approximates the response of *PP* to I_z adequately.

Figure 2. Parabolic fit of primary production for samples below the mixed layer against calculated *in situ* photosynthetically active radiation. *Knorr* 73-17 and *Gilliss* 7904/3 data are indicated by (\bullet) and (+), respectively. Averaged values used in the fit are indicated by (O).

The mean mixed layer production values for the *Knorr* and *Gilliss* cruises were 3.3 and 2.8 mg C m⁻² d⁻¹, respectively. Since the mixed layers during these cruises had SST values of 27°C and were depleted of nutrients, it is assumed that the mean value of 3.0 mg C m⁻³ d⁻¹ is typical of nutrient-limited production in the model. The co-occurrence of warm SST and low nutrient levels is the key to using SST data (see below) as an indication of nutrient depleted conditions in mixed layer.

$$PP_{\rm N,lim} = 3.0 \text{ mg C m}^{-3} \text{ d}^{-1}$$
(5)

Profiles of production for a 20 m nutrient-limited layer overlying a 50 m thick light-limited layer calculated using Eqs. 4 and 5 and C values of 0. (brightest day), 0.6 (average cloudiness for the *Knorr* cruise) and 1.0 show reasonable agreement with the *Knorr* data (Fig. 3). *Gilliss* data show higher values than predicted by similar calculations for a 35 m nutrient-limited layer overlying a 35 m thick light-limited layer but this may be attributed to the fact that the *Gilliss* data were less systematically collected than the *Knorr* data.

a. Euphotic zone production estimates. In the nutrient limited case, the integrated production over a depth interval $(Z_1 < Z < Z_2)$ is,

$$\Sigma PP_{\text{N,lim.}} = \int_{Z_1}^{Z_2} PP_{\text{N,lim.}} dz \, \text{mg C m}^{-2} \, \mathrm{d}^{-1} = 3.0(Z_2 - Z_1) \tag{6}$$

In the light-limited case, the integrated production over a depth interval $(Z_1 < Z < Z_2)$

Figure 3. Computed fit (assuming various values for cloudiness and a mixed layer depth of 20 m and nutrient limiting conditions in the mixed layer) compared with dark corrected productivity data measured on both *Knorr* and *Gilliss* cruises. The *Gilliss* data are considered less reliable than the *Knorr* data.

is calculated from Eq. 4,

$$\Sigma PP_{\text{L.lim}} = \int_{Z_1}^{Z_2} PP_{\text{L.lim.}} dz \quad \text{mg C m}^{-2} d^{-1}$$

= $PP_{\text{max}}(Z_{\star\star} - Z_1) + a(Z_2 - Z_{\star\star}) - bI_o/k[e^{(-kZ_2)} - e^{(-kZ_{\star\star})}]$
 $- cI_o^2/2k[e^{(-2kZ_2)} - e^{(-2kZ_{\star\star})}]$ (7)

where $PP_{\text{max}} = 21 \text{ mg C m}^{-3} \text{ d}^{-1}$ at the depth, Z_{**} , where $I_z = 164 \text{ Ly d}^{-1}$. If $Z_{**} < Z_1$ then it is set equal to Z_1 .

Estimates of mixed layer production may be made using Eqs. 6 and/or 7. On a cloudy day production in a very deep mixed layer may be limited by light as well as by nutrients, whereby the 3 mg C m⁻³ d⁻¹ production assumed in the nutrient-limited case exceeds the value computed assuming only light limitation. In this case the production

profile is determined by the lower of the two values. Thus, integrated mixed layer production, ΣPP_{ml} , in the nutrient limited case is given by:

$$\Sigma PP_{ml} = \int_0^{Z_*} PP_{\text{N.lim.}} dz + \int_{Z_*}^{Z_{ml}} PP_{\text{L.lim}} dz \, \text{mg C m}^{-2} \, \mathrm{d}^{-1}$$
(8)

where Z_{\star} is the depth where light-limited production equals 3.0 mg C m⁻³ d⁻¹ and Z_{ml} is the mixed layer depth. If Z_{\star} is calculated to be deeper than the mixed layer depth then Eq.(8) reduces to Eq. (6) with $Z_1 = 0$ and $Z_2 = Z_{ml}$.

From time to time, there have been reports of high production in the mixed layer (Forsbergh, 1969, Love *et al.*, 1970–1977). Hydrographic data show that these events are accompanied by lower sea-surface temperatures and higher salinities and nutrient concentrations. These events are probably caused by upwelling or by mixing of deeper water into the mixed layer. C-FATE hydrographic data show an inverse linear relationship between nutrient concentration and temperature over a temperature range of 7°C to 27°C (Fig. 4). We therefore expect that any relative drop in *SST* due to entrainment from below the mixed layer will be accompanied by a proportional increase in nutrients. We will use this knowledge to develop criteria for predicting high production in the mixed layer based on *SST* data.

We start by assuming that there exists a critical temperature, T_{crit} , such that production is nutrient-limited for all $SST \ge T_{crit}$ and that production is light-limited for $SST < T_{crit}$:

$$\Sigma PP_{ml} \begin{cases} = \int PP_{\text{N.lim.}} dz, SST > T_{\text{crit}} \\ = \int PP_{\text{L.lim.}} dz, SST < T_{\text{crit}} \end{cases}$$
(9)

We have chosen T_{crit} to be 26.0°C for several reasons. Firstly, there is sufficient nutrient content in a mixed layer colder than 26°C to support high production for one week. Figure 4 shows that an inverse linear relationship exists between PO_4 and T for samples collected during both STIE cruises. PO₄ is generally not considered to limit production at the concentration levels found in the 27°C mixed layer. The NO₃ levels are low enough, however, to limit production. Unfortunately, NO₃ data were collected only on the Knorr cruise and were not generally accompanied by temperature measurements. PO₄ analyses on some of the same water samples measured for NO₃ did indicate a linear relationship between PO4 and NO3 (Bishop and Spencer, unpublished data). Thus we assume that temperature can be used as an indicator of NO3 as it can be for PO₄. We calculate that NO₃ increases from 0.04 µmol at 27°C to 27 µmol at 15°C at a rate of 2.3 μ mol °C⁻¹. Thus a one degree drop in SST from 27°C to 26°C is accompanied by an increase in NO₃ from 0.04 to 2.3 μ mol kg⁻¹. Assuming that the produced organic matter has a C/N ratio of 7 and that all organic matter is quantitatively removed from the mixed layer, then this increase of NO₃ is sufficient to sustain maximum production at 21 mg C m⁻³ d⁻¹ for 9 days and thus guarantees an unlimited supply of nutrients for the one week period used in the calculation. A second

Figure 4. Phosphate—Temperature plot for both Knorr and Gilliss cruises.

reason for choosing $T_{crit} = 26.0^{\circ}$ C is that there is some error involved in the production of the NOAA maps and in interpolating *SST* data from them. A final reason is that we are interested only in major entrainment and upwelling events, not those which support mixed layer production at other times.

Integrated production below the mixed layer is given by Eq. 7 since there is always high nutrient availability in this zone,

$$\Sigma PP_{bml} = \int_{Z_{ml}}^{Z_{eu}} PP_{\text{L-lim.}} dz$$
 (10)

where $Z_{eu} = 70$ m is the euphotic zone depth. Total euphotic zone production is the sum of integrated production values for the mixed layer and below the mixed layer.

$$TPP = \Sigma PP_{ml} + \Sigma PP_{bml} \tag{11}$$

b. Euphotic zone particulate carbon flux estimates. Eppley and Peterson (1979) assumed that particulate flux from the euphotic zone is equal to new production. New production estimates were made on the *Knorr* cruise only and data provided to us by R. Eppley showed that new production averaged 20% of the ¹⁴C production in the nutrient-limited mixed layer and 55% of the ¹⁴C production below the mixed layer. We assume that these ratios are applicable in general to nutrient-limited and light-limited conditions. Hence particulate carbon flux from the mixed layer and below the mixed layer is given by,

$$FLUX_{ml} \begin{cases} = \Sigma PP_{ml} * 0.2, SST \ge T_{crit} \\ = \Sigma PP_{ml} * 0.55, SST < T_{crit} \end{cases}$$
(12)

$$FLUX_{bml} = \Sigma PP_{bml}^* 0.55 \tag{13}$$

Total particulate carbon flux is calculated by summing Eqs. 12 and 13.

$$T.FLUX = FLUX_{ml} + FLUX_{bml} \tag{14}$$

Before examining model results, several caveats must be made. First, production in the model has no explicit dependence on phytoplankton biomass. This is supported by evidence that zooplankton grazing maintains phytoplankton biomass at a constant level over time periods less than a week (Marra *et al.*, 1983). The high stratification of the euphotic zone coupled with the relatively rare cases of high mixed layer production (see below) would tend to stabilize the phytoplankton—zooplankton relationship. Another major assumption is that each week is decoupled from the next. A consequence of decoupling is that there may be excess nutrients left in the mixed layer after an entrainment event and a week of high mixed layer production. This excess is ignored in our simple formulation but we can estimate the particulate carbon flux necessary to completely deplete the mixed layer of nutrients. This excess flux is given by,

$$xsFLUX = ((T_{crit} + 1) - SST)^{*}2.3^{*}7^{*}12^{*}Z_{ml} - FLUX_{ml},$$
(15)

where $T_{\rm crit}$ is the transition temperature for light-limited production, 2.3 is rate of increase of NO₃ with decreasing temperature, 7 is the assumed C/N mole ratio of the produced organic matter and 12 is the atomic weight of carbon. This when summed with new production estimated above provides an upper constraint on weekly averaged particulate carbon flux from the mixed layer. By applying the 55% ratio of particulate carbon flux to total production under light limitation we can estimate the excess production for the mixed layer,

$$xs\Sigma PP_{ml} = xsFLUX/0.55 \tag{16}$$

There are several ways to deal with the xsFLUX and $xs\Sigma PP_{ml}$ unaccounted for by the model. The first would be to assume that the ¹⁴C and ¹⁵N data were both biased low by

yearly averages January-April May-August September-December Year P. Prod. V. Flux P. Prod.	yearly averages January-April May-August September-December Y. Flux P. Prod. V. Flux P. Prod. V. Flux September-December 1976 42 14 301 647 165 337 452 149 271 515 238 874 123 462 319 952 162 311 201 471 733 301 471 151 515 238 874 123 462 319 932 153 943 473 919 931 331 331 331 331 331 331 331 331 332 332 153 940 773 133 331 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>S</th><th>easonal a</th><th>iverages</th><th></th><th></th><th></th><th></th><th></th></th<>												S	easonal a	iverages					
P. Prod. V. Flux P. Prod. P. Prod. P. Prod. P. Pro	P. Prod. V. Flux P. Prod. V. Flux P. Prod. V. Flux P. Prod. V. Flux Year #0bs. %Hi. mean lim. mean lim. mean lim. mean lim. wean lim. mean		~	/early a	iverages					January	–April			May-A	ugust		Sep	otember-	-Decemt	er
Year#obs.%Hi.meanlimmeanlimmeanl	Year #obs. %Hi. mean lim. mean <				P. P1	.od.	<. FI	лх	P. P.	.po	 - -	lux	P. P.	rod.	Ч. Р	lux	P. P.	rod.	Ч. Р	lux
1976 42 14 301 647 165 337 452 1490 293 810 248 120 120 202 202 81 8 1977 42 29 308 932 152 496 347 971 171 515 258 874 123 462 319 952 162 51 1978 37 22 - - - - 234 720 197 382 - - 211 446 79 22 1979 48 15 279 58 131 268 350 561 177 292 214 230 241 454 79 27 773 129 44 AII - 261 652 144 344 383 936 210 500 240 458 110 230 251 593 113 30 STIE 261 656 122 396 210 500 240 458 117 250	1976 42 14 301 647 165 337 452 1490 293 810 248 248 120 202 202 81 81 1977 42 29 308 932 152 496 347 971 171 515 258 874 123 462 739 550 510 773 229 203 932 153 952 162 730 203 810 248 146 739 203 131 301 1979 48 15 277 510 520 541 177 292 214 530 201 501 301<	Year 🕴	⊭obs.	%Нi.	mean	lim.	mean	lim.	mean	lim.	mean	lim.	mean	lin.	mean	lim.	mean	lim.	mean	lim.
1977 42 29 308 932 152 496 347 971 171 515 258 874 123 462 319 952 162 51 1978 37 22 - - - 384 720 197 382 - - 211 446 79 20 1979 48 15 279 528 131 268 350 561 177 292 214 231 446 79 20 All - - 291 662 144 344 383 936 210 500 240 458 110 230 251 593 113 30 STIE 261 656 122 399 217 214 218 110 230 251 593 113 30 STIE 261 656 122 399 216 653 248 120 202 281 129 46 139 31 30 313 31 313	1977 42 29 308 932 152 496 347 971 171 515 258 874 123 462 319 952 162 510 1978 37 22 $ -$ 384 720 197 382 $ -$ 211 446 79 209 1979 48 15 279 528 131 268 350 561 177 292 214 238 133 301 2016 656 122 399 275 413 1153 216 623 248 120 207 773 129 404 79 208 101 183 301	1976	42	4	301	647	165	337	452	1490	293	810	248	248	120	120	202	202	81	81
1978 37 22 - - - 384 720 197 382 - - - 211 446 79 27 1979 48 15 279 528 131 268 350 561 177 292 214 251 88 108 272 773 129 44 AII - - 291 662 144 344 383 936 210 500 240 458 110 230 251 593 113 30 STIE 261 656 122 399 210 500 240 458 110 230 251 593 113 30 1976 42 10 288 532 139 275 413 1153 216 623 248 120 120 202 202 81 81 103 133 30 1977 42 17 274 613 130 317 324 719 158 373 240	19783722 $ -$ 384720197382 $ -$ 2114467920819794815279528131268350561177292214251593113301STIE261652122399317230240458110230251593113301STIE261656122399317315315214218311301317197642102885321392754131153216623248240381110189197742172746131303173247191583752587381203811101891978373731331334740158375258738120202202818119783737351560177363236107195207275841201979486254349115167350504177363236396107195207275841231979486254349115167350504177363236396107195207275841231979486 <td< td=""><td>1977</td><td>42</td><td>29</td><td>308</td><td>932</td><td>152</td><td>496</td><td>347</td><td>971</td><td>171</td><td>515</td><td>258</td><td>874</td><td>123</td><td>462</td><td>319</td><td>952</td><td>162</td><td>510</td></td<>	1977	42	29	308	932	152	496	347	971	171	515	258	874	123	462	319	952	162	510
1979 48 15 279 528 131 268 350 561 177 292 214 251 88 108 272 773 129 44 All - - 291 662 144 344 383 936 210 500 240 458 110 230 251 593 113 36 STIE 261 656 122 399 210 500 240 458 110 230 251 593 113 36 1976 42 10 288 532 139 275 413 1153 216 623 248 120 120 202 202 81 8 10 13 36 193 37 34 313 36 37 248 381 110 18 110 18 117 37 34 313 36 36 120 202 202 202 81 110 18 137 324 719 158 37 240	19794815279528131268350561177292214251893113301STIE26165612239931324488110230251593113301STIE2616561223993131521662324045811023025159311330119764210288532139275413115321662324812020220281811976421727461331031732471915837555855551977421727461331031732471726120179793611979486254349115167350504177261201797921234190161All26545412322735169017736323639610719520727584122STIE21331591146177261201201797921234190161All26545412322735169017736323639610719520727584122STIE2133159114	1978	37	22		1	I		384	720	197	382	1	1			211	446	79	208
All - 291 662 144 344 383 936 210 500 240 458 110 230 251 593 113 31 STIE 261 656 122 399 215 413 1153 216 623 248 120 202 202 81 8 1976 42 10 288 532 139 275 413 1153 216 623 248 120 120 202 202 81 8 1977 42 17 274 613 130 317 324 719 158 375 258 738 120 120 202 202 81 110 18 1978 37 3 - - - 316 383 156 192 - - - 174 174 55 51 1979 48 6 254 349 115 167 350 504 177 261 201 79 719 79 719 79 212 341 90 16 All 265 454 123 227 351	All — 291 662 144 344 383 936 210 500 240 458 110 230 251 593 113 301 STIE 261 656 122 399 275 413 1153 216 623 248 248 120 230 231 310 317 1976 42 10 288 532 139 275 413 1153 216 653 248 240 150 381 110 185 1978 37 3 - - - 317 324 719 188 130 317 324 719 58 738 123 387 240 181 100 161 174 74 55 55 151 161 170 503 201 201 201 202 202 202 84 122 541 90 161 All 74 <td>1979</td> <td>48</td> <td>15</td> <td>279</td> <td>528</td> <td>131</td> <td>268</td> <td>350</td> <td>561</td> <td>177</td> <td>292</td> <td>214</td> <td>251</td> <td>88</td> <td>108</td> <td>272</td> <td>773</td> <td>129</td> <td>404</td>	1979	48	15	279	528	131	268	350	561	177	292	214	251	88	108	272	773	129	404
STIE 261 656 122 399 1976 42 10 288 532 139 275 413 1153 216 623 248 120 120 202 202 81 8 1977 42 17 274 613 130 317 324 719 158 375 258 738 120 120 202 202 81 10 19 1978 37 3 - - - 317 324 719 158 375 258 738 120 120 202 202 81 110 19 1978 37 3 - - - - 316 192 - - - 174 174 55 5 5 197 10 18 1979 48 6 254 349 117 261 201 201 79 717 256 54 123 227 341 90 16 114 265 267	STIE 261 656 122 399 1976 42 10 288 532 139 275 413 1153 216 623 248 248 120 120 202 202 81 81 1977 42 17 274 613 130 317 324 719 158 375 258 738 132 387 240 381 110 185 1978 37 3 3 56 192 - - - 174 174 55 55 1979 48 6 254 349 115 167 350 504 177 363 236 396 107 195 207 275 84 122 All 265 454 123 315 91 146 . 561 177 363 236 396 107 195 207 275 84	AII			291	662	144	344	383	936	210	500	240	458	110	230	251	593	113	301
1976 42 10 288 532 139 275 413 1153 216 623 248 120 120 202 202 81 8 1977 42 17 274 613 130 317 324 719 158 375 258 738 120 120 202 202 81 1 1978 37 3 - - - - 316 383 156 192 - - - 174 174 55 5 1979 48 6 254 349 115 167 350 504 177 261 201 201 79 79 213 341 90 16 All 265 454 123 227 351 690 177 363 236 396 107 195 207 275 84 15 All 213 315 91 146 77 363 236 396 107 195 207 <td< td=""><td>1976421028853213927541311532166232481201202022028181197742172746131303173247191583752587381233811101851978373$-$316383156192$-$17417455551979486254349115167350504177261201797979161All226545412322735169017736323639610719520727584122STIE2133159114614636323639610719520727584122STIE2133159114636323639610719520727584122STIE2133159114636379323639610719520727584122STIE2133159114636379323639610719520727584122STIE2133159114679212341901617921234190161STratue below which production in the mixed layer beco</td><td>STIE</td><td></td><td></td><td>261</td><td>656</td><td>122</td><td>399</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1976421028853213927541311532166232481201202022028181197742172746131303173247191583752587381233811101851978373 $ -$ 316383156192 $ -$ 17417455551979486254349115167350504177261201797979161All226545412322735169017736323639610719520727584122STIE2133159114614636323639610719520727584122STIE2133159114636323639610719520727584122STIE2133159114636379323639610719520727584122STIE2133159114636379323639610719520727584122STIE2133159114679212341901617921234190161STratue below which production in the mixed layer beco	STIE			261	656	122	399												
1977 42 17 274 613 130 317 324 719 158 375 258 738 123 387 240 381 110 18 1978 37 3 - - - 316 383 156 192 - - - 174 174 55 5 1979 48 6 254 349 115 167 350 504 177 261 201 79 79 212 341 90 16 All 265 454 123 227 351 690 177 363 236 396 107 195 207 275 84 17 All 213 315 91 146	197742172746131303173247191583752587381233872403811101851978373 $ -$ 316383156192 $ -$ 1741745555197948625434911516735050417726120179797921234190161All26545412322735169017736323639610719520727584122STIE2133159114626545412322735169017736323639610719520727584122STIE2133159114626573824087122241241267Number of weekly maps for which production in the mixed layer becomes only light limited26323639610719520727584122Strated primated primary production in the mixed layer becomes only light limited26120124724126247241241	1976	42	01	288	532	139	275	413	1153	216	623	248	248	120	120	202	202	81	81
1978 37 3 - - 316 383 156 192 - - - 174 174 55 5 1979 48 6 254 349 115 167 350 504 177 261 201 79 79 212 341 90 16 All 265 454 123 227 351 690 177 363 236 396 107 195 207 275 84 17 STIE 213 315 91 146 53 236 396 107 195 207 275 84 17	1978373 $ 316$ 383 156 192 $ 174$ 55 55 1979486 254 349 115 167 350 504 177 261 201 79 212 341 90 161 All 265 454 123 227 351 690 177 261 201 79 212 341 90 161 STIE 213 315 91 146 265 354 123 227 351 563 107 195 207 275 84 122 STUE 213 315 91 146 212 346 107 195 207 275 84 122 ST value below which production in the mixed layer becomes only light limited 213 315 91 146 245 267 212 241 90 161 ST value below which production in the mixed layer becomes only light limited 213 236 396 107 195 207 275 84 122 Ferminated orimary production and the mixed layer becomes only light limited 212 241 212 241 212 241	1977	42	17	274	613	130	317	324	719	158	375	258	738	123	387	240	381	110	189
1979 48 6 254 349 115 167 350 504 177 261 201 201 79 79 212 341 90 10 All 265 454 123 227 351 690 177 363 236 396 107 195 207 275 84 17 STIE 213 315 91 146	1979 48 6 254 349 115 167 350 504 177 261 201 79 79 212 341 90 161 All 265 454 123 227 351 690 177 363 236 396 107 195 207 275 84 123 STIE 213 315 91 146 363 236 396 107 195 207 275 84 123 ST value below which production in the mixed layer becomes only light limited Mumber of weekly maps for which NOAA SST & DML data were used per year 265 207 275 84 123 Value contrence of SST values less than T_{eit}	1978	37	e					316	383	156	192					174	174	55	55
All 265 454 123 227 351 690 177 363 236 396 107 195 207 275 84 17 STIE 213 315 91 146	All 265 454 123 227 351 690 177 363 236 396 107 195 207 275 84 123 STIE 213 315 91 146 ST value below which production in the mixed layer becomes only light limited Wumber of weekly maps for which NOAA SST & DML data were used per year Percentage occurrence of SST values less than T_{evil} —Estimated primary production—mg Cm ⁻² d ⁻¹ —Estimated arbon flux—mg Cm ⁻² d ⁻¹ Arerage values from model Arerage values from values values from values values values from values values from values values from values values values from values va	1979	48	9	254	349	115	167	350	504	177	261	201	201	62	79	212	341	90	161
STIE 213 315 91 146	STIE 213 315 91 146 STIE 213 315 91 146 ST value below which production in the mixed layer becomes only light limited wumber of weekly maps for which NOAA <i>SST</i> & <i>DML</i> data were used per year recentage occurrence of <i>SST</i> values less than T_{crit} —Estimated primary production—mg C m ⁻² d ⁻¹ —Estimated carbon flux—mg C m ⁻² d ⁻¹ Average values from model Average values from model Average values from model Average values from model are nutrient budget considerations and means for 1976–1979 computed based on seasonal averages Values computed for the period 24 July–5 Dec 1979	All			265	454	123	227	351	690	177	363	236	396	107	195	207	275	84	122
	5 <i>T</i> value below which production in the mixed layer becomes only light limited wumber of weekly maps for which NOAA <i>SST</i> & <i>DML</i> data were used per year ercentage occurrence of <i>SST</i> values less than T_{cni} —Estimated primary production—mg C m ⁻² d ⁻¹ Estimated carbon flux—mg C m ⁻² d ⁻¹ Average values from model Average values from model Average values from model values computed based on seasonal averages Values computed for the period 24 July–5 Dec 1979	STIE			213	315	16	146												
		Average c ncludes rand meai Values co	values «s prod ns for 1	from n luction 1976–1 d for t}	nodel and flux 979 com ve period	calculat puted b	ted from ased on s /-5 Dec	nutrien easonal 1979	it budgel average	t conside ss	tations									

Table 3. Seasonal and yearly mean production and particle flux estimates.

201

the ratio of $TPP + xs\Sigma PP_{ml}$ to TPP which, as shown in Table 3, is approximately 2.5 and to multiply the results calculated using Eqs. 4 and 5 by this factor. The second way would be to modify the model to allow events from one week to influence the next and to further permit biomass changes. The first modification to the model would not change the systematics of our calculations. The second modification would probably amplify the seasonal differences but would not significantly change our conclusions regarding the frequency or timing of high production and high particulate carbon sedimentation events. Therefore we will simply tabulate the excess production and flux and use this information summed on a seasonal basis with euphotic zone production and particulate carbon flux to provide an upper limit to these values.

3. History of primary production and particulate carbon flux at 5N, 82W from 1976–1979

Weekly averaged SST and DML data for this site were obtained by interpolation from contour maps of these variables published by NOAA/NMFS (La Jolla). Data gaps for the four week period (Aug 16-Sept 12 1979) were filled with data provided by F. Miller (NOAA/NMFS): SST from ships' raw observations and DML estimated crudely from wind data. Data for the period 1 January 1976-31 May 1979 were also obtained from the NOAA/NMFS maps but gaps were left unfilled.

Cloudiness data for the period 31 May through 12 December 1979 were taken to be the mean of weekly averaged ships' log data for the two 5° squares: 0–5N, 80–85W and 5–10N, 80–85W. For the period 1 January 1976 through 31 May 1979 monthly averaged cloudiness data from the climatological atlas of Hastenrath and Lamb (1978) were used. The monthly averages ranged from 0.48 (Feb., March) to 0.86 (August) and the mean climatological cloudiness for the second half of the year at 5N was 0.79 \pm 0.04 (σ). This was slightly higher than NOAA data for the period of the STIE experiment (0.77 \pm 0.03 (σ), calculated by monthly averages). The difference between these averages is insignificant and indicates no systematic bias of the NOAA cloudiness data.

Comparison of the NOAA weekly observations of cloud cover, SST, and DML with those observed during the two cruises show reasonable agreement (Fig. 5). Over the latter half of the year, the NOAA cloudiness data show relatively little variability, consistent with the fact that the STIE area is located at the mean position of the Intertropical Convergence Zone (ITCZ). The NOAA/NMFS SST data appear to be about 0.5°C high relative to C-FATE observations. Consequently 26.5°C rather than 26°C was chosen as the transition temperature from a nutrient-limited to light-limited mixed layer. The DML data agreed with the Knorr but not the Gilliss observations and is explained by a relatively sparse number of observations used in the NOAA maps near the end of the year.

NOAA data for 1976 through 1979 show that events where SST fell below 26.5°C appear clustered predominantly in the first and final four months of the year; coldest

Figure 5. Weekly averages of cloudiness, sea-surface temperature (SST), and depth of the mixed layer (DML) for the period 31 May through 12 December 1979. Shaded blocks above the time axis denote the periods of the cruises; corresponding to these periods are indicated the means and standard deviations of the shipboard observations in bold lines. Mean cloudiness data agreed well for both cruises. The SST data appear to be systematically 0.5°C high and DML data agree for the Knorr cruise but not so well for the Gilliss cruise.

sea-surface temperatures were observed typically between January and March. The mixed layer depths tended to shallower values in the first half of three out of four years studied, consistent with the trends observed in the Panama Bight by Forsbergh (1969).

The mean observed Knorr and Gilliss integrated production values were 355 (9 casts) and 280 (4 casts) mg C m⁻² d⁻¹ respectively and were calculated by integrating over 6 depth intervals sampled for ¹⁴C incubations. These are compared with calculated values of 286 and 174 mg C m⁻² d⁻¹ which were based on average cloudiness, SST and DML values of 0.6, 27°C and 18 m and 0.75, 27°C, and 35 m respectively for the two cruises. Particulate carbon flux estimates for the 2 cruises were 138 and 59 mg C m⁻² d^{-1} respectively. The main difference between the calculated and observed production values is attributable to the fact that calculated production is integrated continuously as opposed to discretely in the case of the ¹⁴C data. The calculated results were 396 and 191 mg $C/m^2/d$ when integrated over bottle depths used on the two cruises. A second difference was that more days of cloudiness and SST data than days of ¹⁴C data contributed to the averages for the 2 cruises (Fig. 1). Using NOAA/NMFS data for the two week intervals (Fig. 5) for both Knorr and Gilliss cruises yielded values of 249 and 207 mg C m^{2} d⁻¹. Although these values were 13% low and 19% high compared with those based on ship's observations for the 2 cruises, our calculations yield systematically consistent production estimates using either shipboard or NOAA/ NMFS data.

Figure 6. Calculated weekly averaged primary production (open bars) and particulate carbon flux (shaded bars) for the euphotic zone ($T_{crit} = 26.5^{\circ}$ C) during STIE. Coastal Zone Color Scanner (CZCS) images for 28 July and 30 Oct 1979 indicated surface chlorophyll levels of 0.1 and 0.4 mg m⁻³ respectively. The CZCS data are consistent with the model and lend further support to the choice of $T_{crit} = 26.5^{\circ}$. There were possibly 4 events of high production due to nutrient enrichment in the mixed layer during the period of the experiment.

We have estimated production and carbon flux using $T_{crit} = 26.5$ and 26.0°C as a means of distinguishing between *possible* and *probable* events of high production and flux. Using $T_{crit} = 26.5$ °C for the period of STIE, production averaged 261 (range 163–528) mg C m⁻² d⁻¹ and carbon flux averaged 122 (range 50–290) mg C m⁻² d⁻¹ (Fig. 6 and Table 2). Upper limits to production and particulate carbon fluxes were 660 and 340 mg C m⁻² d⁻¹ respectively (Table 3). During STIE, *possible* high production events in the mixed layer (*SST* < 26.5°C) occurred during the weeks beginning 28 June, 5 September, 26 September and 24 October 1979. A *probable* event (*SST* < 26°C) occurred during the week beginning 12 September.

Figure 7 shows production and flux estimates for the years 1976–1979 evaluated using $T_{crit} = 26.5$ and 26.0°C. Irrespective of assumed T_{crit} value, the patterns suggest that particle production and flux can vary substantially from year to year and seasonally. The calculations further suggest that while production can vary by a factor of ~3.5 (range 170–620 mg C m⁻² d⁻¹), particulate carbon flux can vary by an order of magnitude (range 40–340 mg C m⁻² d⁻¹). Since we believe that the model deamplifies seasonal differences, greater variation is likely.

4. Summary

In the STIE area solar radiation and nutrient availability are major factors controlling production in the mixed layer and below the mixed layer. Fractional cloud cover, sea-surface temperature and mixed layer depth are the three important parameters which can be used to predict euphotic zone primary production and particulate carbon flux. Evidence from Marra *et al.* (1983) suggests that variability in

Figure 7. Calculated weekly averaged primary production and particulate carbon flux (shaded bars) for the euphotic zone for the years 1976 through 1979. Estimates are made for two values of $T_{\rm crit} - 26.5$ °C and 26.0°C to distinguish between *possible* and *probable* events of high production and particulate carbon flux. Weekly averaged production varies by a factor of three at the STIE site. Values fall below those typical of the Panama Bight.

phytoplankton will be expressed through rates of primary production rather than through biomass changes. According to data, production is modulated by variations in solar irradiance incident at the seasurface which is primarily due to variations in cloudiness (Fig. 1). This is consistent with the conclusions of Walsh (1976) that the event frequency, 0.1-0.2 cycles d⁻¹, is a significant factor in the variability of primary production and phytoplankton—zooplankton interactions for areas similar to the STIE site.

Primary production variations appear to be subdued on a seasonal basis compared with those observed by Forsbergh (1969) in the Panama Bight (Tables 1 and 3). January to April and May to December production in the Panama Bight appears to be roughly 95% and 25% higher, respectively, than at 5N, 82W. Over a given year, weeks of high production and particle flux appear to occur between 10 and 30 percent of the time due to the entrainment of nutrient-enriched upper thermocline water into the mixed layer. This variability is most likely linked to upwelling activity to the north and east of the STIE area during January to April (Forsbergh, 1969). Our data suggest that the months September and October have a higher than average incidence of high production events which may be explained by entrainment of nutrients into the mixed layer during the passage of severe storms prevalent during this season.

The model shows that 1979 was a year of relatively low production in comparison to 1976 and 1977. During STIE there were possibly three week-long periods when primary production was double that of average conditions. Over a year, average weekly production may vary by a factor of three at this location.

If particulate carbon flux through the base of the euphotic zone is equal to "new" production (Eppley and Peterson, 1979) then our calculations suggest that particulate carbon flux can vary over a greater range than does total production. The impact of these variations in flux on collection rates of particulate material by deeper traps depends on additional factors such as grazing organism activities and water column dynamics. This model is only applicable to the specific location of 5N 82W in the Panama Basin. It probably could be used to describe the variations in production and particulate carbon flux within the Panama Basin with some modification.

Acknowledgments. We would like to thank the captains, crews and scientific parties of the R/V Knorr and R/V Gilliss for assistance in collecting these data and Dr. D. W. Spencer, who organized the Sediment Trap Intercomparison Experiment and was chief scientist on the Knorr, and Dr. S. Honjo who served as chief scientist on the Gilliss. Mr. Forrest Miller at NOAA/NMFS (La Jolla, CA) deserves special thanks for providing the cloudiness, SST and DML data used in the model. Drs. P. E. Biscaye and W. D. Gardner served as internal reviewers of the manuscript. Dr. I. Fung and the two anonymous reviewers are thanked for their critical comments. This research was supported under Office of Naval Research Grants N00014-75-C-0210, N00014-80-C-0098 and by The National Science Foundation grant, OCE79-09074. This is contribution number 3569 of the Lamont Doherty Geological Observatory.

REFERENCES

- Bishop, J. K. B., R. W. Collier, D. R. Ketten and J. M. Edmond. 1980. The chemistry, biology and vertical flux of particulate matter from the upper 1500 m of the Panama Basin. Deep-Sea Res., 27, 615–640.
- Denman, K. L. and T. Platt. 1977. Biological prediction in the sea, *in* Modelling and Prediction of the Upper Layers of the Ocean, E.B. Kraus, ed., Pergamon Press, NY, 251–260.
- Dugdale, R. C. and J. J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr., 12, 196-206.
- Dunstan, W. M. 1973. A comparison of the photosynthesis-light intensity relationship in phylogenetically different marine microalgae. J. Exp. Mar. Biol. Ecol., 13, 181–187.
- Eppley, R. W. and B. J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 671–680.
- Eppley, R. W., E. H. Renger and W. G. Harrison. 1979. Nitrate and phytoplankton production in southern California coastal waters. Limnol. Oceanogr., 24, 483-494.

- Forsbergh, E. D. 1969. On the climatology, oceanography and fisheries of the Panama Bight. Inter-Amer. Trop. Tuna Comm. Bull., 14, 386 pp.
- Hastenrath, S. and P. J. Lamb. 1978. Climatic atlas of the tropical Atlantic and eastern Pacific Oceans. University of Wisconsin Press, Madison, Wisconsin.
- Ivanoff, A. 1977. Oceanic absorption of solar energy, in Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, ed., Pergamon Press, NY, 47-71.
- Jassby, A. D. and T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21, 540-547.
- Johnson, J. H., G. A. Flittner and M. W. Cline. 1965. Automatic data processing program for marine synoptic radio weather reports. U.S. Fish Wldlf. Ser. Spec. Sci. Rept., Fisheries No. 503, 70 pp.
- Kiefer, D. A. 1973. Chlorophyll *a* fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress. Mar. Biol., 23, 39-46.
- Kraus, E. B. and J. S. Turner. 1967. A one dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus, 19, 98-105.
 Love, C., Ed. 1970-1977. Eastropac Atlases, 1-11, Circular 330, Nat. Mar. Fish. Ser., Washington D.C., U.S.A.
- Marra, J., P. H. Wiebe, J. C. Stepien and J. K. B. Bishop. 1983. Primary production and plankton distribution at the site of the Sediment Trap Intercomparison Experiment (Panama Basin). J. Mar. Res., (submitted).
- Platt, T., K. Denman and A. D. Jassby. 1977. Modelling the productivity of phytoplankton, in The Sea, Vol. 6, E. Goldberg, ed., Wiley, NY, 807–856.
- Strickland, J. D. H. 1958. Solar radiation penetrating the ocean. A review of requirements, data and methods of measurement, with particular reference to photosynthetic productivity. J. Fish. Res. Board Can., 15, 453-493.
- Walsh, J. J. 1976. Herbivory as a factor in patterns of nutrient utilization in the sea. Limnol. Oceanogr., 21, 1-13.
- Yentsch, C. S. and R. W. Lee. 1966. A study of photosynthetic light reactions, and a new interpretation of sun and shade phytoplankton. J. Mar. Res., 24, 319-337.

Received: 15 June, 1982; revised: 18 October, 1983.